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Abstract

In this paper, the linear sigma model is studied using a method for finding analytical
solutions based on Padé approximants. Using the solutions of two and three traveling
waves in 1+3 dimensions we found, we are able to show a solution that is valid for an
arbitrary number of bosons and traveling waves.
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1. Introduction

Field theory is a well established way to describe interactions among particles, but
usually it is very challenging to find analytical classical solutions in 1+3 dimensions. In
this paper, we will study the bosonic interaction of the linear sigma model, which was
proposed in [1] as an model to describe the pion-nucleon interaction. The model we are
considering possess Nφ bosonic fields whose Lagrangian is given by

L =
1

2
(∂µΦ)2 − 1

2
m2(Φ)2 − λ

4
((Φ)2)2

where (Φ)2 ≡ Φ · Φ and Φ = (φ1, φ2, ..., φNφ). The Euler-Lagrange equation for this
Lagrangian yields the system of equations

φi,tt −∇φi +m2φi + λ
(
φ3
i + φi

Nφ−1∑
j=1

φ2
i+j

)
= 0, i = 1, ..., Nφ, (1)

where we use the notation φi = φi+Nφ and the metric (+ − −−). The purpose of this
paper is to seek classical solutions for this system in the form of traveling waves. In order
to achieve that, we will employ the algorithm based on Padé approximants presented in
[19, 20]. This method has the advantage of needing less undetermined constants than
other methods in the literature [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
such that we can earn efficiency in the processing of data.

We briefly recall the algorithm from [20] in section (2) and we apply it to the linear
sigma model in section (3). Using the solutions for two and three traveling waves we
found, we are able to show a solution for an arbitrary number of traveling waves and
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bosons in section (3.3). Section (4) is devoted to show a graphical illustration of the
analytical solution we found. Finally, in section 5, we compare the Padé approximant
approach with the multiple exp-method in order to see the benefits of each method.

2. Review of the algorithm

Consider a system of Ne equation in D dimensions

Ek(x
µ, φi, ∂µφi, ...;S0) = 0, k = 1, ..., Ne. (2)

where S0 is the set of all parameters of the model. Now suppose there is at least one
solution of this system which can be written in terms of Nρ functions we know the first
derivative, i.e.

φi(x
µ) = φ̂i(ρ1, ..., ρNρ), i = 1, ..., Ne

∂µρk = Fµ,k(ρ1, ..., ρNρ ;S1), µ = 1, ..., D k = 1, ..., Nρ

where Fµ,k(ρ1, ..., ρNρ ;S1) is determined by the functions we choose for ρk and S1 is the
set of constants introduced by these functions. This ansatz transforms the system (2) as

Ek(x
µ, φi, ∂µφi, ...;S0) = Êk(ρk, φ̂i, ∂kφ̂i, ...;S0 × S1) = 0, k = 1, ..., Ne. (3)

Suppose there is a solution that is regular when ρk → 0 such that we can calculate
the multivariate Taylor expansion at ρ = 0, i. e.

φ̂i(ρ) =
∞∑
j1=0

∞∑
j2=0

...
∞∑

jNρ=0

c
(i)
j1,j2,...,jNρ

Nρ∏
d=1

ρjdd , i = 1, ..., Ne (4)

In the expansion (4), we may also impose a set of constraints ψi(S0 × S1) = 0 on the
undetermined constants such that the series does not truncate in the vacuum case. We
will call S2 the set of all undetermined c

(i)
j1,j2,...,jNρ

and S = S0 × S1 × S2 the set of all

constants that remains undetermined. Let us do the scaling transformation ρ→ ξρ such
that we can rearrange the Taylor expansion as

φ̂i(ξρ) =

Li+Mi∑
n=0

ai;n(ρ)ξn +O(ξLi+Mi+1), i = 1, ..., Ne,

ai;n(ρ) =
n∑

j1=0

n−j1∑
j2=0

...

n−
∑Nρ−2
r=1 jr∑

jNρ−1=0

c
(i)

j1,j2,...,jNρ−1,n−
∑Nρ−1
r=1 jr

(Nρ−1∏
d=1

ρjdd

)
ρ
n−

∑Nρ−1
r=1 jr

Nρ
.

