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PRABHAKAR-LIKE FRACTIONAL VISCOELASTICITY

ANDREA GIUSTI' AND IVANO COLOMBARO?

ABSTRACT. The aim of this paper is to present a linear viscoelastic model based on
Prabhakar fractional operators. In particular, we propose a modification of the classical
fractional Maxwell model, in which we replace the Caputo derivative with the Prab-
hakar one. Furthermore, we also discuss how to recover a formal equivalence between
the new model and the known classical models of linear viscoelasticity by means of a
suitable choice of the parameters in the Prabhakar derivative. Moreover, we also under-
line an interesting connection between the theory of Prabhakar fractional integrals and
the recently introduced Caputo-Fabrizio differential operator.

1. INTRODUCTION

Various notions of generalized Mittag-Leffler function with three parameters [16] have
been subject to an extensive interests in the last few years. Among all the possible defi-
nitions, the one proposed by Prabhakar in [27] seems to play a fundamental role in both
mathematics and physics, see e.g. [2; 10; 11]. On this note, it is important to stress that
this function allows for an extention of the theory of fractional integro-differential opera-
tors which is known in the literature as Prabhakar-like fractional calculus. The growing
interest in this approach appears to be particularly justified by the implications that can
be drawn by its application to the theory of probability and of stochastic processes [26].

In this paper, after a brief review of the main results concerning both Mittag-Leffler
functions and Prabhakar calculus, we present an example of linear viscoelastic system
based on the Prabhakar fractional derivative. Besides, we also present a connection be-
tween a recently developed differential operator, introduced by M. Caputo and M. Fabrizio
in [3], and the theory of Prabhakar fractional integrals.

1.1. Mittag-Leffler function and its generalizations. As widely discussed in the
literature (see e.g. [16; 19; 21; 25]) the Mittag-Leffler function can be thought of as a special
function that generalizes the exponential function. Indeed, this extension is obtained by
means of a slight modification of the power series expansion for the exponential, precisely
o0 Sk
1.1 E = _, ,aeC R >0.

(1.1) A= X ey 2GRl
This function was first proposed by M. G. Mittag-Leffler in 1903 (see [25]).

A first generalization of the function (1.1) was proposed by A. Wiman in 1905 [28] as a
two parameters function given by

o k
(1.2) E.p5(z) = 27, z,a, € C, Re(ar) > 0.
o kz_lol“(alwrﬁ)
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It is also important to remark that both these functions are known to be entire functions
of order p = 1/ and type o = 1.

The important property of the functions (1.1) and (1.2) is that they are intrinsically
intertwined with the theory of differential equations of fractional order. Indeed, it is very
well known that these functions arise naturally in the solutions of this kind of differential
equations, for further details see e.g. [16; 19; 21; 22].

Another main feature of the Mittag-Leffler functions with one and two parameters is
that they reproduce both a purely exponential and purely power-law asymptotic behav-
iors. Therefore, this property makes them a fundamental tool for the study of fractional
relaxation processes.

Again, by means of the series representation, a further generalization of (1.1) and (1.2)
was proposed by Prabhakar in 1971 [27]

(1.3) OB g .
' BT T ak+ ) B
o = Tlak+p) k!
where z € C, «, 5,7 € C, Re(a) > 0, and where (7) is the Pochhammer (rising factorial)
symbol, that can also be rewritten as (v)r = I'(y + k)/T'(7).
The latter is known to be an entire function of order p = 1/Re() and type o = 1.
Moreover, it is also trivial to see that

Ea(2) = Bay(2), Eap(2) = Eap(2), exp(z) = Bfy(2).

It is also important to recall a peculiar Laplace transform of (1.3) as it will turn out to
be quite useful in the following. Specifically, it was shown in [20] that

(1.4) L {tﬁfl E;’YB((,U ta)} —sh (1-ws )7,

where t € R, o, 8,v,w € C and Re(a) > 0.
For further details on generalized Mittag-Lefller type functions we invite the interested
reader to refer to e.g. [16; 19; 20; 23; 26].

