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Abstract

We study a family of monopoly models for markets characterized by time-
varying demand functions, in which a boundedly rational agent chooses out-
put levels on the basis of a gradient adjustment mechanism. After presenting
the model for a generic framework, we analytically study the case of cyclically
alternating demand functions. We show that both the perturbation size and
the agent’s reactivity to profitability variation signals can have counterintuitive
roles on the resulting period-2 cycles and on their stability. In particular, in-
creasing the perturbation size can have both a destabilizing and a stabilizing
effect on the resulting dynamics. Moreover, in contrast with the case of time-
constant demand functions, the agent’s reactivity is not just destabilizing, but
can improve stability, too. This means that a less cautious behavior can provide
better performance, both with respect to stability and to achieved profits. We
show that, even if the decision mechanism is very simple and is not able to
always provide the optimal production decisions, achieved profits are very close
to those optimal. Finally, we show that in agreement with the existing empir-
ical literature, the price series obtained simulating the proposed model exhibit
a significant deviation from normality and large volatility, in particular when
underlying deterministic dynamics become unstable and complex.

Keywords: Time-varying demand, Monopoly model, Bounded rationality,
Gradient mechanism, Complex dynamics

1. Introduction

The debate about economic agents’ rationality plays a central role in eco-
nomic research. As Baumol and Quandt [1] remarks, “since all real decisions are
made under conditions of imperfect information”, it is more sensible to assume
that agents try to “learn” the economic context in which they operate, in order
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to optimize their performance. This, which is indeed true for complex economic
settings, is valid for very simple markets, too, as for example monopolies, in
which the complete knowledge of the demand by the agent can be doomed, as
noticed in [2], by “..lagged response of buyers to changing prices, exogenous
changes in tastes, techniques, government policies...”, and the demand curve
can change “its slope, being highly elastic for a stretch, then perhaps becoming
relatively inelastic” (see [3]).

In particular, the monopolistic setting appears to be a very useful prototypi-
cal benchmark to study the modelling of simple and feasible learning techniques.
Clower in [2] proposed several ways to describe how an “ignorant monopolist”,
with different informational endowments, can replace the goal of finding the
profit maximizing output level or price with the goal of dynamically approx-
imating it, in a sort of try-go wrong-learn process. This can be achieved by
using a rule-of-thumb technique ([1]), by which, starting from objectively mea-
surable economic variables, the agent can take simple and suitably inexpensive
decisions. For example, a typical family of rule-of-thumbs is based on the infor-
mation provided by the variation of the achieved profits. If, as a consequence of
increasing production levels or prices, profits increase, then a naive rule consists
in keeping on increasing them. Conversely, if profits decrease, the agent would
more likely move in the opposite direction, trying to decrease the output level
or the price. From the mathematical point of view, such adjustment mechanism
can be realized by imposing that decisions change proportionally to the (con-
tinuous or discrete) gradient of the profit function, where the proportionality
constant represents the agent’s reactivity to profitability change signals. Gradi-
ent mechanisms are used to model several economic contexts characterized by
boundedly rational agents. As an example, starting from the contribution by
Bischi and Naimzada in [4], such kind of mechanism has been applied to the
modelling of oligopoly competitions ([5, 6, 7, 8, 9]). Concerning the monopoly
modelling, we can mention the contribution by Puu [10], who studied the chaotic
dynamics arising when a discrete gradient is considered, while Naimzada and
Ricchiuti [11] investigated the effect of the continuous gradient. In both works
a discrete time adjustment mechanism is considered. Subsequent contributions
extended the investigations in several directions, taking into account different
demand and cost functions [12, 13, 14, 15], studying the effect of varying the
price elasticity of demand [16], considering modelling approaches based on con-
tinuous differential equations [17, 18] or on hybrid discrete-continuous equations
[19]. For a survey about monopoly modelling, we refer to [20]

However, an issue, already raised in [2, 1], has never been studied. What
happens when the demand and/or the cost functions are variable in time? Is
again possible, for an boundedly rational monopolistic agent, to learn the profit
maximizing production/price decision by adopting a rule-of-thumb like those
considered for constant in time demand/cost functions? This is exactly the aim
of the present contribution, in which we study a monopolistic firm which adapts
its production decisions on the basis of local information about the profit func-
tion in an economic context characterized by a time-varying demand function.
After describing how the gradient mechanism can be adapted to such a kind of



market, we study a simple situation, in which a demand function periodically
shifts. This choice is motivated by the research perspective proposed by Bau-
mol and Quandt in [1, p. 41]. Such theoretical model is intrinsically founded
on the real example of goods whose request is affected by seasonality, as for
instance energy ([21]), household furniture, clothing, toys, food ([22, 23, 24]).
We remark that in such a more complicated market setting, it is even more rea-
sonable to assume that the agent is unable to have a perfect knowledge of the
demand, and must rely on simple mechanisms. The model we present is based
on a non-autonomous discrete difference equation. Periodically perturbed dy-
namical systems have been investigated from the mathematical point of view
and applied to scientific modelling: in both cases, the literature is very wide.
Just limiting to mathematical investigations, we mention the contributions by
Grinfeld et al. [25], in which the periodically perturbed logistic equation is stud-
ied, by AlSharawi et al. [26], in which Sharkovsky’s theorem is generalized to
periodically perturbed equations and by Elaydi et al. [27], in which the authors
develop the local bifurcation theory for one-dimensional difference equations. In
classical monopoly models based on the gradient approach, the agent’s reaction
has no effect on the possible steady states of dynamical model. This means that
if the optimum production level is a steady state of the dynamical model for
some values of the parameter v representing the agent’s reaction speed, then
this is true for any . Moreover, parameter v has an unambiguous destabilizing
role, as increasing v can just lead a stable steady state to lose stability through
a flip bifurcation.

We have several consequences of taking into account a periodic perturbation.
Firstly, the model is no more represented through an autonomous difference
equation, like in the classical situation, but it is intrinsically non-autonomous.
Moreover, the optimal production level of the unperturbed monopoly is neces-
sarily replaced by a couple of optimal production levels, each one maximizing
profits obtained with the corresponding perturbed demand function. As a con-
sequence, the resulting perturbed dynamical model based on a gradient adjust-
ment mechanism does not posses a steady state, but its simplest attractor is a
period-2 cycle. We prove and show that the introduction of a shifting demand
function has remarkable effects on the the role of the agent’s reaction speed on
the production trajectories and on the stability of dynamics. In fact, the agent’s
reaction speed affects the period-2 cycles of the perturbed model, which, in gen-
eral, do not consist of the two optimal production decisions. Moreover, with
respect to the stability, the role of v is much more ambiguous, since, besides
the classical destabilizing role, increasing v can be stabilizing too. The role of
the perturbation size is counterintuitive, too. In fact, considering a demand
function with an inflection point, we show that introducing a perturbation and
increasing its size can indeed have a destabilizing effect, leading stable dynamics
to chaotic ones, but it can even lead chaotic unperturbed dynamics to become
stable.

We stress that in the adjustment mechanism we study, the agent never uses
any information about the underlying actual time variability of the demand. It
is reasonable to ask if such a mechanism is too unsophisticated, as the agent



should become aware of nature of the demand and since the mechanism is not
able to let the agent “learn” the profit maximizing output levels. Firstly, we
prove that even under such reduced information endowment, the agent is able
to learn (provided that stability holds) the qualitative period-2 cyclicity of the
demand function. In particular, using the correct profitability variation sig-
nal coming from the estimate of the marginal profit function, the output level,
for any <, is increased when the market size is large and decreased when it
is small. Moreover, even if period-2 cycles do not coincide with profit maxi-
mizing output levels, the actual achieved profits are very close to the optimal
profits. In any case, even in the simple deterministic framework characterized
by alternating demands, the superimposition of non-deterministic effects (due
for instance to climate shocks, consumer’s preferences’ variability,...) can make
more difficult for the agent to use the precise demand function variability. The
mechanism we studied, which requires a very reduced rationality level, is then
suitably effective to result reliable, showing at the same time how the agent’s
behavior in a complex economic environment can lead to complex, sometimes
counterintuitive effects. This is also confirmed by the agreement, in the qualita-
tive aspects, between simulated time series and empiric data. In fact simulated
price series exhibit the non-normal distribution, asymmetry and large volatility
of real price series of seasonal goods ([28]). In particular, we show that the joint
effect of a nonlinear economic setting affected by a deterministic oscillation, a
boundedly rational mechanism for the economic agent and the presence of small
superimposed random fluctuations are essential for the emergence of the above
mentioned stylized facts.

The remainder of the paper is organized as follows. In Section 2 we introduce
the monopoly model; in Section 3 we analytically study the cyclically perturbed
problem; in Section 4 we present several simulative investigations; in Section
5 we investigate qualitative properties of simulated price series; in Section 6
we summarize achieved results and we propose possible research perspectives.
Appendix collects Propositions’ proofs.

2. Monopoly models for time-varying demand functions

In the setting we assume the monopolistic firm has the market power and
decides the output level ¢ > 0 of the good it produces. In what follows, we
focus on strictly positive production levels, and we implicitly assume that the
equilibria of any optimization problem we consider are strictly positive. When
a dynamical adjustment process is present, we also restrict to starting produc-
tion levels that give rise to output trajectories that never cross economically
uninteresting or unfeasible regions (as those in which ¢ < 0).

Our main assumption is that the market we study is characterized by a time-
varying demand curve. Before introducing the model, we firstly summarize, as a
reference situation, the classical model in which the demand function is constant
over time. To this end, we consider the inverse demand function pg : Iy — R™T,
where Iy C (0,+00). Since the focus of this work concerns the time-varying
demand function, we consider for the monopolistic firm the very simple form of



cost function ¢(q) = cq, i.e. we assume constant marginal costs. This, which
is the most common assumption in the related literature, also allows us to
disentangle the effects of the variable demand from possible other sources of
complexity.

