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Abstract

The Jet Transport method has emerged as a powerful tool for the numerical integration of ordinary differ-

ential equations; it uses polynomial expansions to approximate the flow map associated to the differential

equation in the neighborhood of a reference solution. One of the main drawbacks of the method is that

the region of accuracy becomes smaller along the integration. In this paper we introduce a procedure to

determine a ball covering the set of given initial conditions that keeps the accuracy of the integration within

a selected threshold. The paper gives detailed explanations of the algorithm illustrated with some examples

of applicability, as well as a comparison with a previous existing method for the same purpose.
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1. Introduction

Let ẋ = f(t, x), x ∈ Rn, be a system of ordinary differential equations (ODE), and φt(t0, x0) the associated

flow map: if x(t) denotes the solution of the ODE such that x(t0) = x0, then x(t) = φt(t0, x0). The Jet

Transport (JT), also known as Differential Algebra, procedure is a semi-numerical method that propagates

a neighbourhood U of x0 instead of the single initial condition x0; this is, at the first time step h of the5

propagation, the initial condition x0 is replaced by a polynomial of degree one Pt0,x0
(ξ) = x0 + ξ ∈ Rn that

parameterises U , and a higher degree polynomial approximation Pt0+h,x0(ξ) of φt0+h(t0, x0 +ξ) is computed.

This resulting polynomial is propagated in the next step, and the procedure is repeated recursively. The

basic idea of the method is shown schematically in Fig. 1.

The propagated polynomials Pt,x(ξ) are computed using an implementation of a numerical integration10

method for ODEs in which the real number floating point arithmetic is replaced by a polynomial algebra (i.e.
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Figure 1: Schematic idea of the JT propagation procedure. The circle on the left represents the neighbourhood U parameterised

by (ξ1, ξ2), and the right hand side ellipse is its image at time t0 + h. In the figure x(t0 + h) stands for φt0+h(t0, x0), and the

image of x0 + (ξ1, ξ2) ∈ U is the point Pt0+h,x0
(ξ) = x(t0 + h) + (Pt0+h,x0

(ξ) |1, Pt0+h,x0
(ξ) |2).

all the arithmetic operations are done using truncated polynomials up to a certain degree). The polynomials

Pt,x(ξ) provide, up to a certain order, the solutions of the variational equations associated to the ODE

without writing and integrating them explicitly. Therefore, the only tools that are needed are: a numerical

integration method for ODEs and a polynomial algebra package.15

For common numerical integration methods, such as Runge-Kutta, Taylor or symplectic, the step-size

selection is done according to a local truncation error estimate. For the JT procedures it is also necessary

to control the size of U . This is the problem we address in the present paper. In the proposed approach,

whenever necessary, a subdivision strategy is applied either increasing the number of polynomials or splitting

regions for the propagation.20

Jet Transport methods where introduced by M. Berz in 1986 ([7]) to study beam dynamics in particle

accelerators problems and, since then, have been used in several other fields, for instance: in Astrodynamics

to study the close approaches of Near Earth Asteroids ([3, 4]), to compute a Gaussian particle filter for

spacecraft navigation ([18]), or to detect structures in dynamical systems using several indicators ([14]). JT

methods have also been used to compute the time evolution of probability density functions (PDF) according25

to the flow associated to an ordinary differential equation ([13, 21, 5]).

Currently, there are several implementations of the Jet Transport/Differential Algebra methods. Some

of the most well known are: COSY INFINITY (M. Berz and K. Makino [10]); TIDES (A. Abad et al. [1]);

CAPD DynSys Library (D. Wilczak [19]), and DACE, which is an implementation developed from COSY

specially adapted to the space community (Rasotto et al. [15]). For this work we have used our own one30

(D. Pérez-Palau [13]), which includes all the basic algebra and functions needed for the implementation of

the numerical integration method, as well as some additional ones such as the inversion of functions and an

equation solver.
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One of the main drawbacks of the JT methods is that the region where their accuracy is below a certain

threshold becomes smaller along the integration. This paper presents a new procedure to determine how and35

when the region and associated polynomials can be split to maintain the required accuracy. The method is

based on the covering of the propagated states by new neighbourhoods. The algorithm presented contains

some ideas similar to the ones of the interval enclosure methods [6, 2], in which the results of the operations

are assured to be in a given interval. In the current algorithm, the results of the operations are given by

polynomials, which are assured to be in a given region. The new algorithm is compared with the Automatic40

Domain Splitting (ADS) approach, an algorithm developed by A. Wittig et al. [20] for this same problem,

in which the basic idea is the division and rescaling of the propagation polynomials along the integration.