The coefficients of the expansion (4) need be calculated until we determine all ai;n(ρ) up
to order Li + Mi. Now, for a chosen Li and Mi, we can calculate the Padé approximant
for the field using ξ as variable, i.e.

φ̂i(ξρ) =
P

(i)
ρ,Li

(ξ;S)

Q
(i)
ρ,Mi

(ξ;S)
+O(ξLi+Mi+1). (5)
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The Padé approximants consist in an approximation of a function as a ratio of two poly-
nomials given by

[Li/Mi]
(i)
ρ (ξ;S) ≡

P
(i)
ρ,Li

(ξ;S)

Q
(i)
ρ,Mi

(ξ;S)
=

∑Li
j=0 p

(i)
j (ρ;S)ξj

1 +
∑Mi

j=1 q
(i)
j (ρ;S)ξj

whose coefficient are calculated by the system of equations∑
r+s=j

ai;r(ρ)q(i)
s (ρ;S)− p(i)

j (ρ;S) = 0, j = 0, 1, ..., Li +Mi.

Now we would like to find the subset Ŝ ⊂ S which makes the approximation (5) become
an exact solution for the system (2) when ξ = 1, i.e.

φ̂i(ρ) =
P

(i)
ρ,Li

(ξ; Ŝ)

Q
(i)
ρ,Mi

(ξ; Ŝ)

∣∣∣
ξ=1

. (6)

Substituting (6) in (3), we can rewrite the system as

Êk(ρk, φ̂i, ∂kφ̂i, ...;S0 × S1) =

∑Λ
n=0 Êk;n(Ŝ)

Dk(Ŝ)
= 0,

Êk;n(Ŝ) =
n∑

j1=0

n−j1∑
j2=0

...

n−
∑Nρ−2
r=1 jr∑

jNρ−1=0

Ẽ
k;j1,j2,...,jNρ−1,n−

∑Nρ−1
r=1 jr

(Nρ−1∏
d=1

ρjdd

)
ρ
n−

∑Nρ−1
r=1 jr

Nρ
. (7)

The coefficients for all powers of ρk yield the set of algebraic equations

Ẽk;j1,j2,...,jNρ
(Ŝ) = 0, k = 1, ..., Ne, n = 0, ...,Λ, jl = 0, ..., n−

l−1∑
r=1

jr (8a)

Dk(Ŝ) 6= 0, k = 1, ..., Ne (8b)

whose solution will determine the subset of constants Ŝ. After determine Ŝ, we substitute
its elements back into (6). Solutions of (8a) which simplify (6) to a vacuum solution will
be omitted through the paper.

3. Application to the linear sigma model

In this paper, let us consider a ansatz with Nρ traveling waves that obey a structure
of exponential functions, i.e.

φi(x
µ) = φ̂i(ρ1, ..., ρNρ), ∂µρj = kjµρj, i = 1, ..., Nφ, j = 1, ..., Nρ. (9)

Substituting the ansatz (9) into system (1), we map the original system in 1+3 di-
mensions to a system in Nρ dimensions with the form

Nρ∑
p,q=1

kpµk
µ
q

(
ρpρqφ̂i,ρpρq + δpqρpφ̂i,ρp

)
+m2φ̂i + λ

(
φ̂3
i + φ̂i

Nφ−1∑
j=1

φ̂2
i+j

)
= 0, i = 1, ..., Nφ

(10)
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In the subsections below, we will consider the cases with Nφ = Nρ = 2 and Nφ =
Nρ = 3. With these solution, we are able to show a solution for a general case with an
arbitrary number of fields and traveling waves in subsection 3.3. In both cases, we will
employ Padé approximants with Li = Mi = 2 for all i.

3.1. Case with Nφ = 2 and Nρ = 2

In order to calculate a nonzero Taylor expansion, we will impose the constraints

k1µk
µ
1 +m2 = 0, k2µk

µ
2 +m2 = 0.

