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Abstract 

This paper is dedicated to develop a mathematical model that can simulate nonlinear 

phenomena of a hinged plate which places into the fluid flow (1 DOF). These phenomena are 

fluttering (oscillation motion), autorotation (continuous rotation) and chaotic motion 

(combination of fluttering and autorotation). Two mathematical models are developed for 1 

DOF problem using two eminent mathematical models which had been proposed for falling 

plates (3 DOF). The procedures of developing these models are elaborated and then these 

results are compared to experimental data. The best model in the simulation of the 

phenomena is chosen for stability and bifurcation analysis. Based on these analyses, this 

model shows a transcritical bifurcation and as a result, the stability diagram and threshold are 

presented. Moreover, an analytical expression is given for finding the boundary of bifurcation 

from the fluttering to the autorotation. 

1 INTRODUCTION 

Studies on fluid-structure interaction have focused to a large extent on vibrational motions 

induced by the fluid flow such as fluttering [1], buffeting [2] and galloping [4]. In contrast, an 

appropriate attention has not been given to flow induced rotation. However, some of these 

flow induced rotational phenomena are researched to extract the energy from a current such 

as the galloping phenomenon ([3] to [7]), Buffeting phenomenon [2] or by the autorotation 

phenomenon ([1] and [8] to [10]). Fluttering is named for an oscillatory motion of a body 

exposed to fluid stream whereas autorotation is given to it continuous rotation [1]. The 

phenomena of the fluttering and tumbling happen for airplane wings [11], [12] and also play 

an important role in the modeling of some others low and high Reynolds number flows. For 

example, the motion of free falling paper and the flight of plate type windborne debris 

include these phenomena.  

Previously, analytical and theoretical models for the plate tumbling motion made by 

Helmholtz, Kelvin, and others have focused on the two-dimensional (2D) case [13]. In 

addition, Pandula et al [14] investigated behavior of thin disc falling freely in viscous fluid in 

two dimensions. The stability analysis revealed three regions for motion of disc as stable 

autorotation (tumbling), rocking motion (flutter) and chaotic motion. Also, Copeland [16] 

supposed that autorotation of a flat plate obey planar-pendulum model which has capable 

oscillation and rotation. He has analyzed global bifurcations of this system by perturbation 

method and found that the stability of system follows saddle node bifurcation. In the similar 

work, Borisov et al [15] considered the motion of an elliptical body falling into an 

incompressible viscous fluid. They used the least square method to obtain the ordinary 

differential equations from processing data obtained numerically from integration of the 



Navier-Stocks equations. The comparison between the phase diagrams obtained by this 

solution and also by Navier-Stocks equation shows good agreement. 

Parametric analysis of the behavior of an aerodynamic pendulum was done by Klimina et 

al [17] in order to study of a small wind power generator with a vertical axis. They proposed 

a mathematical model for free rotation mode of the pendulum and stability analysis was 

carried out on this model to find stable rotational region. Moreover, they have used the 

mathematical model to estimate the power extraction and as a result, they found an optimum 

value of extractable power by such a pendulum. 

Lugt [18] solved the Navier–Stokes equations for the flow around a two-dimensional thin 

elliptical cylinder for different spin parameter, S=ω·l/2Urel. He found the spin parameter at 

the point of stable autorotation S0, of 0.45. Moreover, Andersen et al [19] studied the 

dynamics of falling of a rigid card in air by numerical simulations of the two-dimensional 

Navier–Stokes equation and using a fluid force model based on ordinary differential 

equations. They have analyzed the transition between fluttering and tumbling in the ODE 

model and found that the period of oscillation diverges logarithmically at the bifurcation 

point.  

On the other hand, Belmonte et al [20] conducted several experiments for investigating of 

fluttering and tumbling of the falling thin flat strip through the different fluids. Finally, they 

have proposed a phenomenological model including the inertial drag and lift which 

reproduces these motions.  

Some other studies such as Skew [21], Iversen [22] and Smith [23] experimentally 

investigated autorotation of the plate which is restricted to a fixed axis perpendicular to the 

flow that it is physically a single degree of freedom problem. They have reported that the 

autorotation of vertically hinged plate is mainly dependent on; flow Reynolds number, plate 

aspect ratio, plate mass moment of inertia and initial angle of attack.  

The main goal of this study is to derive and probe into the mathematical models which 

properly model different modes of rotation of a 1 DOF object through the flow. These modes 

include three eminent phenomena of fluttering (oscillation rotation), autorotation (continuous 

rotation), and chaotic rotation. Such mathematical models are reproduced from 3 DOF 

equations by which the motion of falling objects into the fluid are modeled.  

This article at first will discuss on two well-known mathematical models which have been 

reported to model the motion of falling objects in 3 DOF. In the next step, these models will 

be reformed for 1 DOF problem (an articulated plate in the flow) using some assumptions 

and techniques. Then, the results of the models will compare with experimental data which 

have been conducted on laboratory of wave and current (LOC) at the Federal University of 

Rio de Janeiro (UFRJ). At the end, dynamics of fluttering and autorotation and their 

bifurcation are considered.  

2 Analytical model 

2.1 3DOF Theoretical Models 



The dynamics of a card falling into resisting medium (such as air and water) is one of the 

classical problems in hydrodynamics and aerodynamics. Two eminent mathematical models 

have been reported by Belmonte-Eisenberg-Moses [20] and Andersen-Pesavento-Wang [19] 

for analyzing the dynamic of falling card which is 3DOF problem. Using assumptions and 

techniques, these 3 DOF models are used to develop the equation for which an articulated 

plate in 1DOF rotates freely into the current.  