It must be noted that both approaches mentioned have two main steps: the first one detects when the

splitting should be done, and the second accounts for how the division of neighbourhoods or polynomials

is implemented. In both cases the procedures work schematically as follows. First a certain neighbourhood45

is propagated until some condition breaks because the accuracy of the propagation is below some fixed

tolerance. Up to that point the method is a usual JT flow propagation. When the condition breaks the

second part of the algorithm starts: the polynomial or the set of points, depending on the selected strategy,

splits. After the division, the usual Jet Transport flow propagation is started with new initial conditions.

The paper is organised as follows: in Section 2 we briefly introduce the step control strategy for the50

integrator used as well as how to determine if the polynomials are accurate enough; in Section 3 we review

the (ADS) approach; Section 4 describes the procedure that we have developed; in Section 5 we give some

numerical tests and comparisons between both methods, while the last section ends with some remarks and

conclusions.

2. Step-size control in polynomial algebra propagation55

In this section we briefly discuss how to determine the step size in a JT procedure. As numerical

integration method we have used Taylor’s method for ODE (as implemented by Jorba and Zou [9]). Given

a certain accuracy level ε, the optimal step of this method is given by (see [16] for details)

hopt = min

{(
εe2‖x(1)‖∞
‖x(n−1)‖∞

) 1
n−2

,

(
ε‖x(1)‖∞
‖x(n)‖∞

) 1
n−1

}
,

where x(i) are the coefficients of Taylor’s method solution written in powers of the step size h at each step,

this is:

φtn+h(tn, xn) =

n∑
i=0

x(i)(tn, xn)hi.

In our case, the coefficients x(i) are polynomials, so for each coordinate xm we have:

x(i)m =
∑
k

c
(i)
m,kξ

k,
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and the step size control must be done using the coefficients c
(i)
m,k. Denoting by

ψik = max
1≤m≤n

|c(i)m,k|,

an approximation of the optimal value of h, in order to control all the orders of the expansion, is

hopt = min
k

{(
εe2ψ1

k

ψn−1k

) 1
n−2

,

(
εψ1

k

ψnk

) 1
n−1

}
.

The main idea behind such approximation is based on the fact that each coefficient c
(i)
m,k of the expansion

can be understood as the k-th coefficient in the phase space variables and the i-th coefficient in the time

variables, all of them associated to the Taylor expansion of the m-th component. Under such situation,

consider the maximum of c
(i)
m,k is equivalent to considering the polynomial as the expanded solution of the

ODE including all the high order variational equations.60

As it has already been said, in the JT method the size of the set U that can be propagated with a given

accuracy decreases as the integration time increases. As in the step-size control of Taylor’s method, there

will be also a domain, to be estimated, where the JT resulting polynomial will have an error below a given

tolerance. Ideally, it would be convenient to know the value of the maximum size of the domain that can be

propagated keeping the above error condition satisfied before doing any further time-step of the procedure.65

However, it is not known how to do this a priori estimation. The size of the domain U can only be estimated

after each integration step, and this will be done in an analogous manner as the step-size control selection

of Taylor’s method, now using the higher order terms on the resulting polynomial.

Assume that at a certain time t the JT polynomial is,

Pt0+t,x0
(ξ) =

∑
1≤m≤n
|k|≤n

am,kξ
k.

A straightforward option is to select the size of U in such way that

am,kξ
k ≤ εJT ,

where εJT is a given tolerance. In this way, the last term is not adding a contribution larger than εJT to

the polynomial. In case where we require U to have the same size in any coordinate direction we get,70

ξmax = min
|k|=n
m

(
εJT
am,k

)1/k

. (1)

In case that the last term were zero, one can use an exponential fit of the size of all the known non-zero

coefficients, up to a certain order, to obtain an accurate estimate of the size of the next order (see [20]).

Hence, if we want to propagate a given region U of the phase space, we fix an initial radius r0 and an

initial condition ~x0, in such way that U is contained in the ball of radius r0 and centre x0 and start the
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propagation. Whenever we detect that, according to the previous criterion, P (ξ), with ξ ∈ U , is not a75

good enough approximation of the flow, we proceed with a subdivision strategy, either using two or more

polynomials or using two or more regions for the propagation.

