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Abstract

This paper explores the internal dynamical mechanisms of epileptic seizures through quantitative 

modeling based on full brain electroencephalogram (EEG) signals. Our goal is to provide seizure 

prediction and facilitate treatment for epileptic patients. Motivated by an earlier mathematical 

model with incorporated synaptic plasticity, we studied the nonlinear dynamics of inherited 

seizures through a differential equation model. First, driven by a set of clinical inherited 

electroencephalogram data recorded from a patient with diagnosed Glucose Transporter 

Deficiency, we developed a dynamic seizure model on a system of ordinary differential equations. 

The model was reduced in complexity after considering and removing redundancy of each EEG 

channel. Then we verified that the proposed model produces qualitatively relevant behavior which 

matches the basic experimental observations of inherited seizure, including synchronization index 

and frequency. Meanwhile, the rationality of the connectivity structure hypothesis in the modeling 

process was verified. Further, through varying the threshold condition and excitation strength of 

synaptic plasticity, we elucidated the effect of synaptic plasticity to our seizure model. Results 

suggest that synaptic plasticity has great effect on the duration of seizure activities, which support 

the plausibility of therapeutic interventions for seizure control.
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1. Introduction

EEG is considered as the gold standard for inherited seizure detection among other seizure 

detection modalities [1, 2, 3], since it is non-invasive and can repeatedly record the brain 
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activities of patients for a long duration for analyzing patients’ conditions and monitoring 

treatments [4, 5, 6], including evaluating the most suitable anti-epileptic medicine, 

determining the seizure focus, finding out the causes for impaired cognitive function. 

Clinical diagnosis and treatment of patients have driven recent research on epileptic seizure 

prediction based on EEG data [7], including both physiological experiments [8, 9, 10, 11] 

and model analysis [12, 13, 14].

Epileptic seizure prediction remains a challenging problem. Considerable efforts have been 

made to predict seizures focused on several types of features that discriminate between 

interictal and preictal states [15]. A number of statistical features of seizures and non-

seizures can be extracted based on continuously recorded EEG data which can improve 

prediction accuracy. These include univariate features, such as the power spectral density or 

autoregressive modeling coefficients of single EEG channels, as well as bivariate features 

that measure pairwise correlations between EEG channels, such as maximum cross 

correlation or phase synchrony [16, 17]. Signal analysis techniques may transform ictal EEG 

signals in a way that inherent hidden structures are revealed. Due to the nonstationary and 

nonlinear nature of EEG signals, time domain analysis, frequency domain analysis, time-

frequency domain analysis, wavelet transform analysis and other nonlinear methods have 

been used to distinguish EEG signals in normal period and during seizures [18, 19, 20]. 

These models usually reflect statistical features of seizures.

Alternatively, dynamical seizure model established by electrical phenomenon can also 

contribute to seizure prediction. Through dynamics modeling analysis, we can obtain insight 

about the mechanics and symptoms of disease, and then to improve the prediction. Deriving 

a simple and functional dynamic model that represents the onset of epileptic seizures is 

attractive [21, 22, 23]. Taylor et al. demonstrated epileptic spike-wave discharges in an 

extended version of Amari’s neural field model, and used a computational model of epilepsy 

spike-wave dynamics to evaluate the effectiveness of a pseudospectral method to simulate 

absence seizures [24, 25]. The model leads to a prototypic equation of clinical epileptic 

dynamics in time and space. By using a biophysically based model, Chen et al. pointed out 

that the typical absence seizure activities can be controlled and modulated by direct 

GABAergic projections from substantia nigra pars reticulata (SNr) to either either the 

thalamic reticular nucleus (TRN) or the specific relay nuclei (SRN) of thalamus [26]. A 

number of studies have shown that synaptic plasticity contributes to the pathophysiology of 

epilepsy and other neurological and psychiatric disorders [27, 28]. Alamir et. al proposed a 

dynamical seizure model which demonstrated that epileptic activity is induced by a high 

level of synchrony that is due to a disturbed balance between two opposing mechanisms: A 

basic functional desynchronization mechanism and a synaptic based synchronization 

mechanism [29].