Consistently with [2] we assume an “ignorant” monopolist, who, endowed
with a reduced information setting about the economic environment and/or
limited computational capabilities, adopts a “rule of thumb”. In the present
work, as in [11], we consider a monopolist who, in order to choose production
level ;41 at time t+ 1, adapts the quantity ¢; produced at time ¢ proportionally
to the variation of profits, namely to the gradient of the profit function. More
details about this mechanism and its economic interpretation can be found
in [16, 19] and in the references therein. In the classical monopoly market
based on such approach, it is assumed that by market researches the monopolist
is able to obtain the correct slope of the profit function when the produced
quantity lies in a neighborhood of ¢, so that the marginal profit function is
locally known. The resulting monopoly model is then represented by the one-
dimensional autonomous equation

Q41 = @ + 7o (qr), (1)

where v > 0 represents the reactivity (or adjustment speed) of the agent and
75(qt) = po(q) +qp(q) — ¢ is the marginal profit function corresponding to profit
function mo(q) = gpo(q) — cq.

If the market is characterized by a price function which varies over time,
the previous mechanism may be modified in several ways. If we assume that
the agent is completely aware of the deterministic variability of the demand
function over time, then a possibility is that, in order to decide the production
level q;41, the agent uses information about prices and profits coming a time
t + 1 — n at which the market was characterized by the same (or at least very
similar) demand function of the next period ¢+1, maybe taking into account also
information from times t —n+2, ..., t adopting some kind of average. However,
this assumption strictly relies on an elevated rationality degree for the agent,
who must have a perfect knowledge of the underlying deterministic tendency of
the demand. We notice that the resulting model would be significantly more
refined and complex than (1). On the other hand, we can assume that the
agent completely neglects that the demand function can vary over time and uses
only information from time ¢. In practice, the monopolist, just after the market
realization at time ¢, tries to obtain the correct estimation of the marginal profits
in a neighborhood of the production level ¢;. However, this setting encompasses
a too reduced rationality degree for the agent. Actually, the profitability change
signal obtained at time t can be opposite with respect to that at time ¢ + 1.
For instance, we analytically and numerically checked that this can lead to
decrease the production level even if the demand will increase. Then, it is more
reasonable that the agent tries to obtain the correct estimation of the marginal
profits near the production level ¢; just before the next production decision,
namely approaching time ¢ + 1, when such information is more reliable for the



next period production decision. Such framework does not require that the
agent knows the precise kind of variability of the demand: he/she just assume
that the demand can change over time and so tries to collect information as
close as possible to the production decision. This is particularly suitable if, for
instance, we suppose that “...a sufficiently long interval of time had elapsed”
between t and t 4+ 1 “to permit the monopolist to discover the new position and
properties of the demand function” [2].

On this basis, we can assume that if the inverse demand is described by a
function p;(g) which varies over time, the resulting model is

Qi1 = qe 7741 (q0)- (2)

where 7, 1(qt) = pr1(@) + @epiy1 (@) — ¢ is the marginal profit function. We
notice that even if we assumed that the agent does not know the precise under-
lying variability of the demand function, he/she uses the correct profitability
(variation) signal. We remark that in model (2) both the learning process and
the production decisions occur at the discrete time level {t}. We can indeed
assume that the demand function varies on an underlying continuous time level
7, namely that it is represented by a time-continuous function p(g, 7). Model (2)
then represents the situation in which both the new learning process and the
production decision at time period t 4+ 1 occurs after a suitably large amount
of time, during which the agent can realize that the demand changed and then
can try to collect information about it as time the new production decision for
time period ¢t + 1 approaches.

In what follows, we assume that both time-constant and time-varying de-
mand functions, as well as marginal costs, are such that the respective profit
functions have a unique maximum attained for some strictly positive output
level. This can be realized by imposing that marginal profit functions fulfill
first order conditions

mo(¢") =0,  m(g) =0,t>0 (3a)

respectively at the unique positive output level ¢* > 0 and at the sequence
of positive output levels ¢f > 0, and that all the profit functions are strictly
concave, for which it is sufficient to assume

m(q) <0,  7(q) <0 (3b)

for any ¢ > 0. Then both ¢* and ¢;,t > 0 are global maximum points of the
respective profit functions, and they then coincide with the optimal production
levels of markets respectively characterized by inverse demand functions pg(q)
and p¢(q). We notice that the actual evolution of ¢; strictly depends on how the
demand function p;(q) varies over time and that in a monopoly characterized
by a time-varying demand function, the resulting model is intrinsically non-
autonomous.



3. Analysis

In the previous Section we introduced model (2) in a quite general economic
setting. In this Section we want to focus on a simple scenario, which, at the
same time, allows us to consider an economically significant situation and to
keep the modelling framework analytically tractable. To this end, we consider
periodically perturbed demand functions, in which the perturbation consists in
vertical, possibly asymmetrical shifts of the time-constant demand function py.
From now on, we will refer to pg as the unperturbed inverse demand function. In
particular, we consider the simplest kind of cyclicity, so that the market is char-
acterized by two alternating inverse demand functions p1(q) = po(q)+h1(e) and
p2(q) = po(q) + ha(e), where functions h; represent the perturbation depending
on the perturbation size . We assume that h; (resp. hg) is a strictly increas-
ing (resp. strictly decreasing) differentiable function defined on some interval
[0,h) C RT, satisfying 1 (0) = 0 (resp. ha(0) = 0), which then provides a posi-
tive, upward (resp. negative, downward) shift of py. We have that when ¢ = 0
we are actually considering the unperturbed demand function, while as € in-
creases, the perturbation extent increases, too. With such kind of perturbation,
we have that if the same price is considered, when the market is characterized
by p1 the demanded quantity is larger than that with the unperturbed demand
po, which, in turn, provides a larger demanded quantity than ps. We notice that
either both positive or both negative perturbations of py can be considered as
well, but this does not provide significantly different results from those reported
in this section and in Section 4. Finally, without loss of generality, we assume
that the market is characterized by the inverse demand function p; (respectively
p2) when ¢ is odd (respectively even), so that we can introduce function

£(c) = {hl(a) if t is odd,

ho(g) if t is even,
and rewrite the general profit function p;(q) as

pi(q) = pol(q) + &i(e).

We can then introduce the two profit functions m;(¢) = ¢pi(¢) —cq,i = 1,2, and,
recalling the expression of 7(), we can write the corresponding marginal profit
functions as

m(q) = m(q) + haile), m5(q) = mo(q) + ha(e).

In what follows, we will refer to my and m; respectively as unperturbed and
perturbed profit functions, and to 7w, and 7} as unperturbed and perturbed
marginal profit functions, respectively. Assumption (3a) simplifies as

mo(ai) + ha(e) = 0, mo(g3) + ha(e) =0, (4a)

in which each equation is respectively solved by the unique, positive output level
g > 0,7 =1,2, while the second order condition (3b) reduces to

0 (q) <0, (4b)



since 7j = mf = 7. We then have that ¢f,7 = 1,2 are the optimal production
levels of markets respectively characterized by inverse demand functions p; and
p2 and the non-autonomous model (2) can be rewritten as

file) =@ +v(7h(q) +ha(e)) ift+1is odd,
folar) = q¢ +v(7h(q) + ha(e)) ift+1is even.

(5)

In what follows, we assume v € (0, 1], that allows us to avoid that instability

phenomena be introduced or strengthened by an agent’s over-reaction to the
profit variation signal.

For the analytical investigation of (5), in order to apply the classical theory

for autonomous problems, we can introduce variables ¢; + and g2+, and system

Gir1 = G+ (Wé(qt)—i—ftﬂ(%)) —

Qi1 = 91(q2,t) = q2.0 + v (7o (q2,t) + hai(e) ),
@21 = 92(a2.) = @2+ (mh(a2.0) + 71 (8)) + 7 (Thlaz + (7 (a20) + ha(€)) + hae) )
(6)
If we set ¢2,0 = qo, it is possible to prove that there is a correspondence between
the trajectories generated by equation (5) and by System (6), since a direct
check shows that (q1.4,¢2,t) = (gat—1, q2¢) for any ¢ > 1.

In the remaining part of this section we analytically investigate model (5)
and we compare the results for the perturbed model (5) to those about the
unperturbed one (1) and the underlying optimization problems (respectively
concerning the unperturbed and perturbed demand functions). To simplify the
explanation and to focus on the role of the parameters, propositions will be
formulated abstracting from the economic context. In particular, we consider a
general function pg(q) defined on R, so that the domains of p;(q) and p2(q) are
R, too. Every result of this Section is still valid even if we consider functions
p; on smaller sets. When suitable, we precise the effect of considering domains
which are feasible with respect to an economic problem.

Before investigating dynamical model (5), we recall that, thanks to assump-
tions (4) on the profit functions, we know that output level ¢* > 0 is the only
optimal production decision when the inverse demand function is pg, while ¢f
and g5 are the optimal output levels when the inverse demand functions are
po + hi(e) and pg + ha(e), respectively. It is evident that ¢} are somehow con-
nected to ¢*, since as ; — 0% we have that the perturbed demand functions
become the unperturbed one. We have the following intuitive result.

Proposition 1. Let 7, : R — R be a differentiable function satisfying (4).
Then there are epr € (0,400] and two continuously differentiable functions ¢ :
[0,ep) — R with i = 1,2 such that ¢} (0) = ¢*. Moreover, we have (¢}) > 0
and (g3)" < 0.

Proposition 1 is very predictable and simply shows that under the effect
of hy and ho the optimal production level ¢* is replaced, at least for suitably
small values of €, by the couple of output levels ¢;(¢) and ¢5(g), which are the



profit maximizing production levels with respect to perturbed demand functions
po(q) + hi(e) and po(q) + ha(g), respectively. This allows us to follow, in some
sense, the evolution of ¢* as the perturbation size increases. The remainder of
this section is devoted to the study of period-2 cycles of model (5), in particular
highlighting the effects of the perturbation size € and of the agent’s reaction
speed 7. In what follows, we will denote such invariant sets by {¢i,d=}. In
those situations in which we want to focus on the effect of changing one of the
two main parameters, leaving the remaining one fixed, we use notation ¢¢(b),
meaning that parameter a is kept constant while b is varied.