3. Splitting the polynomial

In the ADS method introduced in [20] the polynomial approximation of the flow is split in two new

ones whenever some accuracy condition is not fulfilled. In this method the initial neighbourhood is param-80

eterised by the n-dimensional parallelogram [−1, 1]n. At each step of the integration, once the polynomial

approximation P (ξ) of the flow is available, the following test is performed:

• Define the size Si of the terms of order i of the polynomial P (ξ) =
∑
k akξ

k as Si =
∑
|k|=i |ak|.

• For the set I of indices i for which Si is different from zero, a least squares fit with the exponential

function f(i) = A · exp(Bi) is computed, in such a way that f(i) = Si.85

• The value of f(q + 1) is used to estimate the size Sq+1 of the truncated order q + 1 of P (ξ). If the

difference Sq+1 − f(q + 1) is over a given tolerance, then it is said that the test failed.

Whenever the test fails, the following algorithm is applied to determine the splitting of P (ξ).

• Look for the more expansive direction ei, again using an exponential fit for the coefficients of the

polynomials in each variable xj , and taking i as the value giving the largest error. The splitting is only90

performed in the i direction.

• Split P (ξ) in two polynomials P±(ξ) defined by

P±(ξ) = P

(
ξ1, ..., ξi−1,

ξi
2
± ei

2
, ξi+1, ..., ξn

)
,

where ei = (0, ..., 0, 1, 0, ...0) is the i-the vector of the canonical base of Rn. Each polynomial is defined

again in [−1, 1]n, but these two boxes are now parameterisations of smaller regions.

After the splitting, the propagation continues for both P+ and P−. Taking rectangular boxes has several

benefits. The first one is that the boxes do not overlap. In addition, once the splitting strategy is fixed,95

it is straightforward to use. The final result of the method consist in N polynomials. To determine the

propagation for a given initial point x we only need to evaluate the appropriate polynomial at the transformed

coordinates of x in the box [−1, 1]n. A possible drawback of the parameterisations is the following: the

vertices of [−1, 1]n are farther from the origin than other points; it can happen that if the vertices are

well approximated, according to the tolerance test, there will be points outside the box that are also well100

approximated by the polynomial but cannot be propagated with the same polynomial.
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In this procedure it should be also possible to use, instead of ei, any other unitary direction c (‖c‖ = 1)

together with the polynomials P±(ξ) = P

(
ξ

2
± c

2

)
. However, using an arbitrary direction, the initial region

is not completely covered by the two new polynomials P±(ξ), and also in other subregions they will overlap

each other. These two facts make to consider splittings in arbitrary directions not suitable.105

4. Splitting the neighbourhood

The method that has been developed splits the domains of integration instead of the polynomial approx-

imation of the flow. The basic idea consists in propagating an initial neighbourhood until a certain time T ,

when an accuracy condition fails, and then, according to certain rules, we construct a new set of polynomials,

which propagates points around φT (t0, x0).110

To detect when the propagation fails, the maximum initial box test, determined by the value of ξmax,

discussed in (1), is used. At the beginning of the propagation a minimum initial box of size r0 is fixed, this

determines the neighbourhood U0 that we want to propagate with enough accuracy. Therefore, we consider

that the test fails whenever the size ξmax of the maximum initial box is below the size r0.

The next point to consider is how to generate new neighbourhoods U i1 in order to cover the propagation115

of U0. For its determination two different strategies have been implemented. The first one is a covering

procedure that uses the information that we have in the propagated polynomial to determine where we must

locate the new sets U i1. The second one uses tracer points, to be defined, in order to determine the regions

that must be covered. In both cases new radii ri1 are determined.

Along the steps of the algorithm there will be, in general, more than one neighborhood U ij . Each120

neighbourhood is defined by a polynomial that is used to compute the propagation. In this situation, the

maximum initial box test must be checked for each one of the polynomials. If one of the polynomials breaks

the accuracy condition, then the splitting procedure is applied to all of them. Observe that now the maximum

initial box must be compared with the associated minimum box size r0.

The following notation will be used: U will denote the neighbourhood of x0 parameterised by x0 + ξ,125

with ‖ξ‖ < r0; V = φT (t0, U) will be the image at time T of U computed using the flow associated to the

differential equation, and Ṽ = P (U) will denote the image at time T of U computed using the polynomial

P (ξ) = PTt0 (ξ) ≈ φT (t0, x0 + ξ). The maximum initial box test will fail if the maximum value ξmax is below a

minimum box size radius r0. In general, if U is a ball around x0, its image V will be an ellipsoidal (or close

to it) neighbourhood. In the extremal case where it is well approximated by non-convex neighborhoods the130

algorithms presented are well adapted.