With these constraints, we can eliminate k10 and k20. However, for simplify the calculation,
we will eliminate only the quadratic terms of k10 and k20 at this point. Let us consider
the Taylor expansions for the fields φ̂1 =

∑
i,j=0 cijρ

i
1ρ
j
2 and φ̂2 =

∑
i,j=0 dijρ

i
1ρ
j
2, such that

after the rescaling ρ→ ξρ we have

φ̂1(ξρ) = ξ(c10ρ1 + c01ρ2) + ξ3

(
c10(c2

10 + d2
10)λρ3

1

8m2
− (3c01c

2
10 + 2c10d10d01 + c01d

2
10)λρ2

1ρ2

4(k10k20 − k11k21 − k12k22 − k13k23 −m2)

− (3c2
01c10 + 2c01d10d01 + c10d

2
01)λρ1ρ

2
2

4(k10k20 − k11k21 − k12k22 − k13k23 −m2)
+
c01(c2

01 + d2
01)λρ3

2

8m2

)
+O(ξ5)

φ̂2(ξρ) = ξ(d10ρ1 + d01ρ2) + ξ3

(
d10(c2

10 + d2
10)λρ3

1

8m2
− (3d01d

2
10 + 2d10c10c01 + d01c

2
10)λρ2

1ρ2

4(k10k20 − k11k21 − k12k22 − k13k23 −m2)

− (3d2
01d10 + 2d01c10c01 + d10c

2
01)λρ1ρ

2
2

4(k10k20 − k11k21 − k12k22 − k13k23 −m2)
+
d01(c2

01 + d2
01)λρ3

2

8m2

)
+O(ξ5)

Considering the expansion until order 4 for the auxiliary parameter ξ, we can calculate
the Padé approximants [2/2]

(i)
ρ (ξ;S) as

P
(1)
ρ,2 (ξ;S)

Q
(1)
ρ,2(ξ;S)

∣∣∣
ξ=1

= 8m2(−k10k20 + k11k21 + k12k22 + k13k23 +m2)(c10ρ1 + c01ρ2)2
/

[
c10(k10k20 − k11k21 − k12k22 − k13k23 −m2)(−8m2 + (c2

10 + d2
10)λρ2

1)ρ1

+ 2m2(4c01(−k10k20 + k11k21 + k12k22 + k13k23 +m2)− (2c10d01d10

+ c01(3c2
10 + d2

10))λρ2
1)ρ2 − 2(3c2

01c10 + c10d
2
01 + 2c01d01d10)m2λρ1ρ

2
2

− c01(c2
01 + d2

01)(−k10k20 + k11k21 + k12k22 + k13k23 +m2)λρ3
2

]
P

(2)
ρ,2 (ξ;S)

Q
(2)
ρ,2(ξ;S)

∣∣∣
ξ=1

= 8m2(−k10k20 + k11k21 + k12k22 + k13k23 +m2)(d10ρ1 + d01ρ2)2
/

[
d10(k10k20 − k11k21 − k12k22 − k13k23 −m2)(−8m2 + (c2

10 + d2
10)λρ2

1)ρ1

+ 2m2(4d01(−k10k20 + k11k21 + k12k22 + k13k23 +m2)− (2d10c01c10

+ d01(3d2
10 + c2

10))λρ2
1)ρ2 − 2(3d2

01d10 + d10c
2
01 + 2d01c01c10)m2λρ1ρ

2
2

− d01(c2
01 + d2

01)(−k10k20 + k11k21 + k12k22 + k13k23 +m2)λρ3
2

]
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where S = {m,λ, k10, k11, k12, k13, k20, k21, k22, k23, c10, c01, d10, d01}. Following step (6) of
the algorithm, we substitute these Padé approximants into the system (10) with Nφ =
Nρ = 2 and it yields a set of 66 algebraic equations that need be solved in order to

determine the subset Ŝ ⊂ S. We will not write the 66 algebraic equations, but its non-
trivial solutions together with the constraints imposed on the Taylor expansion can be
summarized by the following conditions on the constants kiµ:

k1µk
µ
1 +m2 = 0, k2µk

µ
2 +m2 = 0, k1µk

µ
2 +m2 = 0 (11)