We can then wonder how the results of Proposition 1 change when a dynam-
ical adjustment process based on a gradient mechanism like that in (5) is taken
into account. Indeed, as widely shown in the literature ([11, 16]) it is straight-
forward to see that the profit optimizing output level ¢* of the unperturbed
demand function is a steady state of the unperturbed model (1). Conversely,
due to the cyclical nature of the non-autonomous equation (5), we can not ex-
pect that (5) has a steady state. The simplest invariant sets we can look for are
then period-2 cycles. In particular, we can ask if, just like in Proposition 1, for
any given value 7 of the reaction speed, the steady state ¢* of the unperturbed
model (1) is replaced, under the effect of the perturbation, by a period-2 cycle
of the perturbed model (5) and if such cycle consists of the alternation of ¢}
and ¢5. These issues are investigated in the following Proposition.

Proposition 2. Let n) : R — R be a differentiable function satisfying (4).
Then, for any~y € (0,1],v # —2/7((q*) there are () > 0 and two differentiable
functions g : [0,6(y)) = R for i =1,2 such that

(1) {4} (), 45 ()} is a period-2 cycle of System (5) for any € € [0,&(7));

2) lim ¢7(e) = ¢
(2) lim g/(e) =q

Proposition 2 shows that a steady state of the unperturbed model “be-
comes” a period-2 cycle of the perturbed one. This is very close to what asserted
by Proposition 1. However, the period-2 cycle arising in (5) does not consist,
in general, of the two optimal production levels ¢i and g5 of the perturbed
optimization problem. To show this, it is sufficient to consider a very simple
setting, in which the unperturbed demand function is linear. In the next exam-
ple we implicitly assume suitable restrictions on the parameters so that ¢*, ¢/
and ¢; are well-defined for any v and are strictly positive. When the inverse
demand function is po(¢) = aq + b (where indeed a < 0 and b > 0), the unique
equilibrium is

. b—c

qa = o0

1 We stress that we (possibly) exclude the unique value v = —2/m(j(¢*) in order to be able
to apply the implicit value theorem in its simplest formulation. With an additional assumption
and a more technical proof, it is possible to encompass v = —2/7(/(¢*), too. Since it is just
one value and then has a negligible relevance for our results, we avoided to consider it.



while perturbed profit functions attain their maxima respectively at

th(&) q*(g):_w, (7)

N (E) - 2a ’ 2 2a

Conversely, the unique period-2 cycle of the perturbed model (which can be
easily obtained considering the steady state of System (6)) is given by

2(c —b) — hi(e) — ha(e) + 2ay(c — b — ha(e))

qi(e) = da(ya+1) ’ .
vy 2(c—b) = hi(e) = ha(e) +2ay(c — b — hi()) ®)
Gz(e) = da(ya+1) ’

from which it is evident that ¢, (¢) # ¢; (). Moreover, it’s worth noticing that
both §] (¢) directly depend on the agent reaction speed ~. This means that,
differently from the classical unperturbed model in which the simple gradient
mechanism is consistent with the static problem independently of v (namely the
unique equilibrium is also a steady state of the model for any ), in the per-
turbed model (5), in general, 2-cycles consist of values that do not correspond
to optimal production choices of the two perturbed profit functions. Moreover,
quite counterintuitively, the behavior of ¢/ (¢) and ¢3 (¢) can be completely dif-
ferent from that of ¢j (¢) and ¢;(¢), which, in agreement with Proposition 1, are
respectively increasing and decreasing with e. In fact, ¢} (¢) and ¢ (¢), depend-
ing on 7, can be both increasing and decreasing with respect to e, as shown
in Figure 1, from which we can see that the size of the oscillation can be both
dampened and strengthened by the effect of .

Furthermore, if we consider a nonlinear demand function, the monotonicity of
47 (¢) and g4 () as € increases can be lost, too. For example, we focus on a cubic
inverse demand function

po(q) = A — Bq+ Dg* — Eq,

similar to that proposed by Puu in [10], in which we choose coeflicients so that
the resulting marginal profit function can be written as?

mh(q) = a — 2b(q — k) + 3d(q — k)* — de(q — k)* — c. 9)

In doing so, parameter k allows us to easily shift the marginal profit function
(on which all results depend). Since the effect of the perturbation size on the
resulting dynamics are unaffected by horizontal shifts of (9), this allows us to
better highlight that the same effects can be obtained even when the pertur-
bation size is small with respect to quantities. We remark that hereinafter all
the parameters involved in (9) are chosen so that both assumptions (3) are sat-
isfied, in order to have a unique optimal production level for each perturbed

2 A straightforward computation shows that, in order to obtain (9) from pg, we must impose
E =e, D=d+ 4ek, B = —(—6ek? — 3dk — b) and A = 4ek3 + 3dk? + 2bk + a.
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a=—06,b=10,c=1
hi(e) = 2¢,ha(e) = —¢
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Figure 1: Left plot: asymmetric perturbation with hi(¢) = € and ha(e) = —2e. Red and

blue dashed lines respectively represent the evolution of ¢j(e) and ¢5(e). Red and blue solid
lines respectively represent the evolution of ¢} (¢) and §J (¢) for v = 0.1 (circles) and v = 0.8
(squares). Right plot: asymmetric perturbation with hi(e) = 2¢ and ha(¢) = —e. Red and
blue dashed lines respectively represent the evolution of ¢;(e) and ¢5(e). Red and blue solid
lines respectively represent the evolution of ¢} () and g3 (¢) for v = 0.2 (circles) and v = 0.9
(squares).

hi(e) =&, hs(e) = =3¢

0 0.5 1 1.5 2

Figure 2: Evolution of ¢} (¢) and ¢4(¢) (red and blue dashed lines, respectively) and ¢ ()
and ﬁ; (g) for v = 0.2. (red and blue solid lines, respectively) when pg is a cubic polynomial
affected by an asymmetric perturbation with hi(e) = ¢ and ha(e) = —3e.

demand function. If we set a = k = 10,b = 0.9,d = 0.475 and e = 0.1, marginal
cost ¢ = a, hi(e) = € and ha(e) = —3e, we have that ¢] (¢) is decreasing when
¢ < 0.65 while it is increasing when ¢ 2 0.65, as shown in Figure 2.

This means that in the perturbed model, without any precise knowledge of
the underlying periodicity of the perturbation, the production decisions toward
which trajectories converge are strongly influenced by the agent’s behavior, can
substantially vary for different values of 7 and, in general, do not correspond to
the profit maximizing production decisions.
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In Proposition 2 we investigated the effect of perturbation e for a fixed re-
action speed 7 of the agent. In the next Proposition we study the opposite
situation, in which the economic setting, represented by the perturbation size
e, is fixed, and we vary the agent’s behavior, in order to see how ~ affects
period-2 cycles of the dynamical model (5). We may ask if, similarly to what
happens when g; — 07, as v — 07 period-2 cycle {G5(7),35(7)} of (5) “con-
verges” to the equilibrium of the unperturbed problem, namely if ¢(y) — ¢*
for v — 0. However, such question is actually doomed in advance. In fact,
for any given couple of “shifted” inverse demand functions p; and ps there are
infinitely many “unperturbed” inverse demand functions pg(q), obtained choos-
ing suitable perturbation values hi(e) and ha(e). Then, we can wonder which
is the unperturbed problem to which 2-cycles of the non-autonomous equation
(5) are, in some sense, related. We have the following Proposition, in which e,
is the value provided by Proposition 1.

Proposition 3. Let n) : R — R be a differentiable function satisfying (4) and
consider function
hl (E) + h2 (E)

2 )
namely the average of the perturbed functions wjy+ h;(e). Let ¢* () be the unique
zero of @' (q). Then, for each € € (0,enr), there are ¥(e) > 0 and two differen-
tiable functions ¢ : I. = (0,7(¢)) — R, i = 1,2 such that

7'(g,¢) = m(q) +

(1) {@i(v),d5(v)} is a period-2 cycle of System (5) for any v € I.;
(2) lim ¢;(v) =q (e);
y—0+

dgi _ ha(e) —hale) | @3 _  Tu(e) —hale),

11m =
~y—0t d’7 4

3) 1 =
(3) lim, o 1

(4) @5(7y) is strictly increasing and §5(y) is strictly decreasing.

We again have that a period-2 cycle of (5) arises from the unique solution
of an optimization problem, which, however, involves the average of the two
perturbed inverse demand functions. Thanks to the continuity of ¢5(v), if the
agents’ reactivity is close to zero, the 2-cycle has a very small amplitude around
the optimal production choice of the average unperturbed problem. As ~ in-
creases, we have that |¢5(y) — ¢5(7y)| increases, too, so the oscillation extent
increases as the agent becomes more reactive.