4.1. The covering procedure

The first splitting procedure uses the neighbourhood Ṽ , computed at a certain epoch T using P (ξ), to

define two new neighbourhoods, U+ and U−, covering V .
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By means of P (ξ), we look for a point xe = P (ξe) such that ‖ve‖ = ‖P (ξe)− P (0)‖ is maximum among135

all the points with ‖ξe‖ = r0. The point xe is obtained using Newton’s method applied to the derivative of

the distance function, that refines a first guess obtained after a preliminary exploration of a rough grid of

points. Note that, since the polynomial P (ξ) is available, Newton’s method only requires the computation

of derivatives of polynomials, which is done using the implemented polynomial algebra.

In the next step two new neighbourhoods U± are added. They are located along the most expanding140

direction determined by xe, one at each side of the centre of Ṽ , and with their centers at c± = P (0)± ve/2,

respectively.

x0

U

c−

c+

V = P (U)

P (0)

π

ver+

ve/2

Figure 2: Schematic explanation of the covering procedure. The propagated neighbourhood V decomposes in two new ones U±

with centres c± along the more expansive direction ve and radius r+ = r−, such that V is completely covered by them.

Taking r± = ‖ve‖/2 as the radii of both new neighbourhoods U± is not a good option, since then V will

not be completely covered by them: there will be points in the hyper-plane π through P (0) and perpendicular

to ve that will not be in any of the two new neighbourhoods. Using one of the two half neighbourhoods of145

V determined by π, the value of r± is taken as the maximum distance from the selected neighbourhood to

the associated center c+ or c−. Again, a grid search is used to determine a good initial guess for r±, that is

refined using Newton’s method applied to the derivative of the distance function. Figure 2 shows a scheme

of the different ingredients that take part in this covering procedure.

The neighbourhoods U± are labelled as U ip, where p denotes the splitting step in which they are generated150

and i is an index for its identification. Figure 3 shows the results obtained with the above algorithm applied to

propagate an initial neighbourhood with r0 = 0.1 around a point located in the lower part of the circulation

regime of the pendulum (x′′ = − sinx, (x0, x
′
0) = (0,−3.4)).

Some of the problems of this splitting become clear looking at Figure 3. The most notorious one is that

at the end of the propagation the covered region by the U ip sets is much larger than the one really needed155

(bounded by the black thick line in the figure). This is because at each step we are enlarging the propagated

region. At a first glance, it seems that this would not be a major problem apart from the fact that in

regular regions of the vectorfield the procedure would require a higher computational cost. However, if the

integration has a close passage to a singularity over-covered by the algorithm, then the failure of the splitting
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Figure 3: Evolution of the splittings of the subdivision algorithm for an initial ball around the point (x, x′) = (0,−3.4). The

initial region is in the right lower part. The purple regions are the sets U i
p, the blue regions are their propagations V i

p . The

black thick line on the left hand side surrounds the “true” final propagation of the initial neighbourhood, computed using a

direct numerical integration.

condition will happen often and the new set to be covered will require more subsets, since it will be much160

more elongated.

Figure 4: Schematic representation of the computation of the δ variation needed to match the distance of maximum expansion

and the distance in the normal space.

In order to solve the above drawback we introduce the following modification. In addition to ve, we

search for a new direction vo defined as the maximum expansion direction orthogonal to ve. The centre of

the new box is moved closer to P (0) and its radius slightly reduced according to the following. Let δ denote

the displacement of the centre as shown in Figure 4; the new location of the centre must satisfy

‖ve‖
2

+ δ =

√(
‖ve‖

2
− δ
)2

+ v2o ,

from which we get δ =
‖vo‖2

2‖ve‖
. Therefore, locating the centre of the new neighbourhood at

c± = P (0)±
(
‖ve‖

2
− ‖vo‖

2

2‖ve‖

)
,

and taking as its radius

r± =
‖ve‖

2
+
‖vo‖2

2‖ve‖
,
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Figure 5: Ratio between the area covered by the new neighbourhoods U+ and U− over the area of an elliptical approximation

of the neighborhood V as a function of the ratio between the length of the vectors ve and vo.

the new neighbourhood U ip is the smallest one that covers the corresponding part of V .

