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Abstract

The aim of this research is to analyse a Keynesian goods market closed economy by
considering a continuous-time setup with fixed delays. The work compares dynamic results
based on linear and nonlinear adjustment mechanisms through which the aggregate supply
(production) reacts to a disequilibrium in the goods market and consumption depends on
income at a preceding date. Both analytical and geometrical (stability switching curves)
techniques are used to characterise the stability properties of the stationary equilibrium.
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1 Introduction

Macroeconomic models of Keynesian tradition have always played an influential role in the
economic literature and, amongst other things, they have represented a natural starting point
for the formulation of economic dynamic problems (e.g., Allen, 1959). In this respect, there are
at least two distinct modelling approaches. On the one hand, there is plenty of research dealing
with equilibrium dynamics, i.e. models in which the equality between aggregate demand and
aggregate supply (production) in the real or goods market holds at every date. On the other
hand, several works also account for disequilibrium dynamics, i.e. models in which economic
dynamics is studied based on the assumption that aggregate demand can be different from
aggregate production. Within this vast stream of research several issues were addressed: for
instance, the study of problems related to international trade or those accounting for the non-
neutrality of money (e.g., Chiarella and Flaschel, 2000). In addition, some Keynesian intuitions
have also led to the building on models unusual in the tradition of economic literature due to
their non-trivial mathematical properties. To this purpose, we mention here the works of 1)
Asada and Yoshida (2001), the aim of which is to study the macroeconomic effects of a "policy
lag" (Asada and Yoshida, 2001, p. 282) in a nonlinear dynamic version of a Keynesian model. In
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particular, the authors characterise the dynamic properties of the resulting system governed by
delay differential equations finding that too long a delay in implementing the policy may make
the stabilising effect of the public expenditure ineffective; 2) Cánovas and Ruiz Marín (2006), who
develop a non-autonomous model in discrete time finding some analytical and simulative results
on the existence of chaotic dynamics that are well suited to describe business cycle fluctuations;
3) Böhm (2006), who modifies the standard multiplier-accelerator model by adding several kinds
of random components acting either on the multiplier or the accelerator or, alternatively, on both
of them.

It is interesting to note that part of the (dynamic) Keynesian literature has been developed
in discrete time (usually equilibrium models) and another part has instead built on in continuous
time (usually based on disequilibrium models in which dynamic adjustment mechanisms depend
on the excess demand in the goods market).1 Without the aim of deepening in a comprehensive
and thoughtful way this issue here, it is remarkable however that some textbooks on economic
dynamics (Shone, 2001; Gandolfo, 2010) introduce the equilibrium Keynesian paradigm and
its disequilibrium counterpart as if they were one the other one’s interface depending on the
mathematical setup used (i.e., discrete time or continuous time).2 Nonetheless, it is important
to emphasise that equilibrium and disequilibrium dynamics have different meanings regardless
of whether the model is built on in discrete time or continuous time. Actually, in a dynamic
environment in which the aggregate demand is always equal to the aggregate supply all the effects
related to the working of the principle of effective demand of Keynesian tradition are sterilised.
According to this principle, aggregate demand determines the level of both actual production
and employment and then the aggregate supply reacts to a disequilibrium in the goods market
depending on the sign of the excess demand. This principle defines a disequilibrium paradigm
with respect to which the equilibrium is a possible event that cannot however be imposed as an
assumption.

Compared to the Keynesian tradition that in the recent past has used discrete maps to analyse
equilibrium models, there is a burgeoning (more recent) interest in the analysis of discrete-time
disequilibrium Keynesian models (where the dynamics is characterised by difference equations)
focusing on the study of the interactions between real markets and financial markets (Westerhoff,
2012; Naimzada and Pireddu, 2014a, 2014b, 2015). Irrespective of the specific content of each
single work, however, it is relevant to highlight that this literature has introduced nonlinear
adjustment mechanisms with respect to which the goods market reacts depending on the sign of
the excess demand. This makes possible observing models with an unstable market equilibrium
where there exists a chaotic attractor able to capture the dynamics of the system (non-explosive
dynamics). Indeed, the assumption of nonlinear adjustment mechanisms may help to capture
and explain in a better way the (business) cycles observed in aggregate variables (income and
employment) than a model with a linear adjustment mechanism in the goods market (where
instability is a synonym for explosive dynamics). Business cycle, in fact, is a typical (empirical)
feature of several developed economies and its (theoretical) explanation should not be based only
on rational expectations frameworks with external or random perturbations (DSGE Keynesian
models3). This is because fluctuations are often an intrinsic phenomenon of market behaviours,
so that models able to explain them endogenously are highly valuable.