The mapping of human brain function in real time has suffered from a lack of innovation in 

the past decade. Even though brain-imaging tools, e.g. functional magnetic resonance 

imaging (fMRI), positron emission computed tomography (PET), magnetic 

encephalography (MEG) are widely used, they are limited by low spatial and temporal 

resolution, cost, mobility and suitability for long-term monitoring. For example, fMRI has 

the advantage of providing spatially-resolved data, but suffers from an ill-posed temporal 
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inverse problem, i.e., a map with regional activations does not contain information about 

when and in which order these activations have occurred [30]. In contrast, EEG signals have 

been successfully used to obtain useful diagnostic information in clinical contexts. Further, 

they present the advantage to be highly portable, inexpensive, and can be acquired at the 

bedside or in real-life environments with a high temporal resolution. EEG offers the 

possibility of measuring the electrical activity of neuronal cell assemblies on the sub 

millisecond time scale [31, 32, 33].

While there is successful seizure research in animal model and seizure patients, seizure 

modeling based on the dynamic features of EEG information is not common. Motivated by 

previous work [29], we will investigate the dynamics of inherited seizure based on clinical 

EEG of one patient recordings as a case study. We will follow later with additional data to 

further modify and validate the modeling strategy. We will describe the methodology in 

section 2, including clinical neonatal EEG signals, dynamical seizure model and 

synchronization measurement. Then in section 3, simulation results will be provided under 

different situations to validate our model. Then, section 4 compares the effects of synaptic 

plasticity on the dynamics of the seizure network. Conclusions and discussion are in section 

5.

2. Methods

EEG records a weighted average of local field potential at various brain areas by a group of 

electrodes placed on the scalp. EEG data can be used to diagnose neural diseases, such as 

epilepsy, schizophrenia, manic depression and mental disorders. Particularly, neonatal 

seizures result from synchronous discharges from groups of neurons and manifest as periods 

of heightened periodicity in the EEG lasting for more than 10s [34]. Thus EEG has been 

used as a detection modality for seizure patients.

2.1. Patient data from EEG recording

The sample date is recorded from a patient (age, gender) who was diagnosed with Glucose 

Transporter Type I Deficiency (G1D). G1D is a rare genetic defect that affects infants under 

the age of 3 years. When properly diagnosed, dietary treatment with high fat content can 

relieve symptoms. The EEG imaging of G1D patients provides helpful insight of the 

dynamic mechanism of seizure formation in G1D patients. As established in Pascual and 

Ronen [35]and Pascual [36], G1D patients had a well-defined epileptic episodes. In a 

recording of 2000 seconds, 103 nearly identical seizure episodes are captured. In this paper, 

the EEG data is from one patient as mentioned above.

2.2. Neonatal seizure EEG data

The EEG data acquired for our study is through a standard 32-channel EEG recordings 

(brain Tree), and the duration of each data acquisition is about 1010s. One channel is used as 

ground, and 31 channels are used for analysis. Figure 1(a), 1(b) depict two seizure periods of 

EEG data from the four channels(Fp1, Fp2, F3, F4), in which the high amplitude period 

representing denotes the seizure onset lasts 5s–10s, and the interest seizure time represented 

by the lower amplitude is also in this range.
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It is known that there are usually artifacts in the EEG data recordings, including power-line 

interference, motion artifact, noise and other environmental factors. The data was processed 

through pre-processing with removal of artifacts and de-noise. Desired numerical analysis 

should be conducted after data becomes cleaned up. Figure 2(a), 2(b) present the de-noised 

EEG data of 31 channels which still display some harshness, sharpness and fluctuation. 

Then for further data smoothing, we use a second order of Fourier function fitting. EEG 

signals become clearer, and the effect after treatment can be observed in Figure 2(c),2(d). 