Nevertheless, we can compare the oscillation size |5 () —¢5()| of the period-
2 cycle of model (5) with the distance between the two optimal production levels
|5 (e) — @3(¢)|. The effect of v can be ambiguous. In fact, |¢5(v) — ¢5(7)| can be
both smaller (for suitably small values of ) and, possibly, larger (for suitably
large values of ) than |g}(e) — ¢5(g)|. Since ¢ (vy) are continuous monotonic
functions, we can ask if there is a value v* for which we simultaneously have
@5 (y) = g (e) and ¢5(v) = @5(g), namely a particular agent’s behavior allow-
ing to alternate between the profit maximizing output levels. Imposing that
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{¢i(e),¢5(2)} is a period-2 cycle of (5), i.e.

we find
o 4i(e) — a3(e)

hi(e) = ha(e)’
S0, in principle, there always exists a particular reaction speed for which the
period-2 cycle of the perturbed model oscillates between the two profit maxi-
mizing production choices. We recall that in the classical unperturbed monopoly
model the equilibrium ¢* is a steady state of the model independently of v and
that it is stable provided that v € (0,1] N (0,%), for some stability threshold
4 > 0. This means that a suitably cautious behavior of the agent always allows
trajectories to converge toward the equilibrium ¢* (at least those starting in a
neighborhood of ¢*). Conversely, in the perturbed model it is no more true, and
even if the period-2 cycle is stable, it is increasingly different from {q},¢5} as
v is either increasingly smaller or larger than v*. From Proposition 3, we can
conclude that the economic agent, just observing and taking into account the
profitability change signal, even if does not shape his/her decision mechanism on
a precise knowledge of the underlying time variability of the demand function,
can learn the qualitative cyclicity of the demand function, and react to it in a
qualitatively correct way. In fact, the right ordering between production choices
when the market size is either large or small is preserved (point 4 of Proposi-
tion 3, Figures 1,2 and 3). However, he/she is in general not able to learn the
correct optimal production levels. As a consequence, both a too cautious and
a too reactive behavior induce reduced asymptotic profits. Finally we remark
that v* may not lie inside interval (0,1] so we may have situations in which
the optimal productions levels g/ are never points of a 2-cycle of (5), unless
considering overreaction. As we will show in Section 4, the deviation between
optimal profits and those actually realized adopting the present mechanism is
in general negligible, especially when the period-2 cycle is stable.

To exemplify the previous results, we make again reference to the case of a
linear demand function, for which ¢; are indeed constant with respect to 7 (see
(7)) and the expressions of ¢5(y) are those given by (8). A simple computation
shows that dg5/dy = (h1(e) —h2(€))/(4(ay+1)? > 0) and dg5/dy = —dg5 /dy <
0, in agreement with the results of Proposition 3. This also implies that the
size of the oscillation |G5(y) — ¢5(7)| increases on increasing . Moreover, if we
directly solve ¢ (y) = ¢f we find v* = —1/(2a) (the same result is obtained by
directly applying (10)). This means that if « < —0.5 we have v* € (0, 1], while
for a > —0.5 the optimal productions levels ¢; are never points of a 2-cycle of
the linear model. The situation is illustrated in Figure 3. We notice that the
perturbation is asymmetric and for v — 07 both ¢ () converge to the average
of the perturbed equilibria.

We remark that in both Propositions 2 and 3, the period-2 cycle arising from
q* or q*(¢) may not exist for every e (in Proposition 2) or for every v € (0, 1]

(10)
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hi(e) = 0.5,he(e) = —1,b=10,c =1
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Figure 3: Red and blue dashed lines respectively represent ¢ and ¢3, which are constant with
respect to . Red and blue solid lines respectively represent the evolution of ¢§(v) and ¢5(v)
for hi(e) = 0.5 and ha(e) = —1. Both §5 () are increasing, but if a < —0.5 there exists a v*
at which ¢ (v*) = ¢ (left plot, if a = —0.6 we find v* = 2/3) while if a > —0.5 it is not
possible (right plot, a = —0.3).

(in Proposition 3), even if the corresponding couple of points ¢f and ¢5 exists
for any e. This is essentially an effect of the agent’s reaction, which then does
not only affect the actual period-2 cycle of the perturbed model, but even its
existence. Such aspect will be further investigated in Section 4.

We also stress that in Propositions 2 and 3 we showed that there exists a
period-2 cycle of the perturbed model which corresponds to the optimal output
level of an unperturbed problem (which can be the original unperturbed model
or the average unperturbed one). As we will show in Section 4, it may not be
the unique period-2 cycle of model (5).

In Proposition 3 we showed that, differently from the classical framework,
the steady state (45(7),35(7)) of (6) is affected by « and trajectories may not
converge toward the profit maximizing output levels. However, convergence can
be not possible also in the classical framework, in which v has in general a
destabilizing effect on the steady state. So far, we just studied the existence of
period-2 cycles, which however, can be unstable. We study the local asymptotic
stability of a generic period-2 cycle {Gi, g2} in the next Proposition.

Proposition 4. Let {¢1, 2} be a period-2 cycle of the non-autonomous equation
(5). Then it is locally asymptotically stable provided that

(14976 (G2)) (1 + 776 (G2))] < 1. (11)

Stability condition (11) directly depends on +, being it the coefficient of
my. Moreover, since {{1,G2} depends on both the agent’s reactivity and the
perturbation size, v and € both indirectly affects stability through their influence
on the resulting period-2 cycle. One of the main consequences is that « can have
an ambiguous effect on stability. To this end, an essential role is played by the
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concavity of the marginal profit function. If we considered a linear demand
function, we would simply have that (11) reduces to (1 + 2ay)? < 1. Stability
is then unaffected by the perturbation, while v only has the usual destabilizing
role. Conversely, in the nonlinear case, we have a more articulated situation.
The possible effects of v in a simple case are investigated in the next Corollary,
in which, for easy, we consider a symmetric perturbation so that T = m.

Corollary 1. Let us consider a fixed value of €. Then the following scenarios
are possible:

(1a) {G1, G2} is stable for any v € (0,1];

(1b) there is vpa € (0,1) so that {¢1,G2} is locally asymptotically stable for
v € (0,7pa) and unstable for v € (Ypa, 1];

(1c) there are 0 < Ypq < Ypn < 1 so that {{1, G2} is locally asymptotically stable
for v € (0,7pa) U (Yph, 1] and unstable for v € (Ypda, Vpn)-

The previous Corollary shows that, unlike the classical unperturbed situ-
ation, the effect of introducing a perturbation allows parameter v to have a
stabilizing effect, too. In particular, in case (2¢), a bubbling phenomenon oc-
curs, with a return to stability when the agents reaction speed increases.

The actual occurrence of each scenario will be shown through simulations in
Section 4, in which we will use a cubic inverse demand function. We underline
that the possibility for a demand function to change its concavity (and as a
possible consequence, for the marginal profit function, too) is not just a mere
mathematical concern, but it can concretely represent a consequence of the
consumers’ behavior or heterogeneity, as noticed by Robinson in [3] and reported
by Puu in [10].

We remark that from Proposition 4, it is evident that the local asymptotic
stability of the period-2 cycle {gi1, d2} is completely independent of the stability
of equilibrium ¢* in the dynamical unperturbed model. In principle, this means
that introducing the perturbation may have both a stabilizing and a destabiliz-
ing effect. We will investigate this aspect, together the possible scenarios as the
perturbation size increases, in Section 4.

4. Numerical experiments

In all the simulations reported in this section we consider a (unperturbed)
cubic inverse demand function which provides the cubic profit function (9). As
shown in [10] if a,b and e are positive and if d* — 3be < 0, the cubic function
po is decreasing. In what follows, unless otherwise specified, we set a = ¢ = 100
and £ = 10. Remaining parameters and perturbations are chosen so that all
the economically significant quantities and equilibria, in both unperturbed and
perturbed models, are positive as v and ¢ increase. Finally, unless otherwise
specified, we computed all the bifurcation diagrams “following” the attractor,
namely if the bifurcation diagram is computed for a sequence {a;} of parameters,
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Figure 4: (A): two-dimensional bifurcation diagram with respect to v and €. Color red is used
for period-2 cycles. Color dark gray represents parameters that provide diverging trajecto-
ries. Remaining colors are used for attractors consisting of more than a single point. (B,C):
bifurcation diagrams, as - increases, when € = 0.68 (plot (B), corresponding to the horizontal
dotted line in Figure (A)) and € = 1.4 (plot (C), corresponding to the horizontal dashed line
in Figure (A)). (D): bifurcation diagram, as ¢ increases, for v = 0.88 (corresponding to the
vertical dashed line in Figure (A)).

the initial datum for the simulation corresponding to a;41 is chosen suitably close
to a point of the attractor toward which trajectories obtained with parameter a;
converged. The goal of this Section is to illustrate the results of Section 3 and to
deepen their investigation with the help of numerical simulations. We are mainly
interested in exhibiting the main theoretical peculiarities of the periodically
perturbed setting with respect to the classical one. We start sketching the
interpretation and significance of such differences, whose economic relevance will
become evident in Section 5 in the comparison with the economic literature.
In the first two families of simulations we investigate the dynamical behavior
of the perturbed model with respect to agent’s reaction speed v and the size
of perturbation e. In Figure 4 (A) we report a two-dimensional bifurcation
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diagram obtained setting b = 1,d = —0.54 and e = 0.11. We consider the
asymmetric perturbation defined by hi(g) = € and ha(g) = —0.9¢. In this case,
it is easy to see that the unique equilibrium ¢* = 10 of the unperturbed model
is unconditionally stable for any v € (0, 1). It is evident that for suitably small
values of v and e, the period-2 cycle is stable (red region in Figure 4 (A)).
Keeping fixed e, we have that {G5(y),35(y)} is unconditionally stable for any
v € (0,1] provided that € < 0.19 (scenario (1a), Corollary 1). For intermediate
values of the perturbation size (0.19 < e < 1.31), period-2 cycle {¢5(7), ¢5(7)}
becomes unstable through a flip bifurcation, as shown in Figure 4 (A) when
horizontal lines cross at some 4 the boundary of the green region, in which
trajectories converge toward period-4 cycles (scenario (1b), Corollary 1). Such
cycles can then remain stable for any v > 4 or they can undergo a cascade of
period-doublings, as for example reported in Figure 4 (B), from which we can
notice the emergence of chaotic dynamics for large reaction speeds. However, as
¢ approaches 1.31, we can notice from Figure 4 (A) a qualitative simplification
of the dynamics, in particular for v sufficiently close to 1. When 1.31 < e < 2.48
we have a bubbling in the bifurcation diagram. As shown in Figure 4 (C), the
initial flip bifurcation undergoes a cascade of period-doublings leading to chaos,
which is then followed by a cascade of period-halvings so that, for sufficiently
large values of v, {¢5(7),¢5(7)} is again stable (scenario (1c), Corollary 1). As
¢ increases, the resulting dynamics further simplify, and the bubbling possibly
consists of a single period-doubling followed by a single period-halving. Finally,
for ¢ 2 2.48, the period-2 cycle is again unconditionally stable with respect to
v, as long as it exists. Since the equilibrium in the unperturbed model is stable,
all the above mentioned phenomena are introduced by the perturbation, and
then affected by the reaction speed. Small perturbations have a destabilizing
effect, introducing possible unstable, periodic or chaotic dynamics which are
not present in the unperturbed model, while larger perturbations may have the
counterintuitive effect of improving and even recovering stability. We remark
that as « approaches 07 (as in the leftmost parts of the bifurcation diagrams
reported in Figures 4 (B) and (C)), we have that the size of the oscillation
becomes increasingly small, but the attractor still consists of two distinct points
for any v > 0, in agreement with Proposition 3.