1See Chiarella et al. (2000) for a survey of this issue.
2For a discussion on continuous-time and discrete-time versions of Keynesian macroeconomic models see Asada

et al. (2010).
3See, for instance, the works of Smets and Wouters (2003) and Christiano et al. (2005). Although this

approach is still the dominant paradigm in the literature, it should honestly be mentioned that it has been
seriously questioned by some influential scholars (Mankiw, 2001; Solow, 2004). This is essentially because of the
working of the rational expectations hypothesis in forward-looking economic models and its failure to adequately
capture some empirical facts, as is pointed out by Estrella and Fuhrer (2002).
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A peculiar characteristic of this kind of disequilibrium discrete-time models is that the adjust-
ment mechanism of aggregate consumption has the same timing as the adjustment mechanism
in the goods market. This assumption makes the analysis of the dynamic model easier but
it contributes to let the theoretical framework less able to describe the functioning of actual
markets. The purpose of the present article is to generalise Naimzada and Pireddu (2014a) by
considering a more flexible dynamic environment characterised by differential equations with two
fixed delays.4 In particular, the work analyses four different formulations of adjustment mecha-
nisms within a disequilibrium Keynesian goods market model. One of this mechanism generalises
the classical linear adjustment process described by Ferguson and Lim (2003) in a discrete-time
setup, according to which the change in income is a linear function of the disequilibrium in the
goods market. Amongst other things, this exercise shows a peculiar characteristic of this kind
of models, i.e. when aggregate production reacts quickly to a positive or negative excess de-
mand in the goods market, the economic system is stable regardless of the timing with which
(current) aggregate consumption reacts to aggregate production (corridor of stability). Another
important point, however, is that despite linear delay differential equations systems can generate
Hopf bifurcations, in this case this phenomenon has little interest as cyclical trajectories tend to
diverge for several parameter values (this result can also be verified by applying the analytical
techniques based on the central manifold theory). This implies that although the model is not
able to explain persistent fluctuations, it is able however to show the existence of fluctuations
(business cycles) that dampen more slowly in comparison with those generated by its discrete-
time counterpart. As a second exercise, this work modifies the previous adjustment mechanism
by considering that the rate of change in income Ẏ (t)/Y (t) (instead of Ẏ (t)) is a linear function
of the disequilibrium in the goods market. In this case, the model is able to generate persistent
fluctuations but it still continues to have some modelling shortcomings, that is for large values of
the time delays or for initial conditions far enough from the stationary equilibrium it may pro-
duce divergent trajectories. In order to overcome this concern, the article considers two models
reproducing in a delay differential equations context the nonlinear adjustment mechanism intro-
duced by Naimzada and Pireddu (2014a) in a discrete-time setup, showing that this mechanism
is well suited to describing business cycle dynamics in a more general context than those used in
the existing literature.

From a mathematical point of view, all these models qualitatively share the same linear
approximation. Therefore, the local stability properties and some results of global stability can
safely be used in a unified context by adopting analytical findings (Piotrowska, 2007) and the
stability crossing curves technique developed by Gu et al. (2005). This similarity, however, is lost
when one considers dynamics generated by parameter configurations far enough from bifurcation
values. This is pointed out in this study by using numerical simulations.

The rest of the article proceeds as follows. Section 2 sets up a static Keynesian model
and then turns to consider a continuous-time dynamic framework with fixed delays. Then, it
introduces different specifications of adjustment mechanisms to capture disequilibrium reactions
in the goods market. By using analytical and geometrical (stability switching curves) techniques,
Sections 3, 4 and 5 characterise local stability properties and local bifurcations of equilibria
of the resulting one-dimensional delay differential equation system. In particular, Section 3
is devoted to the study of stability properties of the market equilibrium when there exists a
double delay: one delay is related to the dependence of current consumption on the aggregate
income (production) prevailing in a previous period; the other delay is due to the existence of an
adjustment mechanism with which the economy reacts to an excess demand in the goods market.
Section 4 analyses the case in which current consumption depends on current production (instead

4See, for instance, Matsumoto and Szidarovsky (2016) for an analysis of an economic model with a mathemat-
ical structure similar to ours.

3



of delayed production). Sections 3 and 4 also provide some analytical results of global stability.
Section 6 presents some numerical simulations and Section 7 outlines the conclusions.