Figure 5 shows the ratio of the sum of the areas of U+ and U− over the area of the almost-elliptical neigh-

borhood V as a function of the ratio ‖ve‖/‖vo‖. It shows that the improvement reduces the overestimated

area. For low elliptical ratios the improved method covers almost twice the area of V , due to the fact that165

both neighborhoods U+ and U− almost completely overlap. For those cases with high eccentricity the over-

estimation is large due to the elongated shape V . In addition, if V is far to be elliptical the approximation

used to compute the overestimation is not valid.

Another problem that comes out from Figure 3 is the existence of neighbourhoods U± that almost

completely overlap. This is already clear at the first step. The main reason of this behaviour is that the170

direction in which the propagation of the initial neighbourhood is expanded is almost the same for each

iteration. Figure 6 shows the overlapping of the sets U+− and U−+ at the second step of the method.

To avoid this drawback, a safety factor ρ is introduced. Once all the new neighbourhoods U ip have been

computed, and before the next propagation step, the distance between their centres is computed. If there

are two centres whose distance is less than ρ times their radii, then two associated neighbourhoods are175

merged. The centre of the new neighbourhood is located at the middle of the two removed ones, and the

radius is enlarged by one half of the distance between the two centres. The value of ρ must be tuned for

each application; if it is too small the procedure does not merge any pair of neighborhoods, and if it is too

large the procedure joins too many neighborhoods, and their size becomes too large to be propagated with

enough accuracy. The value ρ = 0.2 has been used in most of the examples of this paper.180

There is still some possible overlapping of the U ip when their centres are close but not close enough to

be merged by the above improvement. In the case of highly non-convex sets the described method covers

completely the set V , however the overestimation of the covering is big. For these reasons an alternative is

9



Figure 6: The neighbourhoods U+− and U−+ almost complete overlap at the second step of the covering procedure.

required. The next algorithm presents a new way to set the neighbourhoods U ip; it uses the information

provided by some points that are propagated up to the splitting time to determine the region V to be covered185

by the new U ip.

4.2. The use of tracers to control the covering

The following algorithm uses a set of points {σ0
0 , σ

1
0 , . . . , σ

m
0 } in U0, or tracers, to get information about

the evolution of U0 under the flow associated to the dynamical system defined by f(t, x). The tracers are

used to identify, at each step p the number and the location of U ip sets.190

For a given U0, the associated tracers are located at its center, σ0
0 = x0, and its boundary, T0 =

{σ1
0 , . . . , σ

m
0 }. In the 2-dimensional case, the boundary points will be σi0 = x0+(r0 cos(2πi/m), r0 sin(2πi/m)).

The discussion for higher dimensions is given later. The inclusion of x0 as a tracer is convenient since allows

to control the central part of the neighborhood which, for usual applications, is the one with highest interest.

r

c

c

`2

`1
Ui,j

Figure 7: Elements that take part in the selection of the neighbourhoods U i
p. The red dots are the tracers and the light green

boxes the ones that will contain a new neighbourhood Uj
p .

All the tracers are propagated up to the splitting time using the JT: σip = PT (σip−1). Then, the new195

set of neighborhoods U ip is determined in such way that all the σip are covered by at least one of such

neighbourhoods. Algorithm 1 (illustrated in Figure 7) is used to determine the new set U ip, and the number
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of the polynomials to be propagated. In order to ensure the covering of the tracers, a grid of n-dimensional

boxes covering the full set of tracers at time T is used. The neighborhoods U ip are located only at those

boxes that contain a tracer. Observe that in the grid each box will have a multi-index k associated. The200

box with multi-index k is the one located in the ki-th position in the i-th direction of the grid.

Algorithm 1. Consider the n-dimension system ẋ = f(t, x), x ∈ Rn. At the p-th covering step:

1. For a given value r of the radii of the sets U ip, compute the length c of the side of a square (or, in

general, of a hyper-cube) such that r is the length of its diagonal and so c =
√

4r2/n.

2. Compute the minimum and maximum values of all the coordinates of the tracers σ1
p, . . . , σ

m
p :

aτ = min
0≤i≤m

σip|τ , bτ = max
0≤i≤m

σip|τ , τ = 1, ..., n.

These two values will be used to determine the boundaries of the grid.205

3. Compute the grid size ` as: `τ =

([
bτ − aτ

c

]
+ 1

)
c, where [ · ] denotes the integer part.

4. Fix an n-dimensional grid. Each side will have

[
bτ − aτ

c

]
+ 1 boxes, and will start at ãτ = aτ −

`τ − bτ + aτ
2

.