1.2. Prabhakar Fractional Operators. As argued by various authors (see e.g. [10; 19;
20; 23; 26]), the generalized Mittag-Leffler with three parameters allows for a generaliza-
tion of the Riemann-Liouville-Caputo fractional calculus. Indeed, first let us define the
Prabhakar kernel

(1.5) el g(w; t) == t77 E] jwt®),

where t € R, «, 8,7,w € C and Re(a) > 0.
Now, let 0 < @ <t < b < +00, then given a function f € L' (a, b) one can define the
Prabhakar integral as

(1.6) Bl P = (fx el ylwi) ()
- J(t—r)ﬁ_lEgﬁ [w (£ — )] f(r)dr.

a
Remark. Tt is easy to see that (1.6) reduces to the Riemann-Liouville fractional integral
either as v goes to zero or when v tends to one and w vanishes. Indeed, eg 5(w;t) =
el 5(0; t) = t5~1/T(3), which is exactly the Riemann-Liouville integral kernel.

Now, in strict analogy with the classical analysis of fractional operators, we can intro-
duce the (regularized) Prabhakar derivative in a straightforward manner.
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Let m = [5] and f € AC™ (a, b), then the regularized Prabhakar derivative [7]
reads
(17) D) 5 () =By, 1)
where f(™(t) represents the mth derivative of f(t) and AC™ (a, b) stands for the set of

real-valued functions f(¢) whose derivatives are continuous up to order m — 1 on (a, b)
and such that f(™=1(t) is an absolutely continuous function.

Remark. Here we focus our attention only on the regularized version of the Prabhakar
derivative due to its intrinsic relevance in the construction of well-posed and physically
reasonable initial value problem, as widely discussed by Garra et al in [10] and again
stressed by Polito and Tomovski in [26].

1.3. On the Caputo-Fabrizio operator. In a recent paper [3], Caputo and Fabrizio
have proposed a new definition for a differential operator with a non-singular kernel.
Specifically, this operator is defined as

18) 050 = 11 (e[ 6= Fimyar,

Cl-al,
where f € L' (a, b), f'(t) represents the first derivative of f(t), M(«a) is a normalization
constant such that M(0) = M(1)=1and 0 < a < 1.

Now, it is easy to see that (1.8) can be related to the theory of Prabhakar integrals in
a quite elegant way. Indeed, recalling that

(1.9) Ei,(x) = exp(z),
hence

t
(1.10) Blio ) = [ explo(- )] f(r)ar.

a
Therefore,

11—«
1 CF

(111) aEl,l,W(Oé) f/(t) = M(OZ) aDaf(t) >
where w(a) = —a/(1 — «). Thus, this allows us to present a side view on the analysis of

the Caputo-Fabrizio operator in terms of the Prabhakar-type fractional operators.

1.4. On the physical meaning of the Prabhakar-type fractional operators. It is
important to stress that Prabhakar’s operators are not just some involved mathematical
objects, but rather they naturally emerge from physisically relevant models for dielectric
relaxation phenomena, as stressed in [12], and remarked in [11].

In particular, it was shown by E. Capelas de Oliveira, et al in [2] that the response
function of the Havriliak-Negami model can be written as a specific realization of the
Prabhakar kernel (1.5), i.e. f = ay, w = —A, with A > 0, and 0 < «, 7 < 1. Furthermore,
it has also been shown by Garrappa [11] that the input-output equation of the Havriliak-
Negami model, in the time domain, can be easily cast in terms of an integral equation
involving the Prabhakar fractional integral.
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2. FRACTIONAL MAXWELL MODEL WITH PRABHAKAR DERIVATIVES

Linear viscoelasticity appears to be a preferential playground for applications of frac-
tional calculus to realistic physical systems, see e.g. [5; 6; 9; 13; 14; 15; 21; 22; 24].

The aim of this paper is to present an explicit realization of a simple viscoelastic model
based on the Prabhakar calculus. The simplest way to proceed towards our goal is to
consider the constitutive equation of the classical fractional Maxwell model in which we
replace the Caputo derivative (or Riemann-Liouville, considering that there are no appre-
ciable differences between these two formulations of the problem, as discussed in [1]) with
the (regularized) Prabhakar one.