2 The model

We consider the functioning of a Keynesian (goods market) model. The model consists of an
economy closed to international trade with public expenditure. As is standard in this literature,
private investment (I) and the government expenditure (G) are exogenously given, whereas
consumption (C) is comprised of two components: the former component depends (linearly) on
aggregate income (Y ). The latter one is independent of income (autonomous component) and it
can be interpreted as the part of aggregate consumption explained, for instance, by wealth and
interest rate (C). The static model is detailed as follows:

D = C + I +G, (1)

C = C + cY, 0 < c < 1, (2)

I = I, (3)

G = G, (4)

where 0 < c < 1 is the marginal propensity to consume, and both the private investment and
government expenditure are constant and fixed at I and G, respectively. Equilibrium is obtained
based on the following equality between aggregate demand and aggregate supply in the goods
market, that is:

D = Y. (5)

Let us now turn to a continuous-time dynamic setup (with fixed delays) by considering that
aggregate consumption at a generic time t depends on income at a preceding date t−τ c (τ c ≥ 0),
that is C(t) = C + cY (t − τc), and that private investments and the government expenditure
are constant and fixed at G(t) = G and I(t) = I, respectively. In addition, the goods market
does not necessarily clear thus generating a positive or negative excess demand at every time
t, that is Z(t) = D(t) − Y (t). There also exists an adjustment mechanism reacting at such a
disequilibrium with a certain time lag τa ≥ 0, that is Z(t − τa). This adjustment mechanism
may take two distinct forms:

Ẏ (t) = γg(Z(t− τa)), (6)

and
Ẏ (t)

Y (t)
= γg(Z(t− τa)), (7)

where γ > 0 is a measure of the reactivity of the adjustment mechanism to a disequilibrium in
the goods market. The former mechanism models out an instantaneous change in the level of
income as a reaction to a disequilibrium in the goods market. The latter mechanism, instead,
measures a variation in the rate of change in income. In what follows, we will consider a model
that incorporates a classical linear version of g, that is

g(Z(t− τa)) = Z(t− τa), (8)

and a model that incorporates a nonlinear version of g as in Naimzada and Pireddu (2014a),
that is

g(Z(t− τa)) = �g(Z(t− τa)) := a2
�

a1 + a2
a1e−Z(t−τa) + a2

− 1

�
(9)
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where a1 > 0 and a2 > 0. In the nonlinear case (9), g is an increasing function and g(0) = 0.
Moreover, it is bounded from below by −a2 and from above by a1, as is noted by Naimzada
and Pireddu (2014a). Therefore, in contrast to the linear case (8), income variations in (9) are
gradual. This allows to prevent the real market from diverging and it may cause fluctuations in
real variables (income and employment), as it will be shown in Section 6 devoted to numerical
simulations. By combining the different types of dynamic mechanisms detailed in (6) and (7)
with the two definitions of g provided in (8) and (9), we get the following four delay differential
equations systems:

·

Y (t) = γ [A+ cY (t− τ1)− Y (t− τ2)] , (10)

·

Y (t) = γY (t) [A+ cY (t− τ1)− Y (t− τ2)] , (11)

·

Y (t) = a2γ

�
a1 + a2

a1e−[A+cY (t−τ1)−Y (t−τ2)] + a2
− 1

�
, (12)

·

Y (t) = a2γY (t)

�
a1 + a2

a1e−[A+cY (t−τ1)−Y (t−τ2)] + a2
− 1

�
, (13)

where we have defined A := C +G+ I as a constant collecting all the autonomous components

of the aggregate demand and τ1 := τa + τ c and τ2 := τa, so that τ1 ≥ τ2. We recall that
τ c represents a parameter that captures the time delay with which current consumption reacts
to past production, whereas τa is the time delay that measures the reaction of the adjustment
mechanism to a positive or negative excess demand in the goods market. Eqs. (10)-(13) have
exactly the same positive equilibrium point Y∗ := A/(1− c) obtained by imposing Y (t− τ1) =

Y (t − τ2) = Y (t) and
·

Y (t) = 0. In particular, when τ1 = τ2 = 0, Y∗ is globally asymptotically
stable for every initial condition Y (0) > 0.

The next two sections study local stability, the nature of the Hopf bifurcation and provide
some global stability results in the two distinct cases τ1 > τ2 and τ1 = τ2.

3 Case τ 1 > τ 2

In this section we assume that τ1 > τ2. In this case, aggregate consumption reacts based on
aggregate income prevailing in a previous period with a time lag τ c. To study local stability and
the nature of the Hopf bifurcation, we linearize Eqs. (10)-(13) around Y∗ and get

·

Y (t) = −A1 [Y (t− τ1)− Y∗]−A2 [Y (t− τ2)− Y∗] , (14)

where

A1 = −γc < 0, A2 = γ > 0 for Eq. (10),

A1 = −γcY∗ < 0, A2 = γY∗ > 0 for Eq. (11),

A1 = −
a1a2γc

a1 + a2
< 0, A2 =

a1a2γ

a1 + a2
> 0 for Eq. (12),

A1 = −
a1a2γcY∗
a1 + a2

< 0, A2 =
a1a2γY∗
a1 + a2

> 0 for Eq. (13).

5



We note that regardless of the model used, A1 is decreasing with respect to c and A2 is increasing
with respect to γ. The characteristic equation of (14) is as follows

λ = −A1e
−λτ1 −A2e

−λτ2 . (15)

In the particular case τ2 = 0, the characteristic equation (15) reduces to

λ = −A1e
−λτ1 −A2.