Finally, substituting this relations on the ansatz

φ̂1 =
P

(1)
ρ,2 (ξ; Ŝ)

Q
(1)
ρ,2(ξ; Ŝ)

∣∣∣
ξ=1

, φ̂2 =
P

(2)
ρ,2 (ξ; Ŝ)

Q
(2)
ρ,2(ξ; Ŝ)

∣∣∣
ξ=1

,

we have the solution

φ̂1 =
8m2(c10ρ1 + c01ρ2)

8m2 − λ[(c2
10 + d2

10)ρ2
1 + 2(c10c01 + d10d01)ρ1ρ2 + (c2

01 + d2
01)ρ2

2]

φ̂2 =
8m2(d10ρ1 + d01ρ2)

8m2 − λ[(c2
10 + d2

10)ρ2
1 + 2(c10c01 + d10d01)ρ1ρ2 + (c2

01 + d2
01)ρ2

2]

3.2. Case with Nφ = 3 and Nρ = 3

In this section, we will exploit the linear sigma model with Nφ = Nρ = 3. As we are
dealing with a system of 3 field in 1+3 dimensions, the processing of the algebraic data
increases considerably. So we will extend the information we found for Nφ = Nρ = 2 in
order to simplify the calculation and consider the constraints

k1µk
µ
1 +m2 = 0, k2µk

µ
2 +m2 = 0, k3µk

µ
3 +m2 = 0, (12)

k1µk
µ
2 +m2 = 0, k1µk

µ
3 +m2 = 0, k2µk

µ
3 +m2 = 0 (13)

on the Taylor expansions φ̂1 =
∑

i,j,k=0 cijkρ
i
1ρ
j
2ρ
k
3, φ̂2 =

∑
i,j,k=0 dijkρ

i
1ρ
j
2ρ
k
3 and φ̂3 =∑

i,j,k=0 eijkρ
i
1ρ
j
2ρ
k
3. Although we only need constraint (12) to avoid the vacuum solution,

the constraint (13) simplify considerably the calculation as we will see. The expansions
are

φ̂1(ξρ) = ξ(c100ρ1 + c010ρ2 + c001ρ3) +
ξ3λ

8m2

[
(c100ρ1 + c010ρ2 + c001ρ3)((c2

100 + d2
100 + e2

100)ρ2
1

+ (c2
010 + d2

010 + e2
010)ρ2

2 + (c2
001 + d2

001 + e2
001)ρ2

3 + 2(c100c010 + d100d010 + e100e010)ρ1ρ2

+ 2(c100c001 + d100d001 + e100e001)ρ1ρ3 + 2(c010c001 + d010d001 + e010e001)ρ2ρ3

]
+O(ξ5)

φ̂2(ξρ) = ξ(d100ρ1 + d010ρ2 + d001ρ3) +
ξ3λ

8m2

[
(d100ρ1 + d010ρ2 + d001ρ3)((c2

100 + d2
100 + e2

100)ρ2
1

+ (c2
010 + d2

010 + e2
010)ρ2

2 + (c2
001 + d2

001 + e2
001)ρ2

3 + 2(c100c010 + d100d010 + e100e010)ρ1ρ2

+ 2(c100c001 + d100d001 + e100e001)ρ1ρ3 + 2(c010c001 + d010d001 + e010e001)ρ2ρ3

]
+O(ξ5)
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φ̂3(ξρ) = ξ(e100ρ1 + e010ρ2 + e001ρ3) +
ξ3λ

8m2

[
(e100ρ1 + e010ρ2 + e001ρ3)((c2

100 + d2
100 + e2

100)ρ2
1

+ (c2
010 + d2

010 + e2
010)ρ2

2 + (c2
001 + d2

001 + e2
001)ρ2

3 + 2(c100c010 + d100d010 + e100e010)ρ1ρ2

+ 2(c100c001 + d100d001 + e100e001)ρ1ρ3 + 2(c010c001 + d010d001 + e010e001)ρ2ρ3

]
+O(ξ5)

