
Generative complexity of Gray-Scott model

Andrew Adamatzky
University of the West of England, Bristol, United Kingdom

September 29, 2018

Abstract

In the Gray-Scott reaction-diffusion system one reactant is constantly fed in the system,
another reactant is reproduced by consuming the supplied reactant and also converted to an
inert product. The rate of feeding one reactant in the system and the rate of removing another
reactant from the system determine configurations of concentration profiles: stripes, spots,
waves. We calculate the generative complexity — a morphological complexity of concentration
profiles grown from a point-wise perturbation of the medium — of the Gray-Scott system for
a range of the feeding and removal rates. The morphological complexity is evaluated using
Shannon entropy, Simpson diversity, approximation of Lempel-Ziv complexity, and expressiv-
ity (Shannon entropy divided by space-filling). We analyse behaviour of the systems with
highest values of the generative morphological complexity and show that the Gray-Scott sys-
tems expressing highest levels of the complexity are composed of the wave-fragments (similar to
wave-fragments in sub-excitable media) and travelling localisations (similar to quasi-dissipative
solitons and gliders in Conway’s Game of Life).

1 Introduction

The Gray-Scott model [7, 13, 30] is a system of two reactants U and V : the reactant U is fed into the
system, the reactants V is present in the system initially, one molecule of U reacts with two molecules
of V producing three molecules of V . The model bears a striking similarity to the Lotka-Volterra
model [16], where U is a prey, V is a predator and the Sel’kov model of glycolisis [33], where U is
a substrate, V is a product; analogy with two-variable Oregonator model of Belousov-Zhabotinsky
medium [29, 11], where U is a catalist and V is activator, are less obvious however spatio-temporal
dynamics is often matching. The spatially extended Gray-Scott model with low coefficients of
reactants diffusion shows a rich variety of concentration profile patterns: strips, spots, waves [13, 30].
Concentration patterns which attracted most attention include spots and auto-solitons [35, 25, 4,
8, 26], rings [21], self-replicating patterns [15, 27, 9, 24, 31], stripes [14, 12], spiral waves [6]. The
patterns are governed by a rate of feeding U and a rate of removal of V . Pearson [30] proposed
a phenomenological classification of Gray-Scott model based of configurations of concentration
profiles. The Pearson classification was detailed and extended by Munafo [23, 22] and mapping
between the Pearson-Munafo classes and Wolfram’s classes of elementary cellular automata [36]
has been proposed. Many interesting results have been obtained with Gray-Scott model but no
evaluation of its complexity has been done so far. We decided to fill the gap and analyse a generative
morphological complexity of the system. The morphological complexity is evaluated via diversity
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of the configurations of concentration profiles using Shannon entropy, Simpson diversity, Lempel-
Ziv complexity. To avoid parameterisation of initial random conditions we considered only the
generative complexity – the diversity of patterns developed from a point-wise local perturbation of
otherwise resting medium. This our approach is already proved to be efficient in studying complexity
of cellular automata, and discrete models of excitable systems and populations [3, 1, 2].

2 Gray-Scott model

The Gray-Scott model [30] is comprised of two reactants U and V reacting as follows:

→U
U + 2V → 3V

V → P

where P is inert product, reactant U is fed with rate k, reactant V is converted to inert product
P with rate F , U reacts with V with rate 1. The corresponding reaction-diffusion equations for
concentrations u and v are

∂u

∂t
= Du∇2u− uv2 + F (1− u)

∂v

∂t
= Dv∇2v + uv2 − (F + k)v

We integrated the system using forward Euler method with five-node Laplace operator, time
step 1 and diffusion coefficients Du = 2× 10−5 and Dv = 10−5; these parameters have been chosen
to stay compatible with [30]. We evaluated complexity measures by taking a grid of 256 × 256
nodes, each node x but four assigned concentration values ux = 1 and vx = 0, four neighbouring

nodes at the centre of the lattice assigned vx = 1:
1 1
1 1

For a given pair (k, F ) the grid allowed to evolve until propagation of the perturbation, measured
as v > 0.3, reached a boundary of the grid, or no changes between two subsequent concentration
profiles observed, or a number of iterations exceeded 103. The measures were calculated on con-
centration profiles after the halting.