5. If a box with multi-index k contains a tracer tip, associate to it a new neighbourhood U ip of radius r and

center ai + (ki + 0.5) c.210

6. A polynomial P ip is initialised for each U ip. If a given box contains two or more tracers, only one

polynomial is initialised.

7. All the polynomials P ip are propagated together until one of them breaks the division condition or the

final time is achieved.

Observe that the grid size ` defined in step 3 is larger than the distance between the maximum and the215

minimum in each direction. This increases the region where the new sets are selected and, in this way, if the

set of tracers does not reach the most distant point to the center, there are still chances to capture it.

The value of r for the new neighbourhoods must be selected for each problem after some preliminary

tests. If it is too large the new polynomials will break the split condition after a short propagation time, and

if it is too small there will appear too many polynomials and the algorithm will become slow. A compromise220

between both facts must be achieved.

Figures 8 and 9 show, for the simple pendulum, the elements introduced in the above algorithm as well

as the first four steps of the procedure. Figure 8 shows, for the first step, how the selection of the U i1 sets is

done using the tracers, and the result of the propagation of U0 and the U i1. The three left hand side plots of

Figure 9 show the results of the second, third and fourth step of the splitting procedure. In all the plots, the225

purple curve is U0 and its “true” propagation using Taylor’s method, and the tracers are the green crosses,
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which are propagated by P (ξ) and used to set the grid of boxes (in blue) to select the new neighbourhoods

U i1 (in yellow). To obtain the figure the initial condition x0 = (0,−3.5) has been integrated using as a value

of the radii for the new neighbourhoods r = 0.1 and a tolerance to split ξmax = 0.035.

The bottom left plot of Figure 9 corresponds to the fourth step of the procedure, when the final time at230

this step has been reached (the splitting condition is activated). There, we can see the result of the “true”

integration of the differential equation (in purple) and images of the U i3 sets (in green). It can be seen that

the U i3 sets do not cover completely the purple one. This happens because in the previous step not all the

boxes containing the propagation of U0 were selected. This is because the U0 set expands with time and,

therefore, the tracers in it will also expand and separate from each other.235
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Figure 8: From left to right and from top to bottom, first steps of Algorithm 1 for an initial condition in the circulating regime

of the simple pendulum. The purple curve is U0 and its “true” propagation using Taylor’s method, the tracers (green crosses)

are propagated using P (ξ). On the traces we set the grid of boxes (in blue) to select the new neighbourhoods U i
1 that are

propagated (in yellow). The bottom right figure shows the result of the propagation of U0 and the U i
1 sets: the purple ellipse

is the image of the boundary of U0 up to the time at which the splitting condition breaks, the blue asterisks are the images of

the tracers, and the green small ellipsoids are the images of the boundaries of U i
1.

To avoid this kind of behaviour of the tracers some new ones are added during the splitting procedure

according to the following. If at the p-th splitting iterate the distance between two consecutive boundary

tracers, {σ1
p, . . . , σ

m
p }, is greater than a certain tolerance, dtol, this is ‖σip − σi+1

p ‖ > dtol, then a new

(boundary) tracer σ̃i+1
p is added between them. To add a tracer we compute the mid point between σip and
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σi+1
p , and normalise in order to set it on the boundary of U0. In this way, the new tracer is

σ̃i+1
p = x0 + r0

σip − σi+1
p − x0

‖σip − σi+1
p − x0‖

.

Once a tracer is added at its corresponding place, the tracers with a super-index greater than it increase

their index in one unit. The new tracer is propagated up to the current time in order to start the covering

procedure.
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Figure 9: The first two left hand side plots show the results of the first and second covering iterates of Algorithm 1, and bottom

left plot the result of the propagation up to the final time of U0 and the U i
1 sets. The right hand side plots correspond to the

same computations as in the left but adding tracers to the procedure when the initial ones are separated more than a certain

distance dtol = 0.1 (see more explanations in the text). The colour coding is the same as in Figure 8.

The three right hand side plots in Figure 9 show the second and third steps of the splitting procedure,

together with the result at the final time, using the improved strategy of adding tracers with dtol = 0.1.240
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Observe that now the final propagation of U0 is well covered by the images of the U ip. However, the covering

is not done with the minimum number of neighbourhoods. It is clear that the last step could be done using

only four or five sets, instead of the seven required by the procedure. To overcome this drawback, it is

convenient to align the grid along the maximum expansion direction. In this way there will be a direction

with an elongated grid and narrower one in the orthogonal direction. This can be done using the following245

algorithm.