2.1.1 Belmonte-Eisenberg-Moses Model 

One of the famous mathematical models used for falling object was reported by Belmonte-

Eisenberg-Moses [20]. As said in former section, this phenomenological model has emerged 

by the results of several experiments carried out on the thin flat strip falling in the different 

fluids. Two types of forces which contribute in this model consist of the drag force due to the 

moving object in the resisting medium and the lift force due to nonzero circulation of the 

velocity field in the contour enclosed the body. The lift force is found by Joukowsky theorem 

which is formulated as 𝐿 = 𝜌𝑉Γ where Г is the total circulation around the body. According 

to Kelvin theorem (i.e. conservation of circulation), the circulation remains constant in time 

[24]. Belmonte et al defined the circulation in their mathematical model as: 

𝛤 = 4𝜋𝑉 𝑠𝑖𝑛 𝜑    1 

As can be seen from equation 1, the circulation is determined only the translational effect 

while, the rotational effect has been ignored. Moreover, Belmonte et al [20] stated based on 

their experiments that the drag forces of translational and rotational motions are depended on 

quadratic velocity. The forces are defined in the body coordinate system (x-y system) as 

follow:  

𝐹𝑥 = −
1

4
𝛿∥𝜌𝐶𝑉𝑣𝑥,      𝐹𝑦 = −

1

4
𝛿⊥𝜌𝐶𝑉𝑣𝑦,     𝐹𝜑 = −

1

4
 𝛿𝜔𝜌𝐶4|�̇�|�̇�    2 

where x is alongside the chord and y is perpendicular to the chord. The original form of 

the equation (hereinafter so-called Belmonte model) was reported in the global coordinate 

system (X-Y system of Figure 1). Nevertheless, for doing further analysis on this equation, it 

is appropriate to rewrite the equation in the coordinate system attached to the body (x-y 

system of Figure 1). The dimensional form of the Belmonte model in the attached coordinate 

system and also in absence of gravity is given by equation 3. 

�̇�𝑥 − 𝑣𝑦�̇� =
1

𝐶𝐹𝑟2 [−𝛿∥𝑉𝑣𝑥 + 4𝜋𝑣𝑦
2 𝑆𝑔𝑛(𝑣𝑥)]                          (𝑎) 

�̇�𝑦 + 𝑣𝑥�̇� =
1

𝐶𝐹𝑟2 [−𝛿⊥𝑉𝑣𝑦 − 4𝜋𝑣𝑥𝑣𝑦 𝑆𝑔𝑛(𝑣𝑥)]                    (𝑏) 

�̈� = −12
𝛿𝜔|�̇�|�̇�

𝐹𝑟2
−

12 𝜋

𝐶2𝐹𝑟2
 𝑣𝑥𝑣𝑦                                            (𝑐) 
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where dot symbol denotes time derivative, 𝑉 = √𝑣𝑥
2 + 𝑣𝑦

2 , Fr is Froude number which is 

defined as Fr=√𝑀 𝜌𝑐3⁄  [20], C is chord length, and M is the mass of the plate. In this 



equation, Sgn represents the sign function. In these equations, the parameters of  𝑣𝑥, 𝑣𝑦, �̇�𝑥, �̇�𝑦 

represent the velocities and accelerations parallel and perpendicular to the chord, 

respectively. The value of coefficients determined by Belmonte et al as: 

𝛿∥ = 3.52,      𝛿⊥ = 16.4,       𝛿𝜔 = 0.2696   4 

It is worthy to note that this model takes into account neither added moment of inertia nor 

a correct expression for the circulation by ignoring the effect of rotational motion [25].  

Figure 1: Schematic of the flat plate and coordinate systems that used for developing the mathematical 

model of 1DOF. The similar coordinate was used by Belmonte et al [20] and also Andersen et al [19].   

2.1.2 Andersen-Pesavento-Wang Model 

Another model which considers the problem of falling object has been presented by 

Andersen-Pesavento-Wang [19]. This model (henceforth called Andersen model) is 

comprised of more effective terms for analyzing the motion of an elliptic object in 

comparison with the Belmonte model. Andersen model takes into account not only the added 

mass and moment of inertia but also used a more accurate model for the circulation. The 

circulation is formulated by combination of the translational and the rotational terms as 

follow:  

𝛤 = ±𝐶𝑇𝐶√𝑣𝑥
2 + 𝑣𝑦

2 𝑠𝑖𝑛 2𝜑 + 2𝐶𝑅𝐶2�̇�   5 

They have also used the quadratic terms for the lift and drag forces. Andersen model in the 

attached coordinate system (x-y system of Figure 1) is given below.  

(𝑚 + 𝑚𝑥)�̇�𝑥 − (𝑚 + 𝑚𝑦)𝑣𝑦�̇� = −𝜌𝛤𝑣𝑦 − 𝜋𝑎𝑏𝑔(𝜌𝑠 − 𝜌)𝑠𝑖𝑛 𝜑 − 𝐹𝑥          (𝑎) 

(𝑚 + 𝑚𝑦)�̇�𝑥 + (𝑚 + 𝑚𝑥)𝑣𝑥�̇� = 𝜌𝛤𝑣𝑦 − 𝜋𝑎𝑏𝑔(𝜌𝑠 − 𝜌) 𝐶𝑜𝑠 𝜑 − 𝐹𝑦           (𝑏) 

(𝐼 + 𝐼𝑎)�̈� = (𝑚𝑥 − 𝑚𝑦)𝑣𝑥𝑣𝑦 − 𝜅                                                                          (𝑐) 

6 

 



where a and b are half of major and minor axis of ellipse, respectively. Also, 𝛤(𝑉, �̇�) is 

the total circulation of the system (defined as equation 5), s is solid density and mx, my, I and 

Ia are added mass in x and y direction, moment of inertia and added moment of inertia, 

respectively. Moreover, Fx(vx)and Fy(vy) and (�̇�) are lift, drag and dissipative torque, 

respectively [19]. The values of 𝐹𝑥, 𝐹𝑦 𝑎𝑛𝑑 𝜅 are determined by equation 7 [19].  