3 Complexity measures

We evolved the systems and evaluated complexities for 8320 pairs (k, F ), where k ∈ [0.020, 0.072],
F ∈ [0.010, 0.17], increments 0.001.

When evaluating complexity measures we binarized concentration profile of V as follows. The
256 × 256 nodes grid of concentrations is mapped onto an array L of 256 × 256 cells, where each
cell x is assigned value ‘1’ if the concentration of V at the corresponding grid node x exceeds 0.3;
otherwise the cell is assigned value ‘0’. Let W = {0, 1}9 be a set of all possible configurations of
a 9-node neighbourhood Bx including the central node x. Let B be a configuration of matrix L,
we calculate a number of non-quiescent neighbourhood configurations as η =

∑
x∈L ε(x), where

ε(x) = 0 if for every resting x all its neighbours are resting, and ε(x) = 1 otherwise.
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Figure 1: Shannon entropy H versus (a) Simpson diversity S, (b) LZ complexity, (c ) Space filling
D.
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Figure 2: Heat map of the Shannon entropy values for (k, F ) pairs. Red indicates H ∈ [3.5, 4],
magenta H ∈ [3, 3.5), the rest are gradations of grey indicated lower values of the entropy. Approx-
imate positions of the Pearson-Munafo classes [22] are shown.indicated.

The Shannon entropy H is calculated as H = −
∑

w∈W (ν(w)/η · ln(ν(w)/η)), where ν(w) is a
number of times the neighbourhood configuration w is found in configuration B.

Simpson’s diversity S is calculated as S =
∑

w∈W (ν(w)/η)2. Simpson diversity linearly corre-
lates with Shannon entropy for H < 3; relationships becomes logarithmic for higher values of H
(Fig. 1a).

Lempel-Ziv complexity (compressibility) LZ is evaluated by a size of PNG files of the configura-
tions, this is sufficient because the ’deflation’ algorithm used in PNG lossless compression [32, 10, 5]
is a variation of the classical Lempel–Ziv 1977 algorithm [37]. There is a weak correlation between
H and LZ for H > 3 (Fig. 1b) therefore we will be considering these measures independently.

Space filling D is a ratio of non-zero entries in B to the total number of cells/nodes. This is
used to estimate expressiveness. D decreases by the power low with increase of H when H < 1.5,
and linearly 1.5 ≤ H ≤ 3; there is a weak correlation between D and H for high values of entropy,
H > 3 (Fig. 1c).

Expressiveness is calculated as the Shannon entropy H divided by space-filling ratio D, the
expressiveness reflects the ‘economy of diversity’.

4 Rules with highest generative complexity

Top five pairs (k, F ) responsible for generating patterns with highest Shannon entropy H, Simpson
diversity S, approximation of Lempel-Ziv LZ complexity, and expressivity E are shown in Tab. 1
and plotted k-F plane in Fig. 3. Pairs with highest H and S form a compact cluster in the
domain [0.045, 0.01] × [0.049, 0.015] with the exception of one pair for S being at (0.062, 0.036).
Rules with highest LZ also group compactly in the domain [0.055, 0.023] × [0.06, 0.027]. The
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Table 1: Values of k and F for top five measures of Shannon entropy H, Simpson diversity S,
approximation of Lempel-Ziv complexity LZ, and expressivity E.