Let λ = iω be a purely imaginary root of this equation. Separating real and imaginary parts, ω
satisfies

ω = A1 sinωτ1, A2 = −A1 cosωτ1,

yielding ω2 = A21 − A
2
2 < 0 as c < 1. Hence, we can conclude that if τ2 = 0 then Y∗ is locally

asymptotically stable for any τ1 > 0. By continuity, for sufficiently small τ2 > 0, Y∗ remains
locally asymptotically stable. Next, choose τ2 > 0 as a bifurcation parameter. If λ = iω (with
ω > 0) is a solution of (15) then we must have

iω = −A1e
−iωτ1 −A2e

−iωτ2 .

Separating real and imaginary parts, we have

ω −A1 sin(ωτ1) = A2 sin(ωτ2), A1 cos(ωτ1) = −A2 cos(ωτ2).

By direct calculation, we obtain

sin(ωτ1) =
ω2 +A21 −A

2
2

2ωA1
.

For any τ1 > 0, this equation has a finite number of positive zeros ωj , j = 1, 2, ...,m. It is clear
that for every arbitrary chosen τ1 > 0 and for each ωj there exists an infinite number of τ2 such
that A1 cos(ωjτ1) = −A2 cos(ωjτ2). For all j = 1, 2, ...,m, define

τ j2 = min {τ2 > 0 : A1 cos(ωjτ1) = −A2 cos(ωjτ2)} ,

and set

τ̄02 =
τ02
|A1|

, (16)

where τ02 = min
�
τ j2 : j = 1, 2, ...,m

�
.

Theorem 1 Let τ̄02 be as in (16). If τ1 ∈ (0, π/2
�
A22 −A

2
1), then the non-trivial equilibrium Y∗

to Eqs. (10)-(13) is locally asymptotically stable for τ2 ∈ [0, τ̄
0
2) and the Hopf bifurcation occurs

for τ2 = τ̄
0
2.

Proof. The proof can be found in Piotrowska (2007) by looking at the case A1 < 0, A2 > 0 and
A2/ |A1| = 1/c > 1.

We note that under some strong assumptions on the size of τ2, it is possible to obtain a global
stability5 result regardless of the value of τ1. In the case of model (10), we have the following
result.

5The result about global stability actually holds on a set of initial functions wider than that defined in Theorem
2. This is because the hypotheses of the theorem are set based on the economic meaning of variable Y (t).
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Theorem 2 Assume that τ2 < 1/ (γe). Then the steady-state solution of Eq. (10) is globally
asymptotically stable for any initial function Y (t) positive in the interval [−τ1, 0].

Proof. Let x = Y − Y∗. Then Eq. (10) becomes
·
x(t) = −γx(t − τ2) + γcx(t − τ1) with

x∗ = 0. The statement follows from Theorem 4.2. in Györi (1990) with d = γ, τ = τ2, σ = τ1,
f(x(t− σ)) = γcx(t− τ1), by noting that |f(x)| < d |x| for x �= 0 holds true being c < 1.

This means that if the adjustment mechanism of the excess demand is quite fast, the station-
ary state equilibrium is stable even starting from initial conditions far enough from the stationary
equilibrium, and this holds regardless of the formation mechanism of aggregate consumption.

4 Case τ 1 = τ 2 = τ (τ c = 0)

The results of the previous section simplify when, similarly to Naimzada and Pireddu (2014a),
one assumes that there exists no time lag on the formation mechanism of aggregate consumption
(τ c = 0), that is when one considers that aggregate consumption at time t depends on aggregate
production prevailing in the same period. In this case, Eqs. (10)-(13) become

·

Y (t) = γ [A− (1− c)Y (t− τ)] , (17)

·

Y (t) = γY (t) [A− (1− c)Y (t− τ)] , (18)

·

Y (t) = a1a2γ

�
1− e−[A+(c−1)Y (t−τ)]

a1e−[A+(c−1)Y (t−τ)] + a2

�
= a1a2γf(Y (t− τ)), (19)

·

Y (t) = a1a2γY (t)

�
1− e−[A+(c−1)Y (t−τ)]

a1e−[A+(c−1)Y (t−τ)] + a2

�
= a1a2γY (t)f(Y (t− τ)). (20)

It is immediate that Eqs. (17)-(20) have the unique positive equilibrium Y∗ = A/(1 − c). The
linearization of Eqs. (17)-(20) at Y = Y∗ is

·

Y (t) =M [Y (t− τ)− Y∗] , (21)

where

M = γ(c− 1) < 0 for Eq. (17),

M = γ(c− 1)Y∗ < 0 for Eq. (18),

M =
a1a2γ(c− 1)

a1 + a2
< 0 for Eq. (19),

M =
a1a2γ(c− 1)Y∗

a1 + a2
< 0 for Eq. (20).