(
𝐹𝑥

𝐹𝑦
) = 𝜌𝐶(𝐴 − 𝐵 𝑐𝑜𝑠2𝜑)√𝑣𝑥

2 + 𝑣𝑦
2 (

𝑣𝑥

𝑣𝑦
) 

𝜅 = 𝜋𝜌𝐶4(
𝑉

𝐶
𝜇1 + 𝜇2|�̇�|)�̇� 
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As can be seen from equations 5 and 7, this model has 6 tuning parameters as CT, CR, A, 

B, 1 and 2 which cause this model becomes more complicated than Belmonte model. The 

numerical values for aforementioned tuning parameters are indicated by Andersen et al [19] 

as:  

𝐶𝑇 = 1.2,    𝐶𝑅 = 𝜋,   𝐴 = 1.4,   𝐵 = 1 8 

while 1 and 2 have been supposed to be varied. Based on Andersen model, a 3DOF 

model for a thin flat plate in the resisting medium is as follow: 

𝐼�̇�𝑥 − (𝐼 + 1)𝑣𝑦�̇� = −
𝑣𝑦

𝜋𝐶2
(𝐶𝑇𝑉𝐶 𝑠𝑖𝑛 2𝜑 + 2𝐶𝑅𝐶2�̇�) −

𝑉 𝑣𝑥

𝜋𝐶
 (𝐴 − 𝐵𝑐𝑜𝑠2𝜑)  

(𝐼 + 1)�̇�𝑦 + 𝐼𝑣𝑥�̇� =
𝑣𝑥

𝜋𝐶2
(𝐶𝑇𝑉𝐶 𝑠𝑖𝑛 2𝜑 + 2𝐶𝑅𝐶2�̇�) −

𝑉 𝑣𝑦

𝜋
 (𝐴 − 𝐵𝑐𝑜𝑠2𝜑)  

𝐶2

4
(𝐼 +

1

2
) �̈� = −𝑣𝑥𝑣𝑦 − 𝐶2(

�̃�

𝐶
𝜇1 + 𝜇2|�̇�|)�̇� 
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where 𝐼 is non-dimensional moment of inertia which is defined as  𝐼 =
𝜌𝑠𝑑

𝜌𝑓𝑐
 [19] where s 

and f are density of the plate and the fluid, respectively. Also, d and C represent the 

thickness and the chord of the plate, respectively. Moreover, in equation 9, parameter �̃� 

represents the descending velocity of the falling object through the fluid and is defined as 

�̃� = √𝑔𝑑(𝜌𝑠
𝜌𝑓

−1) which g is the gravity. Despite they stated that a transition from fluttering to 

tumbling will occur with increasing 𝐼 which is in agreement with  the report of Wilmarth [26] 

and Belmonte et al [20], but the figures in Andersen et al paper show a returning transition 

(i.e. transition from fluttering to tumbling and return to fluttering) with increasing 𝐼. In other 

words, there is two amounts of 𝐼correspond to the transition that is in contrast with the 

finding of Wilmarth [26] and Belmonte et al [20] who pointed out the only one transient 

value. Anderson et al [19] indicated that 𝐼=1.219 for transition from fluttering to tumbling, 

whereas in higher amount of 𝐼 (𝐼=3.0), the fluttering mode occurred again and for the values 

of  𝐼 between these transient values, tumbling mode will happen.     

2.2 Equation of rotation of an articulated plate in the fluid flow  



This section elaborates the development of the equation of rotation of an articulated plate 

(1 DOF problem) through the fluid current from the aforementioned 3DOF models (i.e. 

equations 3 and 9).  

To obtain the equation of 1DOF problem (see Figure 1), at first, the velocity components 

are found at the center of pressure of the plate as:   

𝑣𝑥 = 𝑉𝑠𝑖𝑛𝜑,      𝑣𝑦 = −𝑉𝑐𝑜𝑠 𝜑 − 𝑓𝐶�̇�  10 

where f is center of pressure that is determined from mid-chord of the plate. Based on 

literatures, the f can be calculated analytically for the flat plate. One of the well-known 

attempts to find an analytical expression for this parameter is known as Kirchhoff-Rayleigh 

theory [27]. Using the conformal mapping technique in this theory, the center of pressure of 

the plate in Figure 1 is expressed as: 

𝑋𝑐𝑝 = 𝑓 =
0.75 𝐶𝑜𝑠 (𝜑 −

𝜋
2

)

4 + |𝜋 𝑆𝑖𝑛(𝜑 −
𝜋
2)|

 11 

On the other hand, the acceleration components (equation 12) are derived by doing a time 

derivation on the velocity components. 

 �̇�𝑥 = 𝑉�̇� 𝑐𝑜𝑠 𝜑,      �̇�𝑦 = 𝑉�̇�𝑠𝑖𝑛 𝜑 − 𝑓�̇��̇� − 𝑓𝐶�̈�  12 

The dynamical equation of 1DOF rotating plate is easily found by collecting the torques 

on the plate, as explained in appendix A. Such an equation which is found by Belmonte 

model, hereinafter called “RFB model”, is as:  

�̈� + (2 −
12𝜋

𝐹𝑟2
) 𝑓𝑠𝑖𝑛𝜑

𝑉

𝐶
 �̇� 

                         −[𝑓𝛿⊥𝑐𝑜𝑠𝜑 + (6𝜋 − 2𝜋𝑓𝑠𝑔𝑛(𝑣𝑥))𝑠𝑖𝑛2𝜑]
𝑉2

𝐹𝑟2𝐶2
+

12𝛿𝜔

𝐹𝑟2
|�̇�|�̇� = 0 

13 

Another 1DOF equation is made by Andersen model (henceforth referred to “RFA 

model”) as follow:   

(0.25𝐼 + 0.125)�̈� + [2 (𝐼 −
𝐶𝑅

𝜋
) 𝑓

𝑉

𝐶
𝑠𝑖𝑛𝜑 +

�̃�

𝐶
𝜇1] �̇� 

                    − [
𝑓

𝜋
(𝐴 − 𝐵𝑐𝑜𝑠 2𝜑)𝑐𝑜𝑠𝜑 + (0.5 +

𝑓𝐶𝑇

𝜋
𝑠𝑖𝑛𝜑) 𝑠𝑖𝑛2𝜑]

𝑉2

𝐶2
+ 𝜇2|�̇�|�̇� = 0 

14 

As can be observed, equation 14 (RFA model) is more complicated than equation 13 (RFB 

model). As said before, the added moment of inertia has not been considered in Belmonte 

model. In an overview, RFA model consists of more terms in each part (i.e. inertia, damping 

and exciting parts) in comparison to RFB model. Although the existing of more terms in each 

part of the RFA make it an intricate model, but in positive point of view, the RFA model is 

capable to be tuned up appropriately to obtain more accurate results.   