Considering the expansion until order 4 for the auxiliary parameter ξ, we can calculate

the ansatz φ̂i = [2/2]
(i)
ρ (ξ;S) as

φ̂1 = 8m2(c100ρ1 + c010ρ2 + c001ρ3)

/[
8m2 − λ[(c2

100 + d2
100 + e2

100)ρ2
1

+(c2
010 + d2

010 + e2
010)ρ2

2 + (c2
001 + d2

001 + e2
001)ρ2

3 + 2(c100c010 + d100d010 + e100e010)ρ1ρ2

+2(c100c001 + d100d001 + e100e001)ρ1ρ3 + 2(c010c001 + d010d001 + e010e001)ρ2ρ3

]

φ̂2 = 8m2(d100ρ1 + d010ρ2 + d001ρ3)

/[
8m2 − λ[(c2

100 + d2
100 + e2

100)ρ2
1

+(c2
010 + d2

010 + e2
010)ρ2

2 + (c2
001 + d2

001 + e2
001)ρ2

3 + 2(c100c010 + d100d010 + e100e010)ρ1ρ2

+2(c100c001 + d100d001 + e100e001)ρ1ρ3 + 2(c010c001 + d010d001 + e010e001)ρ2ρ3

]

φ̂3 = 8m2(e100ρ1 + e010ρ2 + e001ρ3)

/[
8m2 − λ[(c2

100 + d2
100 + e2

100)ρ2
1

+(c2
010 + d2

010 + e2
010)ρ2

2 + (c2
001 + d2

001 + e2
001)ρ2

3 + 2(c100c010 + d100d010 + e100e010)ρ1ρ2

+2(c100c001 + d100d001 + e100e001)ρ1ρ3 + 2(c010c001 + d010d001 + e010e001)ρ2ρ3

]
Substituting the above expressions into the system (10) with Nφ = Nρ = 3, we can

check that these ansatz already are a exact solution for the linear sigma model.

3.3. General case

With the information we gathered in the previous sections, we can seek a solution for
the general case with Nφ and Nρ arbitrary. Let us consider for a moment the following
expressions:

φ̂i =
8m2

∑Nρ
j=1 c

(i)
δ1j ,δ2j ,...,δNρj

ρj

8m2 − λ
∑Nφ

p=1(
∑Nρ

j=1 c
(p)
δ1j ,δ2j ,...,δNρj

ρj)2
, i = 1, ..., Nφ (14)

kiµk
µ
j +m2 = 0, i, j = 1, ..., Nρ (15)

On the one hand, if we substitute these expressions in the kinematic part of the model
(10), we have

Nρ∑
p,q=1

kpµk
µ
q

(
ρpρqφ̂i,ρpρq + δpqρpφ̂i,ρp

)
= −m2

( 8m2
∑Nρ
j=1 c

(i)
δ1j ,...,δNρj

ρj

8m2 − λ
∑Nφ
p=1(

∑Nρ
j=1 c

(p)
δ1j ,δ2j ,...,δNρj

ρj)2

+
8λ(8m2)2(

∑Nρ
j=1 c

(i)
δ1j ,...,δNρj

ρj)
∑Nφ
p=1(

∑Nρ
j=1 c

(p)
δ1j ,...,δNρj

ρj)
2

[8m2 − λ
∑Nφ
p=1(

∑Nρ
j=1 c

(p)
δ1j ,δ2j ,...,δNρj

ρj)2]3

)
.
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On the other, if we substitute (14) on the potential part, we have

m2φ̂i + λ

(
φ̂3
i + φ̂i

Nφ−1∑
j=1

φ̂2
i+j

)
= m2

( 8m2
∑Nρ

j=1 c
(i)
δ1j ,...,δNρj

ρj

8m2 − λ
∑Nφ

p=1(
∑Nρ

j=1 c
(p)
δ1j ,δ2j ,...,δNρj

ρj)2

+
8λ(8m2)2(

∑Nρ
j=1 c

(i)
δ1j ,...,δNρj

ρj)
∑Nφ

p=1(
∑Nρ

j=1 c
(p)
δ1j ,...,δNρj

ρj)
2

[8m2 − λ
∑Nφ

p=1(
∑Nρ

j=1 c
(p)
δ1j ,δ2j ,...,δNρj

ρj)2]3

)
.