H k F
3.7278943 0.048 0.014
3.7112935 0.046 0.011
3.6995924 0.045 0.01
3.6750243 0.048 0.013
3.6747382 0.047 0.013

S k F
0.9652938 0.048 0.014
0.96467775 0.046 0.011
0.96432036 0.047 0.013
0.9642514 0.049 0.015
0.96407634 0.062 0.036

LZ k F
66960 0.06 0.027
66889 0.06 0.026
66614 0.056 0.027
66160 0.055 0.023
66152 0.058 0.023

E k F
264.8449 0.049 0.01
251.12997 0.053 0.017
241.7313 0.045 0.01
229.02385 0.046 0.011
226.3538 0.05 0.01

LZ

E

S

H

F

0.010

0.015

0.020

0.025

0.030

0.035

k
0.045 0.050 0.055 0.060

Figure 3: Top five pairs (k, F ) producing most complex concentration profiles for each measure
of complexity, as in Tab. 1, are plotted in k-F plane. Empty circles for Shannon entropy H, filled
triangles for Simpson diversity S, empty squares for LZ, and crosses for expressivity E.
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(a) k=0.048, F=0.014,
t=6970

(b) k=0.046, F=0.011,
t=6040

(c) k=0.048, F=0.013,
t=5990

(d) k=0.049, F=0.015,
t=6050

(e) k=0.060, F=0.027,
t=8000

(f) k=0.060, F=0.026,
t=8000

(g) k=0.056, F=0.027,
t=8000

(h) k=0.055, F=0.023,
t=8000

(i) k=0.058, F=0.023,
t=8000

(j) k=0.049, F=0.010,
t=8080

(k) k=0.053, F=0.017,
t=8000

(l) k=0.050, F=0.010,
t=8000

Figure 4: Exemplar configurations for highest values of (a–e) Shannon entropy H; (a, b, e) Simpson
diversity S; (f–j) approximation LZ; (k–m) expressivity E. Concentrations of U and V in each
node x are converted to RGB colour of the corresponding pixel x as (R,G,B) = (ux ·255, 0, vx ·255).
Scale 0.1 of original size. See URLs to videos in Section “Supplementary material”.

pairs (k, F ) corresponding to highest expressivity E are rather widely spread along k-axis, from
k = 0.045 to k = 0.053 with 0.007 units elevation up in F -axis, from F = 0.01 to 0.017. The pair
(k = 0.046, F = 0.011) shows highest values of three complexity measures: H, S and E.

Exemplary snapshots of the concentrations profiles of pairs from Tab. 1 are shown in Fig. 4 and
URLs to videos are listed in Section “Supplementary material”.

In the medium governed by (k, F ) pair with largest H (Tab. 1, subtable H) the initial pertur-
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(a) t=1680 (b) t=2340 (c) t=2740 (d) t=2990 (e) t=3430

(f) t=4100 (g) t=4300 (h) t=4920

Figure 5: Snapshots of the medium’s evolution governed by (k, F ) = (0.048, 0.014), t is iteration at
which the snapshot was recorded. Scale 0.23 of original size.
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(a)
t=1000

(b)
t=1500

(c) t=1790 (d) t=1990 (e) t=3210 (f) t=4000

(g) t=4860 (h) t=6000

Figure 6: Snapshots of the evolution of the medium governed by (k, F ) = (0.060, 0.027), t is iteration
at which the snapshot was recorded. Scale 0.5 of original size.

bation leads to formation of the circular wave-front propagating centrifugally (Fig. 5a). After c.
2 ·103 iterations the wave-front loses its stability in four loci corresponding to centres of edges of the
original perturbation (Fig. 5b). This causes four domains of the wave-front to propagate faster than
the rest of the wave-front (Fig. 5c). Loci between the fast moving domains and the slow moving
domains travelling centripetally form eight wave-fragments (Fig. 5d). The eight wave-fragments
fold into circular wave-fronts (Fig. 5e) and then merge into two wave-fronts: one propagates away
from t he centre, another towards the centre. The centripetal wave-front collapses and produces
four scroll wave-fragments travelling away from the centre (Fig. 5f). The scroll waves produce
daughter scroll waves (Fig. 5g). Meantime centrifugal wave-front produces more centripetal wave-
fragments (Fig. 5h). The process continues till the space is filled with interacting, annihilating and
re-producing wave-fragments (Fig. 4a).

The medium governed by (0.046, 0.011) produces patterns with 2nd highest H and also included
in the top five rules with highest S and E. Behaviour of the medium is similar to that governed by
(0.048, 0.014) with minor variations (see video in Section “Supplementary material”), e.g. it takes
more time for the initially formed circular wave-front to lose its stability and to start produce
centripetal wave-fragments.