2.3 Non-dimensional Form and Homogenization of Equations  

Both of the RFA and RFB (Equation 12 and 14) are written in dimensionless form using 

the time scale, , and the velocity scale, U, which are defined by the expressions: 

𝜏 =
𝐶

𝑉
        ,       𝑈 = 𝛺𝐶       15 

where C is the plate chord and V is the current velocity. The following non-dimensional 

parameters are constructed from the characteristics scales (equation 15). 

𝑡∗ =
𝑡𝑉

𝐶
 ,              �̇̃� =

�̇�𝐶

𝑉
,           �̃� = 𝜑       16 

Using the parameters in equations 15 and 16, the non-dimensional form of RFB model is 

obtained as follow: 

𝐹𝑟2
𝑑�̇̃�

𝑑𝑡∗
+ (2𝐹𝑟2 − 12𝜋)𝑓𝑠𝑖𝑛�̃� �̇̃� 

                   −[𝑓𝛿⊥𝑐𝑜𝑠�̃� + (6𝜋 − 2𝜋𝑓𝑠𝑔𝑛(𝑠𝑖𝑛�̃�))𝑠𝑖𝑛2�̃�] + 12𝛿𝜔|�̇̃�|�̇̃� = 0 

17 

And, the dimensionless form of RFA model is expressed as:  

(0.25𝐼 + 0.125)
𝑑�̇̃�

𝑑𝑡∗
+ [2 (𝐼 −

𝐶𝑅

𝜋
) 𝑓𝑠𝑖𝑛�̃� +

�̃�

𝑉
𝜇1] �̇̃� 

              − [
𝑓

𝜋
(𝐴 − 𝐵𝑐𝑜𝑠 2�̃�)𝑐𝑜𝑠�̃� + (0.5 −

2𝑓𝐶𝑇

𝜋
𝑠𝑖𝑛�̃�) 𝑠𝑖𝑛2�̃�] + 𝜇2|�̇̃�|�̇̃� = 0 

18 

 In equations 17 and 18, Fr and 𝐼 represent the same concept of mass moment of inertia so 

that they can be synchronized by definition of a new dimensionless moment of inertia (I*), 

using the moment of inertia scale, 휀 = 𝜌𝐶5[28, 29], as I∗ = I ρC5⁄  . The relation between 

these dimensionless parameters (i.e. Fr , Ĩ, and I*) is as below:  

𝐹𝑟 = √12 𝐼∗     𝑎𝑛𝑑       𝐼 = 12𝐼∗      19 

To obtain good results in simulation of fluttering and autorotation of an articulated plate, 

the unknown coefficients need to be determined as accurate as possible. For determining of 

unknown coefficients, the iterating method has been selected to match the result of equations 

17 and 18 with experimental data. To execute such a method, the aforementioned equations 

are solved numerically for a given I* while the values of unknown coefficients alter 

repetitively till the best match is obtained. The procedure of finding the unknown coefficient 

is elaborated as: for each set of value of I* and coefficients, the error of dynamical 

characteristics (i.e. angle of rotation and angular velocity) is evaluated by comparing the 

numerical results to the experimental data and this cycle is repeated while the new values 

have been set for coefficients and I* is kept the same. This method applied to several I*s 

(with wide range from low to very high) and eventually, the best values of unknown 

coefficients have been chosen for RFB model as:  



𝛿⊥ = 11.1     𝑎𝑛𝑑       𝛿𝜔 = 0.095 ± 0.01      20 

For RFA model, the following values are proposed: 

𝐴 = 45.1𝐼∗2, 𝐵 = 37.58𝐼∗2, 𝐶𝑇 = 52.61𝐼∗2, 

    𝐶𝑅 = 13.25𝜋𝐼∗,    𝜇1 = 0, 𝑎𝑛𝑑   𝜇2 = 0.045 ± 0.035   
21 

As can be seen, 𝜇2 changes in wide range to reach the good result of fluttering and 

autorotation. The value of 𝜇2 is increased by increasing I* and vice versa.      

3 Experimental Setup 

In order to measure the dynamics of rotation of an articulated plate in the current, some 

experiments have been carried out in laboratory of wave and current (LOC) at Federal 

University of Rio de Janeiro (UFRJ).  

3.1 Model Setup 

As mentioned in foregoing paragraphs, the autorotation will occur with large enough 

moment of inertia. In the water channel, increase the dimensionless moment of inertia is not 

as easy as wind tunnel in virtue of higher density of water in comparison with air [30]. For 

this purpose a unique apparatus (see Figure 2) has been designed to change the moment of 

inertia of the plate in water flume. In this apparatus, a bar is installed on top of the plate. The 

two 4 Kg masses are added to the system, which could be placed in different positions along 

the bar to provide the required moment of inertia. The plate is supported by two ball bearings 

at top and bottom of axis of rotation. Resistance of bearings against rotation comes from 

friction between balls and cast.   

Figure 2: The experimental setup for providing different mass moment of inertia on the plate in front view. 

The water depth was set to 0.5 m. Uniform main flow is produced by four centrifugal 

water pumps. The maximum achievable current velocity in the channel is 0.5 m/s which 

corresponds to Hydraulic Froude number (𝐹𝑟ℎ = 𝑉 √𝑔𝐻⁄ ) of 0.22. According to Frh the flow 

state is subcritical or tranquil flow.  