The bifurcation diagram reported in Figure 4 (C) deserves some comments.
In the classical time-constant setting, the output decisions coincide with the
steady state if the marginal profit is null. Moreover, in a neighborhood of
such steady state the agent’s reactivity can be either “small” (relatively to the
profitability change signal) or “large”.

As in the classical framework, in a time-varying setting, the overall reactiv-
ity encompassed in the decision mechanism is the result of the joint effect of
the endogenous agent’s reactivity to profit variations and of the strength of the
profitability signal. The main difference is that with a period-2 demand function
we can actually distinguish two alternating market phases, each one identified
by its own demand function. Since we assumed that demand functions verti-
cally shift, this actually corresponds to considering a market which assumes two
different, alternating sizes, which we can respectively identify with the “peak”
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and the “off-peak” phases of the market. Indeed, when passing from a peak
to an off-peak (respectively from an off-peak to a peak) phase, the profitability
signal will in general suggest to decrease (respectively increase) the output level.
However, the variation of the production decisions between two consecutive ei-
ther peak or off-peak phases (i.e. from ¢ to ¢t + 2) is decided on the basis of
the joint effect of two consecutive profitability change signals®. If we consider
the simple but general situation of a symmetric perturbation (hy = hs), look-
ing at the second equation of (6), we have that the overall signal between two
consecutive off-peak (respectively peak) phases is exactly given by the sum of
the two consecutive marginal profits, namely 7(,(¢2,1) + 7, (q1,¢+1) (respectively
7o(q1,e) + 7o (g2,t+1)). In general, the steady state output level of a phase is
then reached not when marginal profits are both null, but when they are equal
and opposite. In a neighborhood of the steady state we have in general that
the profitability variation signals of a phase can be different from that of the
other one. As a consequence, the agent’s reactivity can be suitably “small” at
a market occurrence and “large” at the other one.

To understand the possible evolution of the production decisions, we must
take into account the previous considerations. To fix ideas, we assume that
marginal profits are relatively small in the off-peak phase and relatively large
in the peak one. We set at a peak phase, assuming that the output decision
is suitably close to and smaller than the steady state of the peak phase and
we focus on what happens between two consecutive peak phases (the line of
reasoning can be easily adapted to study two consecutive off-peak phases). The
adjustment of the production decision for the next off-peak phase is negative
but relatively small and it is followed by a larger positive adjustment, since we
assumed that marginal profits are larger near the steady state of the peak phase.
The overall profitability variation signal between two consecutive peak phases
is then positive.

If the agent’s reactivity is sufficiently small, the adjustment between two
consecutive peak phases is small. The new output decision for the peak phase is
again smaller than that at the peak steady state and, going on, output decisions
of the peak phase are progressively adapted toward it. The resulting adjustment
process can be slow, but its direction is constant: production decisions carry on
increasing, following a monotonic trajectory toward the peak steady state.

If the agent’s reactivity is larger, convergence is potentially faster. However,
this can lead to an overestimation of the production level. If the agent’s reac-
tivity is not too large, the new production level is closer to that at the peak
steady state, but in this case it is larger than it. We notice that since the
agent’s reaction is still relatively small with respect to the size of the profitabil-
ity signal, the production level only slightly decreases, and the resulting output
decision for the off-peak phase is overestimated, too. Both overestimations lead
the overall marginal profits to become negative for the next couple of phases.

3From then mathematical point of view, this means that the dynamical behavior is deter-
mined by maps f1(f2(q)) and f2(f1(q))-
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This will make the corresponding output level to be underestimated, with a re-
verse adjustment with respect to the past one. In each phase, production levels
then alternate between decreasingly too large and too small output levels, which
converge following non-monotonic trajectories.

If the agent’s reactivity further increases, the reaction to the overall prof-
itability signal may drift the next output decision apart from the possible peak
steady state. If we considered a market consisting of the only off-peak phase
with an agent characterized by such reactivity, the production decisions would
converge, but slowly, since the agent’s reactivity is still small with respect to
the marginal profit signal. The deviation due to the stronger profitability varia-
tion signal coming from the peak phase together with a relatively large reaction
speed is then that dominating and the next peak output level moves away from
the peak steady state. In this situation, production decisions of each phase can
follow complex trajectories, arising endogenously, which can be indistinguish-
able from random erratic exogenous movements (for further discussions about
chaos and random shocks we refer to [? ]).

However, as the reaction speed of the agent further increases, we possibly
have a simplification of the last scenario. Even if we again have an overesti-
mation of the next peak production levels, the agent’s reaction can be suitable
to obtain a fast convergence of the production level in the off-peak phase, so
that the production decision move back closer to the steady state. The effect of
two opposite signals from the marginal profit estimation leads the production
decisions into approaching again the steady state and the output trajectories
again converge.

Finally, if the reaction of the agent becomes too large with respect to both
peak and off-peak marginal profits, output trajectories of both phases can di-
verge.

The ambiguous behavior with respect to the perturbation size is confirmed
if we look again at the two-dimensional bifurcation diagram of Figure 4 and we
let € vary, keeping v fixed. For a small agent’s reaction speed, period-2 cycle
{G](€),4q ()} is stable with respect to e. For sufficiently large values of v we
again have a bubbling in the bifurcation diagram, so that the period-2 cycle is
unstable for intermediate perturbation sizes and stable for suitably either small
or large values of €, as shown in Figure 4 (D).

As already noticed, it is evident how a small perturbation can introduce
instability. Since a large perturbation can have the opposite effect, we can
ask whether the introduction of a perturbation in an unperturbed model with
unstable dynamics can improve stability, too. This is investigated in the next
family of simulations. In Figure 5 (A) we report the two-dimensional bifurcation
diagram obtained for b = 2,d = 0.73 and e = 0.11 and for the asymmetric
perturbation defined by hj(e) = ¢ and ha(e) = —0.1¢. Before considering what
happens as € varies, we briefly focus again on the effect of the reaction speed.
In this case, the equilibrium ¢* = 10 of the unperturbed model is stable only
for v < 0.5. As we can see, the introduction of a sufficiently large perturbation
again has a stabilizing effect on the dynamics on varying «. In the simulation
reported in Figure 5 (B), we have that the period-2 cycle {¢5(7), ¢5(7)} can be
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stable even if the unperturbed model exhibits chaotic dynamics. We notice that
it is evident that as v — 07, ¢ () does not converge toward ¢*, in agreement
with Proposition 3. Moreover, looking at Figure 5 (A), when € = 3.25, we have
unconditional stability with respect to ~. Setting v = 0.66, for which in the
unperturbed model trajectories converge to a period-4 cycle (red bifurcation
diagram of Figure 5 (B)), we have that increasing the perturbation size has the
initial effect of increasing the complexity of the dynamics (Figure 5 (C)). This
also means that, even when the perturbation size is small, a small change in
the demand oscillation extent can induce significant changes in the qualitative
behavior of the dynamics. However, when ¢ is sufficiently large, a cascade of
period-halvings occurs and {4} (), ¢3 (¢)} becomes stable again. Moreover, such
stabilization can occur even if the unperturbed model is characterized by chaotic
dynamics, as shown in Figure 5 (D).

The interpretation of the effect of the variation of the market size is simpler
with respect to that with respect to the agent’s reactivity. In this case, we
have that as the demand function changes, the marginal profits at the (new)
steady states of peak/off-peak market phases change, too. This means that
the profitability variation signal can become either stronger or weaker (in each
phase). Recalling what we said about the joint effect of such signal and of the
agent’s reactivity, this can induce either an increase or a simplification of the
complexity of output trajectories.

Considering a cubic inverse demand function, it is evident that ¢; are well-
defined for any perturbation size, at least from the mathematical viewpoint,
as ¢;3(¢) becomes negative for suitably large values of . However, recalling
Proposition 2, period-2 cycle {q](€), g3 (¢)} may not exist for any perturbation
size. In fact, if we look at the two-dimensional bifurcation diagrams of Figures
4 and 5, we can see that red regions, in which the period-2 cycle is stable,
can share the boundary with dark gray regions, in which trajectories diverge.
This is due to a couple of fold bifurcations in maps f1(f2(¢q)) and f2(f1(q))
where functions f; are defined in (5). For the same parameter set used for the
bifurcation diagram reported in Figure 4 (D), in Figure 6 (A) we report maps
f1(f2(q)) and f2(f1(q)) for perturbation sizes immediately below and above
the fold bifurcation threshold, together with a cobweb diagram (Figure 6 (B))
veferred to maps g +7(mh(g2) + h1(e)) (in red) and g1 + (s (1) + ha(e)) (in
blue). To have a fold bifurcation we must have

(14976 (G0)) (1 + 776 (G2)) = 1, (12)

together with some supplementary conditions (see [27], Theorem 1). Indeed,
a sufficient condition for (12) is to simultaneously have 7 (41) = n{(¢2) = 0,
which is, in general, not necessary. In Figure 6 (B) we considered a perturbation
size very close to the threshold of the fold bifurcation, and we numerically find
74 (G1) = —1.56 and 7(j (G2) = —4.1, for which the left hand side of (12) is equal
to 0.988. We stress that looking at Figure 6 (B), we can notice that System (6)
has also other steady states, which are however locally asymptotically unstable.
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Figure 5: (A): two-dimensional bifurcation diagram with respect to v and e. Color red is
used for period-2 cycles. Color dark gray represents parameters that provide divergence of
trajectories. Remaining colors are used for attractors consisting of more than a single point.
(B): bifurcation diagrams, as 7 increases, for the perturbed model (black) and the unperturbed
one (red), for e = 2.4 (corresponding to the horizontal dashed line in Figure (A)). (C):
bifurcation diagram, as € increases, when v = 0.66 (corresponding to the vertical dotted line
in Figure (A)). (D): bifurcation diagram, as e increases, when v = 0.7 (corresponding to the
vertical dashed line in Figure (A)).