The pair (k, F ) = (0.060, 0.027) produces concentration profiles with highest LZ (Tab. 1, sub-
table S). Several snapshots of the medium evolution are shown in Fig. 6. Initial perturbation gives
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rise to a circular wave-front (Fig. 6a). The wave-front loses its stability after 1.5 ·103 iterations and
produces four wave-fragments (Fig. 6b). These wave-fragments become unstable and divide into
two wave-fragments each (Fig. 6c). Formation of the new wave-fragments and their multiplication
continues (Fig. 6c–h) till there is a space available.

The pair (k, F ) = (0.049, 0.010) produces most expressive concentration profile, i.e. most com-
plex patterns, as measured by H, with least space occupied. The medium exhibits a ‘swarm’ of
localised travelling patters, soliton-like wave-fragments. These wave-fragments self-replicate and
deflect when collide one with another. Initial perturbation leads to the formation of a ‘classical’
circular wave-front (Fig. 7a). The wave-front loses stability and splits into two centrifugal wave-
fragments after 500 iterations (Fig. 7b). Each of these four fragments splits into two wave-fragments
which propagate away from the grid centre and sideways (Fig. 7c). The wave-fragments originated
from adjacent ends of the parent wave-fragments collide. They deflect in the result of this col-
lision and align their velocity vectors in the centrifugal direction. The wave-fragments multiply
repeatedly (Fig. 7d) yet all of them stay on the expanding circle, forming the beads-like structure
(Fig. 7e). The order of the wave-fragments breaks up after 2.5 · 103 iterations (Fig. 7f). The four
centripetal wave-fragments emerge (Fig. 7g). The centripetal wave-fragments divide (Fig. 7h): their
scrolling edges become detached and get transformed into wave-fragments propagating centrifugally
(Fig. 7i). Eventually the area inside the propagating beads of wave-fragments becomes populated
with wave-fragments that collide with other wave-fragment, change their velocity vectors in the
result of collisions, split and produce new wave-fragments (Fig. 7j).

5 Discussion

We found that the generative complexity of the Gray-Scott reaction-diffusion medium is due to
interacting waves and localised wave-fragments. The Gray-Scott media generating most complex
patterns of concentration profiles exhibit wave-fragments and travelling localisations similar to
the dissipative solitons. These localisations are typically either formed due to circular wave-front
gets unstable and breaks up, scrolling of the wave-fragments’ ends and formation of new wave-
fragments. Such dynamics is clearly visible in the media with highest Shannon entropy and Lempel-
Ziv complexity but less apparent in the media with highest expressivity, where soliton-like wave-
fragments emerge quickly at the first stage of the simulations. The rules with highest values of H,
S and E roughly correspond to Pearson-Munafo class alpha (α) (Fig. 2), with dynamics described
in [22] as composed of wavelets (aka wave-fragments) and recursively multiplying spirals which
annihilate on colliding with each others. Sometimes the behaviour of the medium is interpreted as
‘chaotic’ [28, 34] due to irregular deflections of the travelling localisations. Rules with highest LZ
values roughly correspond to the classe gamma (γ) — worm-like branching structures, and epsilon
(ε) and zeta (ζ) (Fig. 2) — unstable travelling multiplying spots (similar to dissipative solitons) [22].

Our findings on complexity of Gray-Scott media are in agreement with results of our previous
studies on the key role of waves and travelling localisations in defining the complexity of spatially-
extended non-linear media. Thus, in [3] we constructed a generative morphological complexity
hierarchy of elementary cellular automata (CA): one-dimensional CA with three-cell neighbour-
hoods and binary cells states. Rules with higher generative morphological complexity are Rule
30 and Rule 45 [17]. The rules exhibit varieties of travelling localisations, gliders. The gliders
collide one with another and produce other travelling localisations in the results of their collisions.
Generators of the localisations — glider guns — are also observed in the space-time configura-
tions generated by Rules 30 and 45 [19, 20, 18]; they are analogs of wave-fragments which produce
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(a)
t=330