After the Fourier curve fitting, needed feature such as peaks and valleys persisted, and also 

the correlation structure of multi-channels EEG recordings will be preserved, which is a 

focus of our study.

The correlation matrix of all possible pairs of EEG channels of has been proposed to 

quantify the degree of underlying neuronal connectivity [37]. We follow the Pearson 

product-moment correlation coefficient in the term:

(1)

where Xi, Yi are EEG time sequences at two different electrode channels X and Y. In 

generally, when |r| is greater than 0.8, it is considered that there is a strong linear correlation 

between the two channels. Therefore, in our simulations, if the correlation coefficient of two 

EEG signals is greater than 0.8, then they will be considered as strongly coupled with each 

other and will be in one group. For example, the connection relationship of EEG data for 

period of 400s–440s is shown in Figure 3. All 31 channels can be divided into four coupled 

groups or clusters: ➀ A1 = [1, 5, 7, 9, 11, 13, 15, 21, 25, 27, 29, 31]; ➁ A2 = [ 2, 3, 4, 7]; 

➂ A3 = [6, 12, 14, 16, 26, 28, 30]; ➃ A4 = [8, 10, 18, 19, 20, 22, 23, 24].

2.3. Dynamic modeling

We now consider a model of a brain region constituted of N identical interconnected 

subregions of neurons each of which is represented by a Rossler nonlinear oscillator as 

proposed in Mazel et al [29]. So for EEG data of series 400s–440s, we can establish the 

following system of ordinary differential equations for seizure phase:

(2)

(3)
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(4)

(5)

(6)

where xi(t) represents the contribution of channel i (i=1,…M) to the EEG recording, leading 

to

(7)

is the average model EEG for M channels. Ak is the cluster or subregion of 31 channels for 

40s, while k = 1, …,N. In this case M = 31, N = 4 as mentioned above. Variable yi(t) and 

zi(t) represent internal states of the oscillator that are necessary to produce the oscillations 

with a suitable degree of freedom. The coefficient ρi is the relative contribution of channel i 
to the recording sensor. The scalar h denotes the synaptic strength in the region of interest in 

which heq represents a dynamic steady state, and hth is the synaptic threshold. The product 

term εji(h)[xj(t)−xi(t)] represents the coupling effect of channel j on channel i, and the 

coupling factor εji is described by:

(8)

where  and  are some constant values. Under normal conditions, desynchronization is 

assumed to be enhanced through the terms:

(9)

The signal xd may be generated by a dedicated set of desynchronization neurons. The use of 

such a signal in synchronization or desynchronization control has been experimentally tested 

[38] and theoretically suggested [39, 40]. This desynchronization mechanism competes with 

the synchronization that is naturally induced by the connections. The outcome of this 

competition is highly dependent on the dynamics of the synaptic strength. Other constant 

parameters of our model are shown in Table 1.
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2.4. Synaptic plasticity

Synaptic plasticity mechanisms involve both molecular and structural modifications that 

affect synaptic functions, either enhancing or depressing neuronal transmission. In Equation 

(4),(5), h denotes synaptic plasticity, heq is the steady state attractors and hth is the synaptic 

threshold. Figure 4(a)–4(f) give the synaptic plasticity under different strength uexc and 

duration of excitation signals T. After comparison the evolution of synaptic strength, these 

two values are fixed as uexc = 8, T = 90 as the optimal values since hth = 0.5 is an unstable 

equilibrium and is crucial in the definition of the transition and the establishment of the 

short-term plasticity. In this case synaptic plasticity can be reached in accordance with 

experimental observations. Later in the last section, we will test the model under different 

situations of synaptic plasticity.

2.5. Synchronization measurement

Neuronal activity at seizure presents a transient behavior of excessive or hypersynchronized 

neuronal pattern in all brain. The beginning of a seizure is expressed by excessive 

synchronized discharges of neurons within a cluster, and as time evolves, the adjacent and 

even remote clusters get involved. The dynamics of inherited seizures can be well 

charactered by synchronization measurement of EEG signals.