Finally, we just want to quickly point out that the period-2 cycle arising from
the equilibrium ¢* of the unperturbed model may not be the unique period-2
attractor of (5). In Figure 7 we show two bifurcation diagrams with respect
to 7y, obtained for the same parameter configuration used for the simulation
reported in Figure 5, for a small perturbation size e = 0.05 and considering two
different initial data g2 9 = 10.3 and g2 9 = 12. As we can see, for v < 0.53,
both trajectories converge to the period-2 cycle arising from ¢*, so the black
and the red bifurcation diagrams coincide. When ~ 2 0.53, the trajectories
obtained considering g2, = 10.3 still converge to the period-2 cycle arising from
q*, while if we take g2 o = 12 trajectories converge to another stable period-2 cy-
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Figure 6: (A): maps f1(f2(q)) and f2(f1(q)) (red and blue color). Maps corresponding to &€ =
1.7 are represented using dotted lines, while those corresponding to € = 1.808 are represented
using solid lines. (B): cobweb diagram for the non-autonomous equation (5) when € ~ 1.808.
Red and blue colors respectively represent the maps defined by the right hand side of (5)
when ¢ is either odd or even.

cle which coexists with the original stable period-2 cycle, as pointed out by the
“jump” in the red bifurcation diagram. They both give then rise to a cascade
of period-doublings leading, for different values of the reaction speed, to chaotic
dynamics. The emergence of such coexistence corresponds to a couple of fold
bifurcations, each one respectively affecting ¢g; and g2. Such phenomenon was
already observed and studied in [25] for the periodically perturbed logistic equa-
tion. In that case, it was possible to cast an analytical glance at the interval of
possible perturbation sizes for which coexistence arose, computing the resultant
of the system (a fourth order polynomial) and approximating it by means of
the Newton polygon procedure. In the present situation, a similar approach is
actually impossible, since the resultant of (6) is a very high degree polynomial,
so we limit to show the emergence of an analogous behavior, reporting in Figure
7 (B) the cobweb diagram for the two attractors when v = 0.65, together with
the related basins of attractions. It’s worth noticing that such coexistence is not
induced by the particular demand function or by the agent’s behavior, since we
thoroughly checked through numerical simulations that when € = 0 no coexist-
ing attractor with positive measure seems to emerge. It is then introduced by
the perturbation itself, as in [25].

From the propositions of Section 3 and from the simulations reported in this
Section, it is evident that a mechanism like (5) is (in general) not able to let the
agent “learn” the profit maximizing productions levels. We recall that this is
a consequence of the rationality assumption for the agent, who is not aware of
the precise time variability of the demand function. We may wonder how much
achieved profits are actually affected by such boundedly rational adjustment
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Figure 7: (A): bifurcation diagrams for two different initial data (g2,0 = 100.3 for the black
diagram and g2,0 = 102 for the red diagram), for the parameter configuration of the simu-
lation reported in Figure 5 (A). (B): cobweb diagram for two different initial data, showing
coexistence between a period-8 cycle (red) and chaotic trajectories (black). Maps f1 and fa
are represented using green and blue color. Basins of attraction are reported at the bottom
of the plot. Each initial datum is represented using the color of the attractor toward which
the corresponding trajectory converges.

process. To investigate this we focus on a situation in which the perturbation
is quite significant, considering a =c=k=4,b=1.4,d =0.618 and e = —0.11
and a symmetric perturbation hy(¢) = —ha(e) = €. In Figures 8 (A) and (B) we
reported the upper and the lower parts of the bifurcation diagram with respect
to v obtained setting e = 1. It is evident that, both when ¢ is odd and even,
the distance between the best profits (represented by the dashed line) and the
achieved profits is mild, especially when dynamics converge toward the period-2
cycle.

To check the robustness of the previous result, we can estimate the relative
distance between realized and achieved profits as

_ I —mi] | [Fe — 7

D : (13)

2my 2m;
where 71,9 and 7], w5 respectively represent the average realized profits and
the best profits when ¢ is odd and when ¢ is even. In Figure 8 (C) we report
the two-dimensional bifurcation diagram while in Figure 8 (C) we report index
100 - D, in which averages are computed over 200 time periods. As we can see,
the distance is always reasonably small. We stress that, even if such results are
obtained by considering a symmetric perturbation, we numerically checked that
they are not significantly altered by (even strongly) asymmetric perturbations.

Finally, we notice that in a realistic situation in which a stochastic shock is
over-imposed to the deterministic cyclicity of the demand, it can be very difficult
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Figure 8: (A,B): bifurcation diagram of profits as 7 increases, when ¢ = 1. In plot (A) we
report profits when ¢ is odd, in plot (B) we report profits when ¢ is even. Dashed lines represent
optimal profits. (C): two-dimensional bifurcation diagram with respect to v and . Color red
is used for period-2 cycles. Color dark gray represents parameters that provide divergence of
trajectories. Remaining colors are used for attractors consisting of more than a single point.
(D): evaluation, for each parameters’ coupling, of index 100 - D, where D is defined in (13).
Color dark blue represents parameters that provide diverging trajectories.

to “understand” the precise deterministic period-2 oscillation of the demand.
In Figure 9 we consider the simulation reported in Figure 5 (B), in which the
vertical shifting is now given by d;+ h;(¢), where d;, is a sequence of independent
normally distributed random variables with identical variance o = 1 and mean
1= 0. As we can see, it is actually impossible to recognize the cyclicity of the
demand, even if the shock is small with respect to the perturbation size.

5. Qualitative comparison with the empirical literature

In this Section we aim at understanding if the assumptions at the basis
of the present model are suitable to explain the emergence of several peculiar
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Figure 9: Bifurcation diagram for the same parameter configuration of the simulation reported
in Figure 5 (B) with an additional random shock on the perturbation size.

characteristics in economic observables of actual markets. In particular, we are
going to compare the qualitative characteristics of price series obtained through
simulations and with those of actual price series. To this end, we again con-
sider the case of a demand function which cyclically oscillates, so that such
stylized framework resembles the situation in which the consumption of a good
is affected by seasonality. As prototypical examples, we take into account the
cases of agricultural or energy goods [29, 30]. As widely known, such goods
are affected by price distributions that strongly deviate from normality, show-
ing leptokurtic behavior, with positive skewness and significant volatility [28]%.
Also a significant positive autocorrelation is remarkable. A central debate in
understanding price dynamics concerns the endogenous or exogenous cause of
fluctuations, explaining them as either unstable and/or chaotic trajectories en-
dogenously originated by the boundedly rational agents’ forecasting errors or
as the reaction of rationally behaving agents to real exogenous shocks. Usually,
both extreme views have drawbacks in providing a satisfactory explanation of
the emergence of the above mentioned stylized facts ([28]). In what follows, we
test if the assumptions on which basis the model has been built together with

4We stress that in such work a cobweb approach is adopted to understand the agricul-
tural price fluctuations. Concerning agricultural goods, as noticed in [29], “...the manner in
which commodity prices are determined ranges from markets with near monopoly-like insti-
tutions, sometimes assisted by governmental regulation and intervention to approximations
of the textbook definition of pricing under competitive conditions”. Empirical estimations
([31]) concerning such markets highlight the existence of significant market powers. Similarly,
several energy market are now deregulated, but also in this case “a road from state to pri-
vate monopoly” ([30]) can be observed. All the authors remark that the above mentioned
peculiarities in prices’ distributions are common to such goods, quite independently of the
way that prices are determined, even if deviation from normality is usually stronger under a
competitive market assumption.
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the possibility of exogenous random shocks are suitable to foster the emergence
of such qualitative aspects in the time series. The following results® are ob-
tained considering a cubic demand function and the same parameters used for
the simulation reported in Figure 4 (C). Finally, we slightly modify model (2)
by introducing bounds to the maximum possible quantity variations, namely
qi+1 = q +ymax{min{m;_ | (q),F2}, 1}, where B2 > 0 and 31 < 0 respectively
represent the maximum possible increase and decrease of quantity. This has
a clear economic motivation, as avoids the difference between the next period
output decision g;4+1 and the current production decision g; to become unre-
alistically large. In real situations, firms are usually constrained in arbitrarily
increasing or decreasing their production levels (see [32]). The use of similar
bounding techniques is quite common in the modelling of analogous economic
contexts, see for example [33, 34]. We stress that, since the bounding mechanism
is linear on [f1, f2], both the analytical results of Section 3 and the simulations
reported in Section 4 do not change as long as ¢; € [f1, 82]. In what follows
we set 1 = —8 and (B2 = 6, which we checked to be sufficiently large so that
all the results of the previous sections remain exactly the same. The bounding
mechanism only acts when a sufficiently large shock occur and helps in prevent-
ing unrealistic divergence or negativity phenomena. Finally, we tested that the
following results are robust on varying 3; in a suitably large parameter region.

For each simulation, we compute the corresponding price series and we take
into account 500 prices after an initial transient of 1000 time steps. In Figure
10 we report the results of kurtosis, skewness and percent relative volatility
(the percent ratio between the standard deviation of the price distribution and
the mean price) obtained considering different values of the agent’s reaction
speed v and of the standard deviation of the shock®. The values of each index
are computed averaging 100 simulations, obtained with different sequences of
shocks.