Its corresponding characteristic equation is given by λ =Me−λτ . For ω > 0, λ = iω is a root of
this equation if iω =Me−iωτ . Hence, we obtain

ω = −M sinωτ, 0 =M cosωτ,
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which lead to ω = ω0 = −M and τ = τ0 = π/(2ω0). Let λ(τ) = α(τ) + iω(τ) denote a root
of Eq. (21) near τ = τ0 such that α(τ0) = 0, ω(τ0) = ω0. Differentiating both sides of the
characteristic equation in (21) with respect τ gives

�
dλ

dτ

�−1
= −

1

λ2
−
τ

λ
,

so that we get

Re

�
dλ

dτ

�−1

τ=τ0

=
1

ω20
> 0, i.e.

d (Reλ)

dτ

				
τ=τ0

> 0,

yielding that the root λ(τ) of Eq. (21) near τ0 crosses the imaginary axis from the left to the
right. It is immediately seen that λ = iω is a simple root of (21). Thus, we arrive at the following
conclusion.

Theorem 3 The non-trivial equilibrium Y∗ to Eqs. (17)-(20) is locally asymptotically stable for
τ ∈ [0,−π/(2M)) and the Hopf bifurcation occurs for τ = −π/(2M).

The following theorem characterizes the global behaviour6 of the nontrivial equilibrium Y∗.

Theorem 4 1. Assume that τ < 3/ [2 (1− c) γ]. Then the positive steady state solution of
Eq. (17) is globally asymptotically stable for any initial function Y (t) positive in the inter-
val [−τ, 0].

2. Assume that τ < 3/ (2Aγ). Then the positive steady state solution of Eq. (18) is globally
asymptotically stable for any initial function Y (t) positive in the interval [−τ , 0].

Proof. 1) Let x = Y − Y∗. Then Eq. (17) becomes
·
x(t) = −γ(1− c)x(t − τ) with x∗ = 0. The

proof can be found in Yorke (1970). 2) Rewriting (18) as
·

Y (t) = (γA)Y (t) [1− Y (t− τ)/Y∗],
our equation becomes the Hutchinson’s equation. Using the transformation x = Y (τt)/Y∗ − 1,

and letting a = γAτ , leads to the classical Wright’s equation
·
x(t) = −ax(t − 1)[1 + x(t)]. The

statement follows from Wright (1955).

In this case, we are able to give a global stability result also in the nonlinear model described
by (18).

5 Stability switching curves

As is known, the study of the dynamic (just focusing on local) properties of a system with two
distinct delays is so far under scrutiny in the mathematical literature (see Bi and Ruan, 2013
for recent results on codimension-two bifurcations). Therefore, in this section we concentrate
only on the analysis of some properties of dynamic systems (10)-(13) that can be of importance
from an economic point of view. In order to understand how time delays actually affect stability
outcomes in the models discussed above, we will apply the techniques developed by Gu et al.

6See Footnote 5 for the definition of the set of initial conditions.
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(2005). Given these results, it is possible to define (by fixing the other parameters of the model)
the set of delays (τ1, τ2) such that the system is locally asymptotically stable.

Starting from the characteristic equation (15), we define the following polynomials:

p0(λ) = λ, (22)

p1(λ) = A1, (23)

p2(λ) = A2. (24)

The zeros of (15) coincide with the zeros of

B(λ, τ1, τ2) = 1 +B1(λ)e
−τ1λ +B2(λ)e

−τ2λ, (25)

where Bj = pj(λ)/p0(λ), j = 1, 2. Following Gu et al. (2005), the fist step to approach the
problem of stability of the stationary equilibrium is to consider the three terms on the left-hand-
side of B(λ, τ1, τ2) = 0, that is 1, B1(λ)e

−τ1λ and B2(λ)e
−τ2λ as three vectors in the complex

plane.
Now, we have to identify the set Ω of ω that fulfils the conditions such that complex conjugate

roots do exist and, from a geometrical point of view, it consists of characterising conditions such
that the vectors above form a triangle (Figure 1). Then, by introducing

L1(ω) := |B1(iω)|+ |B2(iω)| =
A2 −A1
ω

, (26)

L2(ω) := |B1(iω)| − |B2(iω)| =
−A1 −A2

ω
(27)

it is sufficient to identify Ω as the sets such that the graph of function L2 belongs to region
G := {(ω, z) : z ∈ [−1, 1]}, whereas the graph of function L1 does not.