To measure the degree of synchronization in seizure activities, we use equal-time correlation 

matrix which is computed over moving time windows to analyze non-stationary 

measurement channels. Specifically, suppose Xi(tn) is the time series of ith channels, tn = nτ 
is the detection time, then matrix C of a time window whose center time is tc, is defined as 

follows:

(10)

(11)

where T(tc) is the set of instant indices that belong to the time window centered at tc, while 

Nm is the number of such time points. X̄
i and σi denote the mean value and the standard 

deviation of the measurements captured in the time window of channel i separately.

Assuming the eigenvalues of matrix C are in ascending order λ1 ≤ λ2 ≤ … ≤ λM, then a 

synchronization indicator can be calculated by:

(12)
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Particularly, if S = 1, then all channels are perfectly synchronized, while S = 0 denotes that 

all M channels are completely de-synchronized. Meanwhile, to verify the matching degree 

of model EEG and clinical EEG, we use another deformation of the variance σ to study. We 

calculate the model EEG and that of the channel FP1 of clinical EEG data for comparison 

since these 31 channels are in high synchronization during seizure. Number all the above 

σ(t) in Eq. (11) captured in each time window in sequence and its maximummax σ(t), then

(13)

for EEG of channel 1 and for model EEG to compare.

3. Numerical simulation

Regardless of seizure period and non-seizure period, the EEG signals of neonatal seizures 

show a train of burst and suppression waves. A valid model should satisfy these characters 

that the high amplitude spike and slow wave of irregular mixed outbreak always alternate 

with nearly flat suppression phase with statistics matching with clinical data. In the 

following, we give two simulation cases to test the validity of our modeling strategy.

3.1. 400s–440s

Firstly, Figure 5(b) is the model data VEEG between 400s and 440s, showing the model EEG 

behaves similar to the clinical EEG which is shown in Figure 5(a) with rescaling. When 

seizures begin, VEEG behaves oscillatory with high frequency and high amplitude. Then it 

follows by a quiscent period where neural activities become comparatively weakened. The 

ratio of resting time and seizure duration is a qualitative property of the model, which can 

reproduce that of clinical data during the resting and onset of seizure. Furthermore, Figure 

5(c),(d) compare the parameter < σ > of both clinical EEG data from channel FP1 and model 

data which match well with each other. Considering the effect of noise in EEG environment, 

the spectrum of the model EEG with SNR = 0.5 (typical in EEG data) and real EEG are 

plotted as Figure 5(e),(f). We suppose the model window time is also 40s to compute the 

spectrum. They both display a dominate frequency around 3Hz, which is consistent with the 

main ISI (interspike interval) of EEG data is 0.4s.

3.2. 760s–800s

In the interest of validating of model, we continue to pre-process the EEG data of 760s–800s 

shown in Figure 1(b) which reflects a later stage of seizure onset. After the same data 

processing, the structure of connected graphs for EEG data in 760s–800s is obtained as 

shown in Figure 6. The matrix Ak of Equation (1) can be read as: ➀ A1 = [1, 2, 3, 4, 11, 12, 

17, 26]; ➁ A2 = [5, 7, 18, 19, 21, 23, 24, 31]; ➂ A3 = [6, 8, 9, 10, 13, 14, 15, 16, 20, 22, 

27, 28, 29, 30]; ➃ A4 = [25]. Notice that Figure 7 presents the comparison of channel group 

for case 400s–440s and case 760s–800s. As time goes on, the group assignment of 

connection strength may undergo changes but adjacent channels are more easily grouped in 

one cluster.