That said, let us consider two causal functions o, €, respectively representing the uniaxial
stress and strain for a certain system, such that o,e € AC! (0, +o), with «, 8,7, w € R,
a >0 and 0 < 8 < 1. Furthermore, let us consider a stress-strain relation given by

(2.1) o(t) + aCDZéﬁ’w o(t) = bCDz’ﬁ,w e(t)
where a,b € R, and where CDZC’@W = CO+D1”3M-

It is important to point out that here it is not mandatory to require a,b > 0 in order
to recover physically meaningful models [18]. The reason for this broader freedom is due
to the large number of parameters involved in the definition of the Prabhakar derivative.
The general analysis of physically acceptable Prabhakar-like viscoelastic models is a very
interesting problem per se, however a complete characterization of the latter is beyond the
scope of this paper and it will therefore be tackled in a future development of the theory.

Now, recalling that the Laplace transform of the regularized Prabhakar derivative is
given by (see [10]),

~

(2:2) £{DY ;. fO): s} =" (1—ws™)" Jis) =" (1—ws™)" f(0+),

~

where f(s) = L{f(t); s}, it is easy to see that (2.1) turns into
(2.3) {1 +as’ (1- ws_o‘)y} 5(s) =bs" (1-ws™)7 &(s),

in the Laplace domain, upon assuming a 0(0+) = be(0+). Notice that this last condition
on the initial data represents a quite reasonable constraint, as explained in [13; 21; 24].

From the general theory of linear viscoelasticity [21] one has that a given linear model
can be expressed in terms of two equivalent forms, namely the creep and the relaxation
representations. To each of these representations we associate a material function: G(t)
and J(t), respectively called relaxation modulus and creep compliance. It is also important
to stress that each of these two functions contains all the physical information about
the viscoelastic model. Concretely, in the Laplace domain, a given (linear) constitutive
equation takes the following two equivalent forms [17; 21]

(2.4) 5(s) =sG(s)e(s),  sJ(s)F(s) =2(s),

if we assume some suitable conditions on the initial data (see [13; 17; 21; 24] for further
details).

According to (2.4), we can now easily deduce the material functions, in the Laplace
domain, just by inspection of (2.3), i.e.

a 1 1
B b+bS’B (1—w3_a>’y 86(5)7

(2.5) sJ(s)
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and therefore

(26) I(s) = % T peptl (1 1— ws—)7’
-1
(2.7) é(s)—abs{uasﬁ (1_1“_@)7} .

Then, taking profit of (1.4) we can immediately invert J(s) back to the time domain,
and we get
a 18

(2.8) J() =5+ 5 B g,

Let us now focus on G(t), despite the easy procedure that has lead to (2.8), computing
the explicit form of the relaxation modulus is rather less trivial. Luckily, we can take
profit of some results and procedures discussed in [10].

First, from (2.7) it is easy to see that if

1
asP (1—ws)7

(2.9) <1,

we can then expand CNT‘(S) as an absolutely convergent power series, i.e.

(2.10) G(s) asZ[ PPN p— )an

0

b _
2.11 = — —q)~ " ¢—(Bntl) 1— —a\ T
( ) a ZO( (l) S ( w S )
Therefore, inverting the Laplace transform, taking advantage of (1.4), yields
b o0
(2.12) G(t) = " M(—a) e B (@)
n=0

where the integration term by term is allowed by the fact that the generalized Mittag-
Leffler function is an absolutely convergent series, provided that we chose a sufficiently
large abscissa for the Bromwich path (see [10] for further details on this procedure).
Now we just need to prove the convergence of the series in (2.12). To do that it is
sufficient to notice that (2.12) consists of repeated series, indeed
b - —n 40n (Wta)k
(2.13) G(t) = anzo t Z Fak+5n+1) k!

Then, given that the generalized Mlttag—Lefﬂer function is an entire function, in order to
prove the absolute convergence of the series labelled by n, one just have to show that the
series

(2.14) i (—a)™¢Pm (yn)k (wit)*
| =0 T(ak+pn+1) kI
is absolutely convergent for each (fixed) k€ N U {0}.
If we define
(2_15) an(k;t) _ (—a)_n tBn ('yn)k (wta)k _ (_a)—n F(vn + /{:) (wto‘)k tﬁn7

MNak+pn+1) k! F(yn)T(ak +pn+1) k!