 



The uncertainty1 of the current velocity in this paper is less than 1 percent. The fluid 

properties are shown in Table 1. 

Table 1: The fluid properties  

Fluid properties 

Fluid type Fresh water 

Density 1000   kg/m3 

Velocity range 0.07- 0.335m/s 

Flow Reynolds 

Number 

21000-100000 

Temperature 20 deg 

Current depth 0.5 m 

Important characteristics of the plate are listed in Table 2. 

Table 2: Characteristics of the experimented model. 

Blade properties 

Width projected on perpendicular of 

current direction 

0.3 m 

Materials Aluminum 

Thickness (d) 5 mm 

Height 0.6 m 

Using the dimensional analysis, the following non-dimension numbers are found. 

Table 3: Non-dimensional parameters which affect the rotation of plate in the water 

Angle of 

Rotation 

Reynolds 

number 

Thickness 

ratio 

Dimensionless mass 

moment of inertia 

Aspect 

ratio 

θ𝑟 Re=VC/υ =d/C 𝐼∗ =
 𝐼𝑠

𝜌𝑤𝐶5⁄  Ar=H/C 

The dimensionless mass moment of inertia (I*) is defined as the ratio of the structural 

mass moment of inertia to the hydrodynamic added moment of inertia [31]. In this study,  

and Ar are constant and equal to 0.0166 and 1.66, respectively. 

3.2 Dynamic Measurement of Fluttering and Autorotation 

In order to measure dynamical characteristics of an articulated flat plate such as angular 

velocity, angular acceleration and also angular position with respect to time, a pack of 

wireless sensors was set up. This pack included a microcontroller, some sensors included 

accelerometer, a rategyro and a magnetometer and two wireless communication modules.  

Arduino Uno is used as microcontroller device in this study. The Arduino is an open-

source computer that designs and manufactures microcontroller-based kits for building digital 

devices and interactive objects that can sense and control objects. Moreover, the wireless 

                                                           
1 Uncertainty applies to predictions of future events, to physical measurements that are already made. It is the standard deviation (σ) divided 

by the square root of the number of measurements (n). 

 



communication is undertaken by two Xbee-pro 802.15.4 series 1 (S1) modules. The XBee 

radio modules were configured to communicate with 19200 as its Baud rate. 

As mentioned in foregoing paragraph, dynamic characteristics of the rotating articulated 

plate have been measured by sensors included accelerometer, rategyro for measuring angular 

velocity and magnetometer for measuring angular position. In this study, one sensor is used 

which gathered together all three sensors into one. UM7-LT (as shown in Figure 3) is a 3rd-

generation Attitude and Heading Reference System (AHRS) that takes advantage of state-of-

the-art MicroElectroMechanical Systems (MEMS) technology to improve performance and 

reduce costs. The UM7 communicates using a 3.3V TTL UART2 at user-configurable baud 

rates ranging from 9600 baud to 921600 baud. In this study, binary packet is utilized for 

communication. The data transmission in binary method is carried out using complicated 

commands which should be sent to sensor via microcontroller. Based on receiving commands 

by sensor, the sensor send data to microcontroller. All binary packets sent and received by the 

UM7 should conform to a special format which has been elaborated in sensor datasheet. The 

transmission rate used in this study has been arranged for 100 Hz.   

Figure 3: UM7 sensor including Accelerometer, Rate gyro and magnetometer. 

3.3 Installation the sensor on the Model 

The pack of sensor is installed on the model of an articulated plate as shown on the bottom 

of Figure 4. This pack is supplied by 9V lithium-Ion rechargeable battery in which is 

mounted next to the microcontroller, as shown on the top of Figure 4. The package put on the 

axis of rotation to diminish its effect on moment of inertia.  

                                                           
2 UART (Universally Asynchronous Receiver/Transmitter) is used to receive and transmit data serially. UART transmits one 

bit at a time at a specified data rate which sometimes, this method of serial communication is referred to TTL (Transistor-

Transistor Logic). 

 



Figure 4: Top: package of battery and microcontroller. Bottom: set up of the sensor (MU7) and the 

microcontroller on the model. 

4 Result and Discussion 

In the following section, the results of both models are shown with experimental data. 

Values of the important parameters are given in captions of each figure. In addition, nonlinear 

analysis is performed on RFA model and bifurcation diagram is presented for this model. 

4.1 Dynamical Characteristics 

Figure 5 shows the comparison of results of the RFA and the RFB models to experimental 

data. This figure, considered the result of angle of rotation (left column) and angular velocity 

(right column) for the wide range of I*. In matrix of Figure 5, row A shows the comparison 

of fluttering mode, row B corresponds to chaotic mode (mixing of Autorotation and 

fluttering) and also, rows C to F are dedicated to the result of autorotation mode.   
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Figure 5: Angle of rotation (left column) and angular velocity (right column) for I*, Res and 2 of A: 0.044 

& 37000 & 0.0095, B: 0.054 & 70000 & 0.01, C: 0.212 & 70000 & 0.035, D: 0.249 & 92000 & 0.041, E: 

0.315 & 70000 & 0.052, and F: 0.566 & 32000 & 0.081. Note that dashed red line, solid thick blue line and 

solid thick black line represent the result of RFB model, RFA model and experiment, respectively.  

Table 4 lists the frequency of rotation (f) and statistical data included the average (�̅̇�) and 

the standard deviation (𝛿�̇�) which have been obtained by the analysis of angular velocity of 

the former figures. By comparing the frequency of rotation between experimental data and 

RFA and RFB models, it is concluded that the frequency of RFA model is close to the 

frequency of experiment whilst the frequency of RFB model is at least double. Accordingly, 

based on the figures, the plate which is simulated by RFB model rotates or oscillates much 

faster than either the simulated plate by FRA or experimented plate.   

 Table 4: Statistical data and frequency of rotation associated with data of experiment and also RFA and RFB.  