Zhang et al. Page 7

Commun Nonlinear Sci Numer Simul. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Then in our simulation, VEEG and synchronous index S can be also calculated by our 

proposed model as shown in Figure 8(a),(b). We can see the synchronous index 

approximates to 1 during epileptic peaks, that is to say that 31 channels nearly reach 

complete synchrony. During interictal period synchronous index of 31 channels dropped 

suddenly, and the lowest is close to 0.1 which illustrates a high desynchrony. Hence we may 

conclude that the model captures essential physiological features of original data of epileptic 

seizures, reflecting the feasibility of our proposed model.

4. Network connection

Next, to test the relevance of the synaptic connection in our seizure model, we test two 

extreme connection situations for brain regions to understand the range and limitations of 

our model.

4.1. Fully connected structure

In one extreme case, we consider that every two channels are strongly connected (the 

number of connection group N = 1). So the connection matrix is called all-one and the 

simulation results are shown in Figure 9(a),(b). We observe in this case there are some 

intrinsic differences between the real epilepsy data and simulation data. The seizure duration 

is too long and the interest time is too short, resulting in inconsistency with the clinical brain 

activities of epilepsy patients.

4.2. Fully disconnected structure

In another extreme case, we suppose 31 channels are completely uncorrelated (the number 

of connection group N = 31). The connection matrix of brain regions is a null matrix. The 

numerical results of this case are shown in Figure 9(c),(d). Although the time duration of 

seizure and rest states is about the same as that of clinical seizure EEG, but the brain 

activities of interest is very different from the real features of epilepsy patients. The intensity 

is too high or too low to match the clinical observation on patients with epilepsy. During 

resting period, the amplitudes of our model EEG fluctuate too wide or too narrow to agree 

with the clinical EEG signals of typical seizure patients.

Taking the above two results of connectivity structure, we may understand the significance 

of the connection between different brain regions.

5. Synaptic plasticity

There is plenty of experimental evidences demonstrating that synaptic plasticity plays an 

essential role in epileptic seizures. From the modeling of synaptic plasticity, we know both 

hth and Uexc are two key elements. Hence in this section, these parameters relevant to 

synaptic plasticity are analyzed in the epilepsy network from simulated data, using the EEG 

model of 400–440s as an example.

5.1. Synaptic threshold

It was reported that above a threshold a short-term plasticity state was reached [41], thus the 

synaptic threshold hth can affect synaptic plasticity directly. We observed a variety of neuron 
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patterns by changing the synaptic threshold. With increasing synaptic threshold, the seizure 

period will also increase correspondingly seen as Figure 10. In a time window of 2000 

simulation steps, we observe a transition from three short seizures to a continuous seizure 

state. Therefore, synaptic plasticity can strongly regulate the time duration of seizure 

activity. These results provide a positive clue of seizure therapy through hormone to modify 

synapses.

5.2. Excitatory signal

In Figure 5, the excitation signals Uexc is shown to affect synaptic plasticity. High frequency 

excitations lead to an increase in the mean synaptic efficiency. From Figure 11 we observe 

that, when the excitatory signal intensity is very small (Uexc = 2), synchronous oscillation 

occurred consistently. When the excitatory signal increases to Uexc = 4, only a short interest 

can be captured in the 2000 simulation steps following by a long seizure time. When the 

strength increases to Uexc = 6, brain electrical activity in patients with epilepsy tended to be 

in a normal activity level. Therefore, low frequency excitatory signal strength can make the 

synchronous activities excessively, causing over-synchronized discharges.

6. Conclusion

In this study we characterize the dynamic evolution of EEG activity during seizures through 

a modeling study. Our research enriches a simple dynamical model describing the epileptic 

seizure initiation through transition from interictal to ictal state in a brain predisposed to 

epilepsy. By analyzing the correlation connection of neuronal circuits during seizure of 

multi-channels, the subregions of brains in seizure patients are classified. As a result, our 

dynamical model adequately reproduces the brain electrical activities in patients with 

epilepsy, providing an understanding of the epilepsy characteristics from the dynamical 

view. To test how the model depends on connectivity structure we provide the situations of 

both fully-connected and fully non-connected channels. Finally, simulation results show that 

synaptic threshold and the excitatory signals both affect seizure time. For seizure prediction, 

a combination between reducing synaptic strength and enhancing desynchronization can 

probably be expected to achieve better seizure prevention for the short term.
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Figure 1. 
Sample EEG data during seizure periods. (a)40s EEG data of the first four channels for 