By using the law of the cosine, it is possible to get the internal angles θ1, θ2 ∈ [0, π] formed
by vectors (see the triangle in Figure 1), that is

θ1 = cos
−1



1 + |B1(iω)|

2 − |B2(iω)|
2

2 |B1(iω)|

�
, (28)

and

θ2 = cos
−1



1 + |B2(iω)|

2 − |B1(iω)|
2

2 |B2(iω)|

�
, (29)

and then identify solutions of B(ωi, τ1, τ2) = 0 as the locus of points in (τ1, τ2) plane drawn by
the following curves parametrized with respect to ω:

�
τ1 = τ

v±
1

1 (ω) =
arg(B1(iω))+(2v1−1)π±θ1

ω
≥ 0, v1 = v

±
1,0, v

±
1,0 + 1, v

±
1,0 + 2, ...,

τ2 = τ
v±
2

2 (ω) =
arg(B2(iω))+(2v2−1)π∓θ2

ω
≥ 0, v2 = v

±
2,0, v

±
2,0 + 1, v

±
2,0 + 2, ...,

, (30)

where v+1,0, v
−
1,0, v

+
2,0 and v

−
2,0 are the smallest possible integers (that may be negative and may

depend on ω) such that the corresponding calculated values of τ
v+
1,0
+

1 , τ
v−
1,0
−

1 , τ
v+
2,0
+

2 and τ
v−
2,0
−

2

are non-negative.
We note that in this case, graphs of L1(ω) and L2(ω) are branches of hyperbolas. Then, the

following proposition holds.
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Proposition 1 For any A1 and A2 there exists an interval Ω = (A1 + A2, A2 −A1) of type 2,
3 (this follows the notation introduced by Gu et al., 2005) and the stability switching curves are
spiral-like curves with horizontal axes.

Proof. The proof follows from Proposition 4.5 (Gu et al., 2005, p. 243).

Figure 1. Triangle formed by 1, |B1(iω)| and |B2(iω)|.

(a) (b)

10



(c)

Figure 2. Parameter set: A = 12, c = 0.7, A1 = −0.07 and A2 = 0.1. The stationary state
value of income is Y∗ = 40. In the linear version (10) of the model, the values of A1 and A2
are obtained by setting γ = 0.1; in the nonlinear logistic version (11) of the model, the values
of A1 and A2 are obtained by setting γ = 0.0025; in the case of model (12) with a nonlinear
adjustment mechanism in the level of income, the values of A1 and A2 are obtained by setting
a1 = 1.5, a2 = 3 and γ = 0.1; in the case of model (13) with a nonlinear adjustment mechanism
in the rate of change in income, the values of A1 and A2 are obtained by setting a1 = 1.5,
a2 = 3 and γ = 0.0025. (a) |B1(iω)| ± |B2(iω)| versus ω. Set Ω consists of a unique interval
Ω = (0.03, 0.17). (b) Spiral-like stability switching curves with horizontal axes in (τ1, τ2) plane.7

The region below the 45◦ line defines the set of couples of feasible delays (τ1 > τ2). The yellow
area shows a portion of the stability region in (τ1, τ2) plane. The figure highlights the case of
instability-stability-instability of the stationary state equilibrium (see the arrow in the figure)
also showing the existence of a corridor of stability. (c) Enlargement view of Panel (b); for lower
values of τ2 the exists a case of stability-instability-stability of the stationary state equilibrium
(see the arrow in the figure).

Panel (a) of Figure 2 depicts L1(ω) and L2(ω) for all the dynamic models detailed above.
The yellow region depicted in Panel (b) of Figure 2 shows the couples (τ1, τ2) such that the
stationary equilibrium Y∗ of systems (10)-(13) is locally asymptotically stable. By looking at
this panel we can deduce some results that can be of interest from an economic point of view. In
line with the results discussed in Section 3, it is clear that for small values of τ2 the value of τ1
can indefinitely grow without affecting the local stability of the stationary equilibrium (corridor
of stability). This means that when aggregate production reacts quickly to the excess demand,
the economic system converges towards the stationary equilibrium regardless of the timing that
(current) aggregate consumption needs to react to aggregate production. With regard to Panel
(b) of Figure 2, we note that by fixing τ2 = 57 and letting τ1 vary from 57 onwards it is possible
to move from a configuration of time delays for which the stationary state value of income is
unstable (τ1 < 59.6) to a region in which it is stable (59.6 < τ1 < 63.5) to eventually end up
in an area of instability (this holds when τ1 > 63.5). In contrast, Panel (c) of Figure 2 shows

7For a complete characterisation of stability switching curves in an economic model (a cobweb model with
heterogeneous producers), see the recent study of Gori et al. (2015).
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the opposite situation. In particular, by fixing τ2 = 8 and letting τ1 vary in the range [30, 60]
we move from a configuration of time delays for which the stationary state value of income is
stable (τ1 < 32) to a region in which the stationary state value is unstable (32 < τ1 < 51.5),
to eventually get a stable stationary state value of income when τ1 > 51.5. The possibility of
moving from a case of initial (i.e., τ1 ∈ [0, τ̃ ]) instability to stability, which is uncommon in
single-delay models (and also in systems with delay-dependent parameters, as analysed by He et
al., 2009, and He and Li, 2012), is most commonly encountered in multiple-delay models, as is
shown in the works of Gori et al. (2015). With specific regard to Figure 2(b), when consumers
are backward looking enough, a goods market reacting to an aggregate demand disequilibrium
either too slowly or quickly leads to instability. Only time of reaction belonging to a specific
(intermediate) interval can lead to the stability of the stationary equilibrium.