  

I*=0.044 I*=0.054 I*=0.212 

Exp. RFA RFB Exp. RFA RFB Exp. RFA RFB 

�̅̇� 0.03 0.02 0.02 0.17 0.06 0.02 0.80 0.81 1.50 

𝛿�̇� 0.26 0.47 1.43 0.49 0.75 2.60 0.24 0.22 0.87 

f 0.09 0.07 0.50 0.13 0.09 0.84 0.27 0.23 0.47 

  

I*=0.249 I*=0.315 I*=0.566 

Exp. RFA RFB Exp. RFA RFB Exp. RFA RFB 

�̅̇� 1.12 1.09 2.10 0.92 0.83 1.63 0.36 0.42 0.624 

𝛿�̇� 0.28 0.29 1.03 0.21 0.20 0.64 0.06 0.08 0.202 

f 0.38 0.32 0.66 0.25 0.22 0.53 0.13 0.13 0.19 



The statistical data demonstrate that the results of RFA model and experiment are in the 

same order whereas the results of RFB model show a significant discrepancy with the 

experiment. Broadly speaking, according to the figures and also Table 4, the RFA model is 

more appropriate to simulate the rotation modes of an articulated plate through the fluid flow.  

Furthermore, it can be stipulated that the simulation of fluttering mode by analytical 

approaches is more complicated in comparison to autorotation mode. Such a difficulty occurs 

due to complexity of vortex field in fluttering mode. Suppose a 2D plate that is rotating in the 

fluid flow and also two vortices that are forming on each edge of the plate with contra 

rotating against each other. According to laboratory observations, the formation and 

developing of the vortices will be disturbed by oscillation rotation of the plate. In other 

words, oscillation motion of the plate in fluttering mode interrupts formation of the vortex on 

the edges of the plate. Consequently, the oscillation creates a complex field of vorticity 

around the plate so that it is difficult to assign an analytical formula for total circulation of 

fluttering mode, as easily as defined by Belmonte et al and Andersen et al. On the other side, 

analysis of vorticity around the rotating object is fairly straightforward. Therefore, it is 

possible to allot the fairly accurate formula to the total circulation around the continuous 

rotating plate.    

4.2 Phase Diagram 

4.2.1 Rotation Angle- Angular Velocity 

Phase diagrams of angle of rotation vs angular velocity have been depicted in Figure 6 for 

various I*s. Among these figures, figure A and B represent phase diagrams of fluttering and 

chaotic motion, respectively and the others represent the phase diagram of autorotation mode. 

These pictures also approve that the RFA simulates the angle and velocity of motion of all 

modes (fluttering, chaotic and autorotation) more accurate than the FRB. The first oscillation 

in fluttering mode is properly modeled by the RFA. In further oscillation, fluttering decays 

rapid in experiment while the simulated motion by the RFA decays much more slowly. 

Despite of low accuracy in the modeling of the decaying of oscillation motion, the RFA 

model simulates the autorotation with good accuracy.    

As shown in picture A of Figure 6, the amplitude of oscillation predicted by RFB is half of 

the results from the FRA whereas the amplitude of velocity is double of the RFA. In other 

words, fluttering mode simulated by RFB progresses faster with lower amplitude. Regarding 

to pictures C to F of Figure 6, the amplitude of angular velocity and angle of rotation in 

autorotation mode calculated by the RFB, is at least double of the result from the RFA for 

different I*. 



Figure 6: Phase diagram of Angle of rotation and angular velocity for I*, Res and 2 of A: 0.044 & 37000 

& 0.0095, B: 0.054 & 70000 & 0.011, C: 0.212 & 70000 & 0.035, D: 0.249 & 92000 & 0.041, E: 0.315 & 

70000 & 0.052, and F: 0.566 & 32000 & 0.081. Note that dashed red line, solid thin blue line and solid 

thick black line represent the result of RFB model, RFA model and experiment, respectively. 

4.2.2 Angular Velocity-Angular Acceleration 

Based on pictures of Figure 7, the RFB is over-calculating the dynamical characteristics of 

the motion whereas the RFA calculates them very well. According to the pictures, the angular 

acceleration calculated by the RFB is at least 6 times greater than experimental data whereas 

the result of RFA is almost equal to the experiment. As can be expected, by increase in I*, 

angular acceleration and angular velocity decrease. However, low value of I* gives the 

similar result, as well. In other words, there is an optimum value for I* to reach the maximum 

value of angular velocity and acceleration. 
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Figure 7: Phase diagram of angular acceleration vs angular velocity for I* and Res of A: 0.044 & 37000 & 

0.0095, B: 0.054 & 70000 & 0.011, C: 0.249 & 92000 & 0.035, and D: 0.566 & 32000 & 0.081. Note that 

dashed red line, solid thick blue line, and solid thick black line represent the results of the model of RFB, 

RFA, and experiment, respectively. 

4.3 Stability Analysis 

Stability analysis is an important study on nonlinear ordinary differential equations like 

equation 18. The stability analysis is conducted on the RFA model. For proper analysis, the 

fixed points of the equation are found at the first step. Equation 18 has general form as 

�̇� = 𝑞 + (𝑝𝜆 − 𝑘𝜆2)  22 

where 𝜆 = �̇̃�. Also, k is constant coefficient and p and q are variable coefficients that are 

defined as below.  