6 ANDREA GIUSTI! AND IVANO COLOMBARO?

and recalling the asymptotic behaviour of the rate of gamma functions (see [8; 10])

I'(z+a) aeb

I'(z+0) e
for |z| — o0, |Arg(2)| < 7™ —€, |[Arg(z +a)| < ™ —¢, 0 < e <, it is easy to see that
ant1(kst)| 1
2.1 —— — t keN
(2.16) an(hit) ~ganl n— o, Vt>0,VkeNu{0},
hence
nt1(k;t
(2.17) lim | 2t1(D) -0, ¥t>0,YkeNu{0},
n—w | an(k;t)

that concludes our proof of the absolute convergence of (2.12).

1. Connection with the classical models of linear viscoelasticity. Because of
the large number of parameters that appear in (2.1), it is interesting to investigate if and
under which conditions it is possible to recover some known results of linear viscoelasticity.

A simple way to do that is by comparing the Laplace transform of one of the material
functions for the Maxwell-Prabhakar model with the corresponding material function of
the classical viscoelastic models known in the literature. In this paper we will focus our
attention on the creep compliance J (s), that for the Maxwell-Prabhakar model reads

~ a 1
2.18 J = —
(2.18) s J(s) b bsp (1—ws )7
a 1
= Z+
b bsPovwy (s%/w—1)7

Let us begin with the fractional Maxwell model of order v (see [4; 24]), defined in
terms of a stress-strain relation given by

(2.19) o(t) + A°DY o(t) = BCDY £(t),

with DY representing the Caputo derivative, and corresponding to a constitutive creep
compliance, in the Laplace domain, given by

~ A 1

2.20 J =— |1
(2.20) STl = 3 |1+ |
with A/B > 0, 7¥ = Aand 0 < v < 1. Now, comparing Jy(s) with (2.18) one can
infer that there are two configurations of the parameters that allow to recover the classical
fractional Maxwell model from the Maxwell-Prabhakar one, precisely

(i)y=0,a=A,b=B,F=rv,wek;

(iil) yeR,a=A,b=B,=v,w=0.

Another interesting case is the so called fractional Voigt model of order v (see [4; 24]),

which is defined by its constitutive equation, i.e.

(2.21) o(t) = Me(t) + BEDV e(t),
with a creep compliance, in the Laplace domain, given by

(2.22) s Jy(s) = M[1+1(TS)V]

where 0 < v < 1, M,B > 0 and 77 = B/M (see [24]). As above, comparing the latter
with (2.18) one can easily infer that the Maxwell-Prabhakar model (2.1) reduces to a
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model which is formally equivalent to the fractional Voigt model if y =1, a=0,b= —B,
a=0F=v,w=—M/B.

Finally, as a last example, let us consider the fractional Zener model of order 0 < v < 1,
i.e.

(2.23) o(t) + A°DV o(t) = Me(t) + BCDY (1),

and corresponding to a creep compliance, in the Laplace domain, given by
~ 1 1+ As”

2.24 J, =—

(224) $J20) = S T3 B

with M, A, B > 0.
Again, in order to recover from (2.1) a model which is formally equivalent to the frac-
tional Zener model one just have to set the parameters in (2.18) as follows
(i)y=1,a=AB/(B—AM),b=B?/(B—AM),a =3 =v,w=—M/B;
(i) y=1,a=B/(AM —B),b=Ma,a=v,=0,w=—-M/B.

3. CONCLUSIONS

In this paper, after an introduction about the Mittag-Leffler function and its general-
izations, we provided a brief overview on Prabhakar fractional operators, that allows for
a generalization of the Riemann-Liouville-Caputo fractional calculus based on the three-
parameters Mittag-Leffler function.

Thus, we developed an example of a Prabhakar-like fractional viscoelasticity, discussing
the fractional Maxwell model with Prabhakar derivatives. We then analysed the con-
nection between the classical fractional models (Maxwell, Voigt and Zener) and the new
Prabhakar-Maxwell model.

Furthermore, in the introductory section we also pointed out an interesting formulation
of the so called Caputo-Fabrizio derivative in terms of a particular Prabhakar fractional
integral.
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