6 Numerical simulations

The techniques proposed by Gu et al. (2005) have allowed to characterise the stability regions for
general dynamic systems with two discrete delays, but they have not been able, for instance, to
infer about the timing with which a typical trajectory approaches a stationary state equilibrium
and what actually happens when the stationary solution loses stability. In order to fill this
gap here, we resort to some numerical exercises. To this purpose, Figure 3 shows different
dynamics generated by the linear adjustment mechanism (8) when (ceteris paribus with regard to
parameter values and initial conditions that guarantee that the system is asymptotically stable)
one considers a continuous-time system with fixed delays (blue solid line), a continuous-time
system without delays (black dashed line) and a discrete-time map (red dotted line). We note
that the continuous-time system produces monotonic dynamics (by setting the values of time
delays to zero one gets a uni-dimensional dynamic system) but the corresponding discrete-time
map and the continuous-time system with delays generate non-monotonic dynamics. However,
the fluctuations produced by the delayed continuous-time system tend to stabilise around the
stationary-state equilibrium more slowly than those produced by the discrete-time map. By
looking at Figure 3, in fact, one can observe that after around the thirtieth iterate the time series
generated by the discrete-time model becomes almost identical to the level of the stationary-state
equilibrium, whereas after around t = 100 the time series generated by the continuous-time model
with time delays still shows important fluctuations.
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Figure 3. The adjustment mechanism is linear in the instantaneous change in the level of
income. Different trajectories converging towards the stationary state equilibrium generated by
the same initial condition depending on whether dynamics are described by a continuous-time
system with fixed delays (blue solid line), a continuous-time system without delays (black dashed
line) and a discrete-time map (red dotted line). Parameter set: A = 10, c = 0.7, γ = 1.1, τ1 =
τ2 = 3 and Y (0) = 25. In this case, the discrete-time system is Yt+1 = Yt+γ[A−(1−c)Y (t−2)].

When the adjustment mechanism is linear in the instantaneous change in the level of income,
the model does not produce interesting dynamics when the stationary state equilibrium loses
stability. This is because, for several parametric specifications, the system tends to diverge
when the fixed point is unstable. In contrast, it is possible to observe more interesting dynamic
outcomes when the rate of change in income (Ẏ (t)/Y (t)) is linear with respect to the excess
demand Z(t − τa). In this case, in fact, as is well known by the studies on the Hutchinson’s
equation (see Ruan, 2006 for a survey), when the stationary state equilibrium loses stability the
system undergoes a super-critical Hopf bifurcation, so that - after a sufficiently long transient
- the typical trajectory convergent towards the attracting limit cycle is characterised by the
existence of a unique maximum value and a unique minimum value. Other phenomena are
possible by increasing one of the two time delays further. In particular, the attractor can change
its geometry8 and the long-term dynamics of a typical trajectory convergent towards the attractor
of the system can be characterised by the existence of several local maximum and minimum
values, whilst never becoming a chaotic attractor. This phenomenon is illustrated in Figure 4(a).
The figure was plotted by letting τ1 vary in the interval [τ2, 0.18] with step 0.01 and keeping
the other parameters and the initial condition fixed to the values reported in the caption of the
figure. Then, for any τ1 we have considered the local maximum and local minimum values of the
trajectory so generated after a sufficiently long transient. The values of time delay τ1 for which
the fixed point is stable are shown in the figure by a single point (max value=min value). After
the occurrence of the Hopf bifurcation, the bifurcation diagram shows two points associated with
the value of the time delay (one for the maximum and one for the minimum). Due to the change

8See the work of Braddock and van den Driessche (1983), where the dynamics are studied in the plane of the
state variable and its time derivative.
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in the geometry of the attractor (as described above), for sufficiently large values of the time
delay the bifurcation diagram shows the existence of more than two local maximum and local
minimum values. Similar considerations hold for the other bifurcation diagrams in the article.
This way of representing bifurcation diagrams is alternative, for instance, to He et al. (2009) and
He and Li (2012), who instead report the set of values taken by the trajectory convergent towards
the attractor for each value of the time delay (considered as a bifurcation parameter). The way
to represent the bifurcation diagrams used in this work, and often used in both mathematical
literature and economic applications, allows to highlight the rise of more complicated dynamics
as the bifurcation parameter changes.