B 

C 

D 



𝑘 = 𝜇2/(3𝐼∗ + 0.125)  

𝑝 = 2.5𝐼∗𝑓𝑠𝑖𝑛�̃� /(3𝐼∗ + 0.125) 

𝑞 =
𝑓𝐼∗2

𝜋(3𝐼∗ + 0.125)
[(45.1 − 37.58𝑐𝑜𝑠 2�̃�)𝑐𝑜𝑠�̃� + (

0.5𝜋

𝑓𝐼∗2 − 105.2𝑠𝑖𝑛�̃�) 𝑠𝑖𝑛2�̃�] 

23 

In equation 22, for q=0 the rest terms create a prototypical of transcritical bifurcation 

whereas if p=0 the prototypical of saddle node bifurcation is formed. It is possible to find a 

threshold for a system using transcritical bifurcation. The fixed points of the parenthesized 

phrase in equation 22 are 𝜆∗ = 0 and 𝜆∗ =  𝑝 𝑘⁄ . Intersection of these lines in stability 

diagram denotes threshold of the present model. Such a threshold is found if  𝑝 = 0 that 

yields:  

𝑃𝑡ℎ = �̃�𝑡ℎ = 𝑛𝜋          𝑛 = 0,1,2, … 24 

For p < 𝑃𝑡ℎ, 𝜆 = 0 represents the stable points and 𝜆 = 𝑝 𝑘⁄  shows the unstable points 

whereas, for p > 𝑃𝑡ℎ, the line of 𝜆 = 0  corresponds to the unstable points and  𝜆 = 𝑝 𝑘⁄  

demonstrates the stable points. It is worthy to note that for p < 𝑃𝑡ℎ , the points on 𝜆 = 0 are 

interpreted physically as a plate into still fluid (the fluid without flow). The aforesaid 

discussion is depicted in Figure 8. 

In Figure 8, the inclined line represents the values of angular velocity in which the body 

can rotate stably. Thus, in the case of p > 𝑃𝑡ℎ, the stable points on λ = p 𝑘⁄  represent the 

autorotation mode and therefore, all the points, in the around, are flown towards such stable 

points. It can be inferred from the former discussion that the region between horizontal 

unstable line and inclined stable line (yellow zone in Figure 8) indicates the possibility of the 

occurring autorotation. This region is dependent on I* so that an increase in I* causes to 

enlarge this area and consequently increases the possibility of the occurring autorotation.  



Figure 8: Stability diagram of transcritical bifurcation for equation 22. In this figure, λ = �̇̃� and 𝑃 =
2.5𝐼∗𝑓𝑠𝑖𝑛�̃� /(3𝐼∗ + 0.125) and 𝑃𝑡ℎ = �̃�𝑡ℎ = 𝑛𝜋 (n=0,1,2,…) is Threshold of the system.  

On the other side, if let p=0 and 𝜆 = 𝑢 𝑘⁄  in equation 22, this equation yields: 

�̇� = 𝑞𝑘 − 𝑢2  25 

The last equation represents normal form of the saddle node bifurcation. The fixed points 

are 𝑢 = ±√𝑞𝑘 where the real values exist for qk0. Because of positive value of k (k>0), 

therefore the fixed points are found if q0. Thus:  

𝑓𝐼∗2

𝜋(3𝐼∗+0.125)
[(45.1 − 37.58𝑐𝑜𝑠 2�̃�)𝑐𝑜𝑠�̃� + (

0.5𝜋

𝑓𝐼∗2 − 105.2𝑠𝑖𝑛�̃�) 𝑠𝑖𝑛2�̃�] ≥ 0   26 

Figure 9 shows the periodical roots of q for different I*s. As can be seen, for all I*s, there 

are two regions that q is positive and saddle node bifurcation might happen. Referring to 

previous discussion, it can be concluded that 𝜆 = √𝑞
𝑘⁄  is stable point and 𝜆 = −√𝑞

𝑘⁄  is 

unstable point. The stable point here means that the plate can reach to autorotation mode. 

Furthermore, Figure 9 demonstrates that in =π/2 rad, autorotation will happen easier than 

=0 and π however for higher I* such a possibility increases.  

 

     Still fluid or     

Fluid without flow  

Fluid with flow 



Figure 9: Plot of q (equation 23) versus  for one period in different I*. In this plot, black thick line, blue 

line and red dash line represent I*=0.5, 1.0, and 1.5, respectively.  

Besides the role of I* on determination of the rotational mode, initial conditions affect 

occurring autorotation and fluttering, as well. The initial conditions are combination of initial 

angle of attack and initial angular velocity. Hence, the phase diagram of the angle of rotation 

(θ) versus the angular velocity (ω) of the RFA model (equation 14) is illustrated in Figure 10 

for three different values of a group of the effective parameters (i.e. I*, Re and 𝜇2). These 

figures indicate that, for each combination of I*, Re, and 𝜇2, there is one bifurcation line (red 

dashed line in these figures) in which autorotation will happen if the initial conditions are 

chosen above it. In contrast, for inappropriate initial conditions (i.e. the points below the red 

line), fluttering will happen. For instance, in Figure 10-A, the values of (π/2, 0.14) or (0 or π, 

0.84) represent the points on the red dashed line, and therefore, autorotation might happen if 

the angular velocity is chosen greater than the second value of parentheses. On the other side, 

fluttering will occur if the angular velocity is lower than the mentioned value. It is important 

to note that, for the initial conditions close to red dashed line, the mode of rotation can 

change between the autorotation and the fluttering after some cycles. In other words, for 

initial conditions near the red dashed line, the chaotic rotation might happen.  
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Figure 10: Phase diagram of RFA for A: I*=0.044, Re=37000 and 𝜇2=0.006, B: I*=0.212, Re=70000 and 

𝜇2=0.025, and C: I*=0.391, Re=100000 and 𝜇2=0.05. Bifurcation line is indicated by dashed line so that the 

initial condition below this line brings the plate to fluttering.  

The points φ = π/2 and φ = 3π/2 correspond to position of the body, with the edge 

forwards while the fixed points φ = 0 and φ = π are related to position with the wide side 

forwards. On the phase portrait, one can see the separatrix (red dashed lines) containing the 

saddle points. The orbits inside the separatrix correspond to oscillatory motions around the 

centers, while the rotational motions are represented by curves outside the separatrix.  

4.4 Bifurcation Diagram 

By referring to forgoing sections, the transition from fluttering to autorotation will occur 

by increasing the mass moment of inertia; however chaotic motion might be observed 
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wherein the transition happens. As a result of former section, the RFA model is consider to 

find the analytical bifurcation diagram of fluttering and autorotation.  