When + is small (below the lower solid line) and the dynamics are stable,
results are in general not consistent with those empirical, with price distribu-
tions close to normality. Conversely, when ~ is sufficiently close to or larger than
the parameter values which provide unstable dynamics, the price distributions
become significantly non-normal, with excess kurtosis, positive skewness and
increasing volatility. The values of kurtosis, skewness and volatility obtained
with v belonging or close to the region of instability (namely, between or close
to the two solid lines in Figure 10) are comparable to those reported in the
above mentioned empirical literature [35, 29]. This suggests that the presence

5We stress that the aim of this section is not to model in detail any particular market, which
is beyond of the scopes of the present contribution and would require to explicitly take into
account economic, technological and institutional aspects of the market. Consistently with
the whole approach, we keep the discussion at a theoretical level and we consider settings
similar to those used in Section 4.

6We only considered v € [0.4,1], as smaller values are slightly significant due to the in-
creasingly slow convergence. However, if v is further decreased the results are comparable to
those obtained for v =~ 0.4.
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of the nonlinearity in the modelling framework is not sufficient to explain the
non-normal distribution of prices, which arises and becomes significant only
when the endogenous decision mechanism, grounded on the boundedly rational
behavior of the agents, induces instability and consequent complex dynamics.
The largest excess kurtosis as well as the most asymmetric distributions are
mostly obtained in the region in which complex dynamics occur. We recall that
in the deterministic bifurcation diagram (Figure 4 (C)) a bubbling phenomenon
takes place, with a return to stability when ~ is sufficiently increased. A similar
“bubbling effect” can be observed in Figures 10 (A,B,C,D), in which we can
notice that both kurtosis and skewness decrease when the underlying determin-
istic dynamics simplify. Only volatility keeps on increasing as 7y increases, but
this can be easily explained recalling that such index actually corresponds to
the standard deviation of the price distribution, so it is more sensible to the size
of the prices’ distribution around their mean value than to the way they are
distributed. If a random shock is present, as 7 increases, the difference between
the largest and the smallest price increases (as for quantities in the bifurcation
diagram reported in Figure 9), quite independently of the underlying determin-
istic dynamics. On this basis, we can conclude that volatility is also directly
influenced by the agent’s reactivity.

Concerning the size of the shock we take into account, we notice that it is
relatively modest and it alone is unable to justify the extent of price fluctuations.
Conversely, if we further increase the standard deviation of §;, we have that the
prices tend to become normally distributed, as the most significant effect is now
the indeterministic one.

We remark that we checked the robustness of the previous results in several
ways. For example, we modified the nonlinear demand function. We found that
the essential aspect that allows reproducing qualitatively comparable results is
the presence of a suitably significant nonlinearity in the function so that unsta-
ble and complex dynamics arise. Moreover, qualitatively comparable results and
conclusions can be obtained considering also the other parameter settings used
in Section 4. Indeed, in scenarios in which + has just a destabilizing role, kur-
tosis, skewness and volatility are only qualitatively increasing with . Finally,
decreasing the size of the deterministic oscillation of the demand function, the
previous peculiarities in the price series reduce or even disappear. This suggests
that taking into account in the model the deterministic periodicity character-
izing such markets is essential to correctly describe the price dynamics. All
the previous considerations suggest that the fluctuating price dynamics of such
kinds of markets can be explained as a joint effect of the boundedly rational na-
ture of the economic agent, of a nonlinear economic setting and of an exogenous
nondeterministic component. The reduced rationality of the monopolistic agent,
in addition to being a realistic assumption [2, 1], fosters the emergence, in an
economic setting characterized by nonlinearity, of endogenous, unstable complex
dynamics. The setting becomes even more complex when it is also characterized
by cyclicity, as analytically shown in Section 3, and the superposition of nonde-
terministic fluctuations leads price distributions into deviating from normality
and exhibiting significant volatility. We notice that even if random shocks must
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be taken into account to obtain results comparable to those real, the dynamics
are essentially driven by endogenous elements and allow avoiding specially-made
assumptions on the shock distributions. This is also highlighted by the fact that
a suitably small shock is sufficient to obtain prices whose distribution is very
different from the normal distribution of the considered stochastic perturbation
and that if a large shock is added, results become less significant as the shock
distribution becomes dominant on the endogenous dynamics.

In the previous discussion we did not deal with one of the stylized facts we
mentioned from the empirical literature, namely the positive autocorrelation of
prices. In all the previous simulations, the first order autocorrelation coefficient
is always significantly negative. However, this should not surprise too much,
as this is a quite predictable consequence of the period-2 of deterministic os-
cillation we considered. At time ¢ + 1, any economic variable involved in the
model must be negatively correlated with that at time ¢, since at two consec-
utive times the economic context actually upturns. This radically changes if
we consider a “smoother” deterministic oscillation. If we consider the inverse
demand function p¢(q) = po(q) + € cos(32t),w € N we can model a symmetric
oscillation with period w. Indeed, the analytical results derived in Section 3,
which corresponds to w = 2, are no more applicable to a general w, but model
(2) can be applied without any change. Through simulations, we found that,
as we increase the period of the oscillation, all the previous results concerning
kurtosis, skewness and volatility are qualitatively confirmed and a significant
positive autocorrelation emerges.

6. Conclusions

In this work we proposed a first model for a boundedly rational agent in
a monopolistic market characterized by a time-varying demand function. The
firm adjusts its production level on the basis of a gradient mechanism. Focusing
on a simple kind of time-varying demand function, characterized by a cyclical
recurrence with period two, we proved how the perturbation size and the agent’s
reactivity can affect the dynamics. On the basis of the profitability signal, the
agent is able to recognize the kind of demand variability, and to adapt the
production levels in a qualitatively correct way. However, the period-2 cycle
toward which output trajectories converge does not consist, in general, of the
profit maximizing output levels and depends on the agent’s reactivity, and this
moves away from the classical framework. Moreover, both perturbation size and
agent’s reaction speed can have a stabilizing effect on the resulting dynamics,
unlike in the classical case. However, even if the model is very simple and
does not require a precise knowledge by the agent of the underlying variability
of the demand function, we show that the achieved profits are not so distant
from the best profits. We also showed that the pursued approach can provide
a qualitative justification of peculiarities characterizing economic observables
in markets affected by seasonality, suggesting that deviation from normality of
price distributions can be understood in terms of a nonlinear economic setting
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affected by a time-varying demand function, of a boundedly rational mechanism
for the agents and of indeterministic perturbations.

This is a first attempt to investigate the effects of introducing time variabil-
ity for the demand function. Indeed, several refinements of the proposed model
or generalizations to different economic contexts can be studied. For example,
considering again a monopolistic market, we can study models in which the
agent is aware of the cyclicity of the demand, and tries to rely on it. Without
this assumption, the mechanism adopted by the agent is, in some sense, not con-
sistent with the underlying static optimization problem. Even if in the present
contribution we aimed to provide a modelling approach suitable for any kind of
time-varying demand and we studied the simplest kind of time variability as a
prototypical example of more complex demand patterns, it is possible to model
situations in which the agent is completely aware of the deterministic demand
variations. This means that considering for instance a cyclically recurrent de-
mand with period n, the agent, in order to choose the production level for time
t + 1, is sufficiently rational to use profitability signals from time ¢ + 1 — n,
knowing that the market is characterized by the same demand function at both
times ¢ + 1 and t + 1 — n. The resulting model is more complicated than the
present model from the mathematical point of view. First preliminary simula-
tive results for a model encompassing a period-2 cyclicity show that however
the stylized, qualitative behavior of the present model and of such an improved
model are comparable.

Moreover, it would be interesting to understand how scenarios change when
the (local) maximum point of the profit functions is no more unique. We also aim
to investigate a time multiscale approach like that adopted in [19], to distinguish
between the time levels of the learning processes and of the production decisions.
Finally, generalizations to oligopolistic competitions are possible, also taking
into account different kinds of heuristics.
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Appendix

Proof of Proposition 1. The proof is straightforward. Let us consider function
G :R x [0,h) — R, defined by

G(g,¢) = mp(q) + ha(e).

Since G(¢*,0) = 0 and 9;G(¢,0) = 7 (¢) # 0, thanks to the implicit function
theorem, equation G(g,e) = 0 defines a function ¢;(¢) on a suitable neigh-
borhood [0,£1) of ¢ = 0. Thanks to the regularity assumptions on 7((q) and
hi, we have that q;(g) is differentiable and ¢1(0) = ¢*. Moreover, we have
q1(e) = —hi(e)/m{(q1(e)), so, since h} > 0 and 7y < 0 we have ¢{(¢) > 0.
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Proceeding as before on function G(gq,¢) = 7w((q) + ha(e), we find a differen-
tiable function go(g) implicitly defined on a suitable neighborhood [0,£2) of

e = 0, satisfying ¢2(0) = ¢* and, since ¢4(e) = —h4(e)/m((g2(¢)), recalling
that hy < 0, for which we have ¢4 < 0. Defining ¢} as the restrictions of ¢; on
[0,epr) = min{&y, &2} concludes the proof. O

Proof of Proposition 2. To study period-2 cycles of the non-autonomous model
(5) we study steady states of the autonomous System (6). To this end, we
consider map G : R x [0,h) — R, defined by

G(q2,¢) = mp(q2) + mo(g2 + Y(mp(g2) + hi(e))) + hi(e) + ha(e),

which, thanks to the regularity assumptions on functions 7, and h;, is contin-
uously differentiable. Recalling (4a), we have G(¢*,0) = 0, while from (4b)
and provided that v # —2/7(j(¢*) we have 9,,G(q*,0) = 7§ (¢*) + 7( (¢*)(1 +
vy (¢*)) # 0, so, from the implicit function theorem, we have that G(gz2,£) =0
defines a continuously differentiable function ¢ (g) for any v € I' = (0,1] \
{—2/7((¢*)}. Foreachy € I, let I, = [0,£(7y)) be the largest possible open inter-
val provided, for each v # —2/7(/(¢*), by the implicit function theorem. Let us
introduce function ¢} : I, — R defined by ¢/ (¢) = 43 (¢) +v(7( (43 (€)) + h1(e)).