We note that for initial conditions far away from the equilibrium, trajectories are divergent
also when the system is stable, whereas for too large values of the time delay almost all trajectories
diverge. In addition, by comparing the dynamics under linear adjustments in the instantaneous
change of the level of income and in the rate of change of income, it is clear that in the latter
case the system loses stability for values of time delays lower than those related to the former
case (see Figure 3 and Figure 4(b)).

(a)
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(b)

Figure 4. The adjustment mechanism is linear in the rate of change of income. (a) Bifurca-
tion diagram with respect to τ1. Parameter set: c = 0.7, γ = 1.1, τ2 = 0.1 and Y (t) = 25, for
t ∈ [−τ1, 0]. (b) Divergent trajectory generated by using a value of τ1 slightly larger than 0.18,
that is τ1 = 0.183.

The problem with divergence is overcome by adopting the mechanism proposed by Naimzada
and Pireddu (2014a). The bifurcation diagrams of Figures 5(a) and 5(b), which are respectively
related to Panels (b) and (c) of Figure 2, show the (bounded) long-term dynamics of model (12)
by considering τ1 as the bifurcation parameter. We note that with this parameter set (in terms
of A1 and A2) both the model with linear adjustment in the level of income (model (10)) and
the one with linear adjustment in the rate of change in income (model (11)) generate explosive
trajectories for some values of τ1. In addition, by considering values of τ1 far enough away from
the Hopf bifurcation trajectories show more complicated behaviours, as is shown in Figures 6
(related to model (12)) and 7 (related to model (13)).

15



(a) (b)

Figure 5. Bifurcation diagrams for τ1 related to model (12). Parameter set: A = 12, c = 0.7,
γ = 0.1, a1 = 1.5 and a2 = 3. (a) τ2 = 57, see also Panel (b) of Figure 2; (b) τ2 = 8, see also
Panel (c) of Figure 2.

Figure 6. The adjustment mechanism is nonlinear in the instantaneous change in the level
of income. Parameter set: A = 12, c = 0.7, γ = 9.1, a1 = 1.5, a2 = 3, τ1 = 9 and τ2 = 0.19.
Dynamics generated by the nonlinear mechanism proposed by Naimzada and Pireddu (2014a)
when the fixed point is unstable and the system lies in the chaotic region.
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Figure 7. The adjustment mechanism is nonlinear in the rate of change of income. Parameter
set: A = 12, c = 0.6, γ = 1, a1 = 5, a2 = 2.2, τ1 = 0.59 and τ2 = 0.022. Dynamics
generated by the nonlinear mechanism proposed by Naimzada and Pireddu (2014a) when the
fixed point is unstable and the system lies in the chaotic region. It can be noted that with
a nonlinear adjustment mechanism based on the rate of change in income the equilibrium is
destabilised for smaller values of τ1 than the case of a nonlinear adjustment mechanism based on
the instantaneous change in the level of income. The figure shows a typical trajectory convergent
towards the ω-limit set.

As is clearly shown in Figures 6 and 7, the dynamics generated by the mechanisms introduced
in (12) and (13) imply non-converging trajectories. Now, one can wonder whether the dynamics
are periodic, quasi-periodic or chaotic. A formal study about the existence of chaos in models
based on delay differential equations has not yet been developed as instead it was in the case of
ordinary differential equations or difference equations. Usually, the problem is tackled by using
numerical techniques such as the maximum Lyapunov exponent computed from the time series
generated by numerical algorithms like the one developed by Wolf et al. (1985) (see also the work
of Sprott, 2007). For example, in this case, the attractor depicted in Figure 6 shows a (robust)
positive value for the Lyapunov exponent around 0.8, which implies that system (12) is chaotic.

7 Conclusions

This work has proposed some modifications of the classical Keynesian macroeconomic model
describing goods market dynamics. In comparison with the standard continuous-time (differential
equations) version or its discrete-time (difference equations) counterpart, the present article has
accounted for a continuous-time model with fixed delays (delay differential equations). The
use of delay differential equations instead of differential or difference equations allows to go
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beyond some restrictions of the other modelling approaches in a natural way. The work has
provided a complete description of the stability region in the space of time delays by using the
stability crossing curves techniques developed by Gu et al. (2005), showing also some results of
global stability. It has shown that the extent of time delays is responsible for the existence of
interesting dynamic outcomes even when the adjustment mechanism of the excess demand in the
goods market is linear (in the level of income or in the rate of change of income). The main aim
has been to extend the nonlinear adjustment mechanism proposed by Naimzada and Pireddu
(2014a) in a discrete-time setup, showing that its application in a continuous-time setting with
fixed delays can provide a starting point for building on more sophisticated models.
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