400s–440s, left above-Fp1, right above-Fp2, left bellow-F3, right bellow-F4. (b) 40s EEG 

data of the first four channels for 760s-800s, left above-Fp1, right above-Fp2, left bellow-F3, 

right bellow-F4.
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Figure 2. 
Pre-processing if EEG data using de-noise and Fourier filter. (a) Collection of raw EEG data 

of channel 1–16 for 420s–422s. (b) Collection of raw EEG data of channel 17–31 for 420s–

422s. (c) Fourier fitting data of channel 1–16 for 420s–422s. (d) Fourier fitting data of 

channel 17–31 for 420s–422s.
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Figure 3. 
Network structure of 31 channels for EEG data from 400s–440s. The feedforward based 

desynchronization mechanism relies on the different delays affecting the transmission of a 

desynchronization oscillator signal xd.
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Figure 4. 
The time series of synaptic plasticity h(t) under different conditions. The plasticity presents a 

periodic pattern after an initial period in several group of parameters.(a) uexc = 4, T = 90. (b) 

uexc = 6, T = 90. (c) uexc = 8, T = 90. (d) uexc = 10, T = 90. (e) uexc = 8, T = 50. (f) uexc = 8, 

T = 200.
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Figure 5. 
Comparison of clinical EEG data and model EEG data for time period 400–440s. (a) 

Clinical EEG data of channel Fp1 for period 400–440s. (b) Model data VEEG of 400–440s 

with hth = 0.5, uexc = 8, T = 90. (c) Normalized variance < σ > of clinical EEG of channel 

Fp1 for period 400–440s. (d) Normalized variance < σ > of model EEG of 400–440s. (e) 

Spectrum of clinical EEG of the first channel for period 400–440s. (f) Spectrum of model 

EEG of 400–440s with snr = 0.5.
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Figure 6. 
Network structure of 31 channels for 760s–800s.
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Figure 7. 
Relationship of different channels under the computation of correlation efficient. (a) case of 

400s–440s. (b) case of 760s–800s. Channels in the same color in one subplot means they are 

in one connection group.
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Figure 8. 
Model results under hth = 0.5, uexc = 8, T = 90, which match well with the clinical 

phenomenon of seizure. (a) Model EEG VEEG of 760–800s. (b) Synchronous index S of 

model EEG.
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Figure 9. 
Model results VEEG and synchronous index S under two extreme connection structure. uexc 

= 4, T = 90, hth = 0.5. (a) VEEG, N=1, all 31 channels are in one group. (b) S, N=1, all 31 

channels are in one group. (c) VEEG, N=31, 31 channels are independent and are divided 

into 31 groups. (d) S, N=31, 31 channels are independent and are divided into 31 groups.
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Figure 10. 
Model VEEG = VEEG(t) and synchronous index S = S(t) under different synaptic plasticity 

threshold when 0 ≤ t ≤ 2000, uexc = 4, T = 90. (a) VEEG, hth = 0.6. (b) S, hth = 0.6. (c) VEEG, 

hth = 0.7. (d) S, hth = 0.7. (e) VEEG, hth = 0.8. (f) S, hth = 0.8.
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Figure 11. 
VEEG and synchronous index S under different excitation signals, hth = 0.5. (a) VEEG, Uexc = 

2, T = 90. (b) S, Uexc = 2, T = 90. (c) VEEG, Uexc = 4, T = 90. (d) S, Uexc = 4, T = 90. (e) 

VEEG, Uexc = 6, T = 90. (f) S, Uexc = 6, T = 90.
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