Referring to Figure 6, the autorotation will happen if the plate rotates at least one cycle 

(i.e. 2π radian). Thus, the existence of autorotation is guaranteed by the following expression: 

∫ �̈�(𝜑, �̇�(𝜑))𝑑𝜑

𝜑1+2𝜋

𝜑1

= 0  27 

A similar equation was concluded by Klimina et al [17]. Suppose that  𝜑1 = 0 and �̇� =

Φ|sin 𝜑|, then applying equation 27 on equation 14 yields the following expression:  

𝐼∗ = 3.183 𝜇2

𝐶𝛷

𝑉
 28 

This equation represents a bifurcation curve which separates fluttering region from 

autorotation that is called separatrix. As can be seen, the separatrix depends on 𝜇2 (nonlinear 

damping coefficient) and  𝐶Φ 𝑉⁄   (the maximum tip speed ratio of the rotating plate). 

Bifurcation diagrams are presented in Figure 11 for experimental data and results of RFA 

model when 𝜇2 = 0.03. As can be observed from diagrams, I* correspondent to bifurcation is 

almost independent on Reynolds number. The similar conclusion was reported by other 

researchers mostly by the experiment, e.g. in [26], [32], [33], etc. According to these figures, 

the bifurcated I* for experimental data is averagely 0.13, a slightly change happens in the 

different Reynolds numbers, and for the analytical model is almost 0.14. For I*s less than the 

bifurcated I*, the rotation of the plate is chaotic rotation (consists of the fluttering and the 

autorotation) or pure fluttering. Using equation 28 and also the bifurcated I*s, it can be 

stipulated that the maximum tip speed ratio of an autorotating plate is averagely 1.5, 

However, it is affected slightly by the changing of 𝜇2. 



Figure 11: Bifurcation diagrams of I* versus Reynolds number A: Experimental data [34], B: results of 

RFA model (𝜇2 = 0.03). 

5 Conclusion 

This paper was devoted to study on mathematical model of the fluttering and the 

autorotation of an articulated plate into the fluid flow. The fluttering is referred to oscillatory 

rotation of an object into the current and the autorotation is pointed out to a continuous 

rotation without any external power. The phenomena of fluttering and autorotation of the 

plate will occur when the moment of inertia reaches the appropriate criterion. In other words, 

transition from fluttering to tumbling for an object happens in large enough moment of inertia 

that is indicated by dimensionless number of I*. I* is defined as ratio of the moment of inertia 

of the object to its added moment of inertia. 
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Two mathematical models related to a falling object, reported by Belmonte et al [20] and 

Pessavento et al [19], were considered in this study to generate two mathematical models for 

a hinged plate with 1 degree of freedom (1DOF). The generated models were called the RFA 

model and the RFB model. These models were solved numerically and compared to 

experimental data. It can be deduced from this study that the RFA is more appropriate than 

the RFB for simulating of all modes of rotation of an articulated plate into the fluid flow. 

These modes are the fluttering, chaotic and autorotation.  

Because of the nonlinear dynamics of an articulated plate into the flow, the stability and 

bifurcation analysis have been carried out on the RFA model. By means of such analysis, it 

was found that this model has a transcritical bifurcation and therefore stability diagram and 

threshold have been presented. In addition, an analytical expression was given for finding the 

boundary of bifurcation of the fluttering and the autorotation. In this respect, a bifurcation 

diagram (I* versus velocity) was presented by the numerical calculation on the RFA.  Based 

on this diagram, the bifurcation boundary is approximately independent of the velocity and 

only depends on damping terms.  

6 Appendix A 

This section explains how a RFB model is derived from Belmonte equations (Equation 3). 

The same procedure is used to obtain the RFA model from Equation 9.  

Equation 3-a represents the force in direction of x and therefore it generates no torque on 

the plate. On the other side, equation 3-b calculates the perpendicular force to the plate at the 

center of pressure (cp), therefore it can produce a torque when is multiplied by Xcp (f ).  

𝑓 × [�̇�𝑦 + 𝑣𝑥�̇�] = 𝑓 × [
1

𝐶𝐹𝑟2 [−𝛿⊥𝑉𝑣𝑦 − 4𝜋𝑣𝑥𝑣𝑦 𝑆𝑔𝑛(𝑣𝑥)]]                                                            1 − A 

Equation 3-c represents the torque, as well. Hence, the equation is obtained by 

accumulating the torque from the equation 1-A and equation 3-c in which insert the values of 

velocities (i.e. 𝑣𝑥 and 𝑣𝑦) and accelerations (i.e. �̇�𝑥 and �̇�𝑦) from equation 10 and 12.  

𝑓𝑉�̇�𝑠𝑖𝑛 𝜑 − 𝑓𝑓�̇��̇� − 𝑓2𝐶�̈� + 𝑓𝑣𝑥�̇� =
𝛿⊥𝑓𝑉2𝑐𝑜𝑠 𝜑

𝐶𝐹𝑟2 +
𝛿⊥𝑉𝑓2�̇�

𝐹𝑟2 +
4𝜋𝑓𝑉2𝑠𝑖𝑛 𝜑𝑐𝑜𝑠 𝜑 𝑆𝑔𝑛(𝑣𝑥)

𝐶𝐹𝑟2 +
4𝜋𝑉𝑓2𝑠𝑖𝑛 𝜑 𝑆𝑔𝑛(𝑣𝑥)

𝐹𝑟2     2 − 𝐴 

 �̈� = −12
𝛿𝜔|�̇�|�̇�

𝐹𝑟2 +
12 𝜋

𝐶2𝐹𝑟2  𝑉2𝑠𝑖𝑛 𝜑𝑐𝑜𝑠 𝜑 +
12 𝜋

𝐶𝐹𝑟2  𝑓𝑉�̇�𝑠𝑖𝑛 𝜑                                                                                     3 − 𝐴 

Now, Equation 13 results from (2-A) + (3-A). Note that the values of 𝑓2 and 𝑓𝑓̇ are small 

with respect to C and therefore are negligible. 
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