Therefore, we can easily check that (14) with condition (15) is a solution for the general
case. Observe that we have 1

2
Nρ(Nρ + 1) algebraic equations in (15) and DNρ constantes

kiµ if we are in a D-dimensional space. Hence, for the system (15) be solvable, we need
have Nρ ≤ 2D − 1 different ρj.

4. Graphical Illustration

In order to illustrate the analytical solution (14), let us consider the case Nφ = 2 and
Nρ = 4 with

(k10, k11, k12, k13) = (2,−1, 2, 0)

(k20, k21, k22, k23) = (−2,−1,−2, 0)

(k30, k31, k32, k33) = (1/2,−1, 1/2, 0)

(k40, k41, k42, k43) = (−1/2,−1,−1/2, 0).

Substituting these parameters in (14) and rewriting the expression in the xµ coordinates
using the structure of exponential functions, we have

φ̂1 = 8m2(c
(1)
1000e

2t−x+2y + c
(1)
0100e

−2t−x−2y + c
(1)
0010e

1
2
t−x+ 1

2
y + c

(1)
0001e

− 1
2
t−x− 1

2
y)
/

[
8m2 − λ[(c

(1)
1000e

2t−x+2y + c
(1)
0100e

−2t−x−2y + c
(1)
0010e

1
2
t−x+ 1

2
y + c

(1)
0001e

− 1
2
t−x− 1

2
y)2

+ (c
(2)
1000e

2t−x+2y + c
(2)
0100e

−2t−x−2y + c
(2)
0010e

1
2
t−x+ 1

2
y + c

(2)
0001e

− 1
2
t−x− 1

2
y)2
]

(16)

φ̂2 = 8m2(c
(2)
1000e

2t−x+2y + c
(2)
0100e

−2t−x−2y + c
(2)
0010e

1
2
t−x+ 1

2
y + c

(2)
0001e

− 1
2
t−x− 1

2
y)
/

[
8m2 − λ[(c

(1)
1000e

2t−x+2y + c
(1)
0100e

−2t−x−2y + c
(1)
0010e

1
2
t−x+ 1

2
y + c

(1)
0001e

− 1
2
t−x− 1

2
y)2

+ (c
(2)
1000e

2t−x+2y + c
(2)
0100e

−2t−x−2y + c
(2)
0010e

1
2
t−x+ 1

2
y + c

(2)
0001e

− 1
2
t−x− 1

2
y)2
]

(17)

Observe that these solutions will present singularities if λ is positive and the chosen
values for kiµ are real, therefore, we will consider only the case λ < 0. For illustration
purpose, let us consider m = 1 and λ = −1. As we have chosen ki3 = 0, we will display
the solution as a sequence of three bi-dimensional graphics at different times. In figure 1,
we show the graphic for the following combination of the arbitrary constants:

(c
(1)
1000, c

(1)
0100, c

(1)
0010, c

(1)
0001) =

√
8(0, 0, 1, 0) (18)

(c
(2)
1000, c

(2)
0100, c

(2)
0010, c

(2)
0001) =

√
8(1,−1, 1,−1). (19)

7



(a) φ1(t = −8,x) (b) φ1(t = 0,x) (c) φ1(t = 8,x)

(d) φ2(t = −8,x) (e) φ2(t = 0,x) (f) φ2(t = 8,x)

Figure 1: In these figures, we illustrate the solutions (16) and (17) for the linear sigma model with two
fields, four traveling-wave and the parameters (18) and (19) in a succession of three graphics at different
time for each field. The z-coordinate is omitted because we chose null components for kj3.