Indeed, for each v # —2/7((g*), both functions ¢/ (¢) are continuous and
differentiable with respect to . Moreover we have that (4] (€), 45 (¢)) is a steady
state of (6). In fact, putting ¢J (¢) in the right hand side of each equation of (6),
we indeed obtain ¢; (¢) in the first equation, and since the second equation can
be rewritten as g2 141 = g2t + YG(q2.1,€) and from the definition of ] (¢), from
the second equation we get ¢, (¢). This means that {¢] (¢),qq (¢)} is a 2-cycle for
(5). Thanks to the continuity of both functions §; (¢) we obtain point (2), and
this concludes the proof. O

Proof of Proposition 3. Firstly we remark that, for each perturbation size for
which ¢} (¢) are defined, the existence and uniqueness of *(¢) is a straightfor-
ward consequence of intermediate values theorem. As in the proof of Proposi-
tion 2, we study the steady states of System (6). To this end we consider map
G:RxRT - R

Gla,7) = mh(g2) + b (g2 + 7(mh(a2) + 11 () + B (&) + hae),

which, thanks to the regularity assumptions on 7, and h;, is differentiable. By
the definition of §*(¢), we have G(q*(¢),0) = 2n((g"(¢)) + h1(e) + ha(e) = 0.
Moreover, since 0q, G(* (€),0) = 27((¢*(¢)) # 0, thanks to the implicit function
theorem we have that, for each ¢ € (0,ea), equation G(g2,v) = 0 defines a
continuously differentiable function ¢5(y). Then, for each € € (0,e57), we can
consider the largest interval I. = [0,7(¢)) provided by the implicit function
theorem and we can introduce function ¢ : I. — R defined by ¢5(v) = ¢5(y) +

V(@ () + ).
_ Then, functions ¢j are simply defined as the restrictions of ¢; on I. =
I. N (0,1]. Indeed, both functions ¢ are differentiable and, proceeding as in
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Proposition 2, {4 (v),d5(7)} is a period-2 cycle for model (5). Thanks to the
continuity of both functions ¢ (v), from the previous considerations we imme-
diately have point (2).

By means of implicit function theorem, we also have

9G(45(7),7)

dgs(v) _ _ 9y
dy —  9GEEY)
g2

i (d5(7) + (mh(@5(1) + ma(e))) - (mh(a5(1) + ha(e))

m(@5(1) + 5 (50n) + v (mh (@) + () - (1 + 7 (@5 ()
(14)

and . . .
dgi(v) _ das(v) dg3(v)
dy dy dy
We start focusing on lim,_,o+ d§5()/dy. From the definition of ¢5(vy) and
its regularity we have

/

+70(d5(7)) + ha(e) +vmg (d3(7))

(15)

i, 7h(35() = (" () = ~ 22D

: (16)

where in the last equality we used the fact that g(¢) is a zero of 7’(¢). Using
(16), we have

tim it (65012 @500+ 9D ) (mh ) @) = M e e

for the numerator of (14) and

lim_7f/(5(7)) + it (@5(7) + 7w @5(1) +€)) - (1477 (@5(+)) ) = 27 (a" (€))

~y—0+t
for the denominator of (14) which proves

. dgs(v) _ ha(e) = ha(e)
Jim =2 = 1 <0. (17)

As a consequence, we have a neighborhood of v = 0 on which dg5(v)/dy
is strictly negative. Moreover, the implicit function theorem guarantees that
0G /0g2 has constant sign on I..

Similarly, proceeding as above, we have

tim B0 (w50)) + (@) + om0 B - O 2R

which concludes the proof of point (3) and guarantees that we have a neighbor-
hood of v = 0 on which dqj /d is strictly positive.
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Combining the previous conclusions about the signs of dg5(y)/dy and dg5 () /d~,

we have a neighborhood of v = 0 on which ¢5(y) > ¢*(¢) > ¢5(v). We can
rewrite (14) as

dis(y) a5 () - (L5E) (18)
i 6 (d5(7)) + 76 (@5 () - (1 + g (@5 ()

in which we used, both at the numerator and at the denominator, the steady
state identity ¢5(v) = ¢5(7) + 7(7T6((j§ (7)) + M (5)) coming from the first equa-

tion of (6). Using (18) in (15), after some algebraic manipulations we obtain

dii() _ (B8O (g5 () o
B @) + @) - (1+amas0)))

We notice that the denominator of both derivatives is 9G/9¢g2, which we al-
ready showed that is strictly negative on I.. Numerators of dg5(vy)/dvy and
dg5 (y)/dy must be respectively strictly negative and strictly positive. Other-
wise, if for instance we had dg5(y)/dy = 0 at some ~, in (18) we would neces-
sarily need ¢5(v) — ¢5(v) = 0, since 7] < 0. Let 7, be the smallest value at
which ¢5(y) — @5(7) vanishes. Since ¢j(7) is increasing and §5(7y) is decreas-
ing in a neighborhood of v = 0, to have ¢5(7.) — ¢5(7a) = 0 we necessarily
need, at some v < 7,, that ¢5(v) is decreasing and ¢5(v) is increasing, which
requires dg5(y)/dy = 0 at some v < 7,. This is a contradiction and concludes
the proof. O

Proof of Proposition 4. To prove the stability of the period-2 cycle of the non-
autonomous model (5) we prove the stability of the steady state (g1, d2) for the
autonomous system (6), so we consider the Jacobian matrix J(q1, ¢2) of System
(6), evaluated at the steady state. Since the right hand sides of (6) only depends
on go, its eigenvalues are 0 and A = ja2(G1, g2). A straightforward computation
shows that the derivative of the right hand side of the second equation of (6)
with respect to ¢o is

Ly (a2) + vt (a2 + (7 (@) + () - (1+2(rb(@2))).

Noticing that gz +y(7'(§2) + h1(€)) = ¢1 and recalling that a steady state of (6)
is locally asymptotically stable provided that |A| < 1, we easily obtain (11). O

Proof of Corollary 1. To show the possible emergence of the different scenarios,
we consider marginal profit functions which are convex for ¢ < gp and concave
for ¢ > qr. Moreover, we assume that ¢* < gp, so that 7}, 75 and 7" are convex
at the equilibrium of the unperturbed problem. From point (4) of Proposition
3 we have that as v varies, ¢y is decreasing and then 1 4 y7”(g2) is decreasing,
too, while §; is increasing. We notice that 7”(¢;) and 1 + y7”(¢1) may be not
monotonic with respect to . The first two scenarios obviously occur when, for
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instance |1++7"(g;)| < 1 for any v (unconditionally stable) or when 147" (42) <
—1but 14+~7"(G1) > 0 for any ~ (destabilizing scenario). To prove the possible
emergence of scenario (1c), in what follows we make reference to an illustrative
situation reported in Figure 11. Marginal profit functions are illustrated in
Figure 11 (A), in which the images of 7'(g1) and 7'(d2) as 7 increases are
respectively represented in red and blue colors.

Recalling point (4) of Proposition 3, ¢2 is decreasing (blue line, Figure 11
(B)), so 7 (=) is negative and decreasing, too (blue line, Figure 11 (C)). This
means that (1 4+ 7 (G2)) is positive for suitably small values of v and may
become negative as v increases (blue line, Figure 11 (D)). Conversely, ¢; is
increasing (red line, Figure 11 (B)), so, since lim,_,o+ 74 (¢1(v)) > 0 71(q1) is
negative and increasing at least for sufficiently small values of y (red line, Figure
11 (C)). If, for some vp < 1, we have §1 = gp, then n(j(¢1) is decreasing for
vr < v <1 (Figure 11 (D)). If for example we have that 1+ 7 (¢1) is positive
for v € (0,vp] and 1 + yp7( (¢2) < —1, from the intermediate values Theorem
and the previous monotonicity considerations, we have a unique ~,q € (0,7vr]
at which (1 4+ y7(¢2)) - (1 + v7((¢1)) = —1 and the 2-cycle becomes unstable
through a period-doubling bifurcation (leftmost dotted green line, Figure 11
(D)). For v € (vp,1], we have that 1 + y7(j(¢1) is decreasing and if 7((G;)

is negative for v = 1, proceeding as before we have a unique ~,, at which
(1 + y7{(G2)) - (1 + y7{(g1)) = —1 and a period-halving bifurcation occurs
(rightmost dotted green line, Figure 11 (D)), so that in a right neighborhood of
~Ypn the 2-cycle is again locally asymptotically stable. O
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Figure 10: Plot of the kurtosis (A,B), skewness (C,D) and volatility (E,F) for the distributions
of prices. Left column: figures are obtained on varying the agent’s reactivity v and for different
values of the standard deviation o of the stochastic shock. Horizontal solid lines represent the
region inside which the period-2 cycle becomes unstable. Dashed lines represent the region
inside which complex chaotic dynamics arise. Right column: plots corresponding to o = 0.25.
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Figure 11: (A): marginal profit functions 7(, (dashed line) and 77, n) (respectively upper
and lower solid lines). Red (resp. blue) color is used for the images of the increasing (resp.
decreasing) sequence of values ¢5 () (resp. ¢5()) as v increases. (B): Plots of ¢5 () (red color)
and ¢5(7) (blue color). (C): derivative of the marginal profit function, with superimposed red
and blue points representing the images of the sequence of values 7(/ (G5 (7)) (resp. 7( (45(7)))
as v increases. (D): Red line represents 1+~7( (G5 (7)), blue line line represents 1+~7((G5(7)),
green line represents stability condition (11) as ~ increases.
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