(b) t=540 (c) t=840 (d) t=1250 (e) t=2030 (f) t=2640

(g) t=2880 (h) t=3010 (i) t=3330

(j) t=6560

Figure 7: Snapshots of the evolution of the medium governed by (k, F ) = (0.049, 0.010), t is iteration
at which the snapshot was recorded. Scale 0.5 of original size.
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other wave-fragments. Also, in the automaton models of two-species populations [2] we found that
the basic types of inter-species interactions can be arranged in the following descending hierarchy
of complexity: mutualism, parasitism, competition, amensalisms, commensalism. Most complex
inter-species interactions show travelling localisations and wave-fragments. In [1] we studied a
two-dimensional excitable CA: a resting cell excites if number of excited neighbours lies in a cer-
tain interval (excitation interval); a refractory cell returns to a resting state only if the number
of excited neighbours belong to recovery interval. The model is an excitable cellular automaton
abstraction of a spatially extended semi-memristive medium where a cell’s resting state symbolises
low-resistance and refractory state high-resistance. We constructed hierarchies of morphological
diversity and generative diversity, and found that automata from classes with highest values of
complexity quasi-chaotically respond to spatially extended random excitations, develop disordered
domains of refractory states filled with breathing cores of localised excitations and combinations
of travelling wave-fronts, wave-fragments and travelling localisations. The automata exhibiting
travelling localisations show highest degrees of expressivity.

In summary, the Gray-Scott media exhibiting waves and, particularly, travelling localisations,
or soliton-like wave-fragments, are champions of complexity.

6 Supplementary material

Videos of Gray-Scott model, 768× 768 node grids, frames are saved every 10th iteration, playback
is 30 frames per second. Concentrations of U and V in each node x are converted to RGB colour
of the corresponding pixel x as (R,G,B) = (ux · 255, 0, vx · 255).

• k = 0.048, F = 0.014: https://drive.google.com/open?id=0BzPSgPF_2eyUYlFMV3RsbUIxaW8

• k = 0.046, F = 0.011: https://drive.google.com/open?id=0BzPSgPF_2eyUU2Nsck5PSE5mLW8

• k = 0.045, F = 0.010: https://drive.google.com/open?id=0BzPSgPF_2eyUdjNmX1l2YV9oVG8

• k = 0.048, F = 0.013: https://drive.google.com/open?id=0BzPSgPF_2eyUSmRlVTd0R2tSaHc

• k = 0.047, F = 0.013: https://drive.google.com/open?id=0BzPSgPF_2eyUYmU4b2wtak1sakk

• k = 0.049, F = 0.015: https://drive.google.com/open?id=0BzPSgPF_2eyUQzdqT29HOVc3bXM

• k = 0.062, F = 0.036: https://drive.google.com/open?id=0BzPSgPF_2eyUY1BqZFR2UFc3OU0

• k = 0.060, F = 0.027: https://drive.google.com/open?id=0BzPSgPF_2eyUNll1ajdhYWRJTGc

• k = 0.060, F = 0.026: https://drive.google.com/open?id=0BzPSgPF_2eyURndKVFVqclh0YmM

• k = 0.056, F = 0.027: https://drive.google.com/open?id=0BzPSgPF_2eyUcmVPUkRreDIyQlk

• k = 0.055, F = 0.023: https://drive.google.com/open?id=0BzPSgPF_2eyUVWRoTWFESklDczg

• k = 0.058, F = 0.023:https://drive.google.com/open?id=0BzPSgPF_2eyUMy1xQTFDTFNiMGc

• k = 0.049, F = 0.010: https://drive.google.com/open?id=0BzPSgPF_2eyUVGV0VTJ4eWNacFU

• k = 0.053, F = 0.017: https://drive.google.com/open?id=0BzPSgPF_2eyUTDUzeFo0S1RON3M

• k = 0.050, F = 0.010: https://drive.google.com/open?id=0BzPSgPF_2eyUTGczelhhRW82SEk
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