Algorithm 2 (Adapted direction to determine splittings using tracers). Once the propagation is stopped by

the accuracy condition, then:

1. Find the most expanding direction ve.

2. Use a Gram-Schmidt method to compute an orthonormal basis which contains ~ve as one of the vectors.250

Let C be the matrix of the change of coordinates defined by this basis.

3. Transform the position of the tracers to the new base according to σip = Cσip.

4. Apply Algorithm 1 to determine the centres ci of the neighbourhoods that will be propagated.

5. Transform the position of the centres back to the initial coordinate frame: ci = C>ci.

Note that the radii of the neighbourhoods does not change with this algorithm, since C is an orthonormal255

transformation.

Figure 10 displays the results obtained, for the same example and values of the parameters, using Algo-

rithm 2. The bottom plot with the final results shows that, the number of neighbourhoods has been reduced

from the seven needed by the unmodified Algorithm 1 to only four.

Observe that with Algorithm 2 the highly non-convex case is perfectly managed, since only such boxes in260

the grid containing a tracer will be covered by the new set of neighbourhoods, avoiding the overestimation

produced by the previous method.

Algorithm 2 can be implemented in higher dimensions. The only thing that requires some attention is

how to sort the tracers, and include additional ones when required. In the two-dimensional case, it is easy to

sort them checking the distance between two consecutive ones. In the boundary of an n-dimensional sphere265

there is no such trivial sequence. The procedure starts with 2n+ 1 tracers, 2n are located at each one of the

intersections of the coordinate directions with the boundary of U0, and an additional one is at the center of

U0.

If the dimension n is greater than 2, each tracer σi0 is identified by an index, as in the 2-dimensional case,

but has also associated an array with the indices of the other tracers to which σi0 is connected. The length270

of the array is 2n−1. Since the tracers also generate hyper-polyhedra, it is possible to add to the previous

indices an array of all the polyhedra with the tracers that are at its vertices. Two tracers are in the same
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Figure 10: The two top plots show the results of the first and second splitting iterates using Algorithm 2, with the same values

of the parameters used to get the results shown in Figure 9. The purple curve is the “exact” propagation of U0, the green

crosses are the propagation of the tracers and the yellow circles the sets U i
p that are propagated. The bottom plot displays

the result at the final integration time; the purple curve is the final neighbourhood and in green curves are the four U i
p sets

propagated in the last step.

polyhedron if they are connected by an edge. Therefore, the procedure stores the relation between two kinds

of objects: a list of tracers and a list of polyhedra.

It remains to study how to determine when a tracer must be added and how to do it. Observe that in275

the 2-dimensional case there is only one dimension to measure how far two tracers are, because each tracer

only has one direction to go to the next one. In the high dimensional case there are two different ways for

adding a tracer:

• Compute the distance between all the connected tracers. If the distance between two of them is higher

than a given tolerance dtol a tracer is added.280

• Compute the n-volume generated by each hyper-polyhedron; if it is higher than a certain value vtol a

new tracer is added.

Observe that the volume criteria has a problem: it may happen that all the vertices of a polyhedron, except

one, are close; in this situation the volume of the polyhedron can be small but there will be a tracer far away.

In the 3D case the polyhedron will be a triangle. We can put a vertex of the triangle as far as we want and285
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have the other two in such a way that the surface (the 2-dimensional volume) be small. Therefore, there

should be a new tracer in between. However, since the volume is small it is not added. Because of this, the

volume-strategy has been discarded.

Recall that in the two-dimensional case when a tracer is added we normalise the barycenter of the two

distant tracers. Following this idea, there are now two options for adding a tracer:290

• Normalise the barycenter of the vertices of the polyhedron with distant tracers.

• Normalise the barycenter of the distant tracers, i.e: only the vertices of the polyhedron which are

distant are shortened.

Figure 11 shows these two different ways of adding a new tracer. It can be seen that using the first

option, adding the tracer at the barycenter of the polyhedron, the longest distance (in red) remains fixed295

and, therefore, the procedure will proceed (and in fact repeated indefinitely) without affecting the distance

between the two tracers, whilst the second option reduces the distance between them; so the first option has

been discarded.

Figure 11: In the top figure we display an initial situation of the tracers (vertices of the polyhedron) in a 3-dimensional system.

The red line between the two traces is assumed to be too long. The bottom figures show the two possible ways to add a new

tracer. The left one shows how it is added using the face of the polyhedron in order to determine the new position: first the

barycenter of all the vertices is computed and then normalised to be at a distance r0. The right hand side one shows how to

add the tracer using only the two tracers that are next to it. Again their barycenter is computed and then normalised to be at

the right distance.