This is one of the many combinations we can obtain from the analytical solution, but
it is interesting to notice a very localized pattern for φ1 produced by the combination of
four traveling-waves that resembles a particle. A phenomenological study of this solution
will be considered in a future work.

5. Efficiency in the processing of data

In this section, we will compare the algorithm used in this paper with the multiple
exp-function method [14] in order to see the benefit of each method. The method in [14]
was the first method to seek multi-wave solutions using a direct approach. On one hand,
if we would like to use the multiple exp-method in the case of subsection 3.1, we would
use the ansatz

φi =

∑M
m,n=0 pi,m,nρ

m
1 ρ

n
2∑N

m,n=0 qi,m,nρ
m
1 ρ

n
2

, ∂µρj = kjµρj, i, j = 1, 2 (20)

and the solution would be found for M = 1 and N = 2. Substituting this ansats in
equation (10) with Nφ = Nρ = 2 and forming a system of algebraic equations with the
coefficients of all powers of ρk, we have a system with 34 variables (4 pi,m,n and 9 qi,m,n
for each field and 4 kjµ for each wave). If we consider the case of subsection 3.2 without
any previous assumption, the number of variables jump to 117 (8 pi,m,n and 27 qi,m,n for
each field and 4 kjµ for each wave). Such systems can be quite complicated depending of
the model.

On the other hand, the algorithm based on Padé approximants we have used splits
the process of find the undetermined coefficients in two stages. Let us dig the calculation
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of the Taylor expansion in the case of subsection 3.1. The algebraic equation used to
determine the firsts elements of the expansion are:

Ê1;00 = c00(m2 + λ(c2
00 + d2

00)) = 0

Ê2;00 = d00(m2 + λ(c2
00 + d2

00)) = 0

Ê1;10 = 2λc00d00d10 + c10(k1µk
µ
1 +m2 + λ(3c2

00 + d2
00)) = 0

Ê2;10 = 2λc00d00c10 + d10(k1µk
µ
1 +m2 + λ(c2

00 + 3d2
00)) = 0

Ê1;01 = 2λc00d00d01 + c01(k2µk
µ
2 +m2 + λ(3c2

00 + d2
00)) = 0

Ê2;01 = 2λc00d00c01 + d01(k2µk
µ
2 +m2 + λ(c2

00 + 3d2
00)) = 0

In these system, we impose c00 = d00 = 0 because we would like that the fields be null at
infinite (similarly, this physical constraint could be imposed on ansats (20) for simplify
the solution of the algebraic system). So, the above system yields

c00 = d00 = 0, k1µk
µ
1 +m2 = 0, k2µk

µ
2 +m2 = 0, c10, c01, d10, d01 arbitrary.

For calculate the Padé approximants [2/2]
(i)
ρ (ξ;S), we still need to find cmn and dmn for

m + n <= 4; however, the equations that yield these coefficients are linear and ease to
solve. After we have calculated the Taylor expansion until the order we need, we stay
with only 10 variables to be determined in the second stage of the algorithm (c10, c01, d10,
d01 and 3 kjµ for each wave).

Therefore, we can see that the algorithm based on Padé approximants can organize
and simplify the processing of data by transforming part of procedure in a linear system.
However, this algorithm has a disadvantage. If we deal with a model that has a singularity
at the origin in the ρk variable, the multiple exp-method may perform better. The solution
for such problem in the Padé approach is redefine the variables ρk as

ρj = ekjµx
µ → ρj = ekjµx

µ −α, ∂µρj = kjµρj → ∂µρj = kjµ(ρj +α), α = constant

in order to avoid the singularity, but this could complicate the equation to be solved.

6. Conclusion

In this paper, it was applied a method based on the Padé approximants in order to
obtain traveling wave solutions for the linear sigma model. With the solutions found for
two and three bosonic fields, we were able to write a solution for an arbitrary number
of bosons and traveling waves. The results of the current work show that the method
developed in [20] is robust and can be used to find explicit solutions in specific problems
in classical field theory.
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