The output of the covering algorithm are j+1 sets of polynomials Pp, p = 0, . . . , j, where j is the number

of divisions done. For each polynomial P ip in Pp we store the central point cip and the coefficients of P ip. To
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propagate an initial condition x0 = x0 + ξ from the initial time t0 up to the final time T , j + 1 polynomial

evaluations are needed. At each step, p, the propagation of x0 up to the p-th division time is computed

evaluating the polynomial of Pp−1 whose central point is closer to xp−1, i.e.

xp = P ip−1(xp−1 − cip−1),

where i is the index such that ‖xp−1 − cip−1‖ is minimum.

As concluding remark, we can say that the use of tracers allows to accurately cover U0 using only a300

few number of U ip sets. The only parameters required by the procedure are the size r of the boxes of the

grid, the tolerance dtol used to add tracers, and the value εJT up to which we want to maintain the final

precision. The smaller their values the better the approximations obtained. By reducing the size of the

boxes of the grid more neighborhoods are propagated. By reducing the precision value εJT the number of

splittings increases, since the split condition breaks more often.305

Several tests have shown that, for most of the cases, the size of the initial neighborhood U0 is a good

starting value for r. A suitable value of the tolerance dtol, that determines the distance at which a tracer

must be added, is about one half of the size of the boxes of the grid.

5. Numerical Results

The two mentioned strategies, the ADS and the one considered in this paper, have been compared in two310

different dynamical systems:

• The simple pendulum, whose (normalised) differential equation of motion is:

ẍ = − sin(x).

The dynamics of this system is well known. There are two equilibrium points at x = 0 and π and, in

the phase space (x, ẋ), two regions with qualitatively different kinds of motion: one around the lower

equilibrium position, which corresponds to the oscillations of the pendulum, and the other associated

to the circulation regime (in fact there are two circulation regions, one with ẋ(t) > 0 and the other with315

ẋ(t) < 0). Between them there are two separatrices connecting the upper and bottom equilibria in an

infinite time. It has been shown (see [14]) that the JT procedure is better suited for initial conditions

not too close to the separatrices. We will show how the behavior of the JT is improved when the

preceding subdivision algorithm is used.

• The two body problem, that studies the motion of two masses under their mutual gravitational attrac-

tion is studied. We consider the differential equation of relative motion of the bodies given by:

ẍ = −µ x

‖x‖3
.
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It is known that the orbits of this system are conic sections: ellipses, parabolas, hyperbolas and straight320

lines. We will only consider elliptic motions.

The comparison between the implementation of the two subdivision methods is not straightforward since

they check the accuracy of the computations in different ways. In the ADS procedure the accuracy of the

propagation is verified doing an estimation of the size of the n + 1 order terms of the polynomial used for

the propagation, based on an exponential fit of the size of all the known non-zero coefficients up to order n.325

In the approach presented in this paper the accuracy, that is estimated according to Section 2, is required

to be below a given tolerance at each step of the method. Therefore, the tolerances that imply a certain

subdivision are different. In order to have comparable results the tolerances have been tuned in such a way

that the average of the errors using both methods be the same.

5.1. Propagation results for the pendulum330

Two different computations have been done for the pendulum: one is the propagation of a regular point

far from the separatrix, and the other is the propagation of a point on the separatrix.

5.1.1. The regular case

For this computation, a circulation orbit starting at x0 = (1, 0) has been propagated up to a final time of

tf = 23 adimensional time units. The maximum order of the polynomials used in the JT has been set equal335

to 3.

In order to check the correctness of the results obtained, they have been compared against two test

propagations. The first one is a double-precision Runge-Kutta-Fehlberg-78 numerical integration (with a

local truncation error equal to 10−14 that is assumed to provide a very accurate value for the flow; the errors

obtained by the RKF-78 are lower than the errors obtained by a low degree polynomial approximation of340

order 3. The second propagation is the one obtained if no subdivision strategy is used, i.e. only a single

polynomial propagation is used. The results obtained with this propagation show which are the gains of the

developed procedure.

Figure 12 shows the errors of the three propagations. In all figures we display, using different colours,

the logarithm of the differences between the result of the RKF-78 numerical integration and the polynomial345

approximation of the flow of degree 3 after 23 time units. In the left hand side column these errors are shown

in the square box neighbourhood of initial conditions around the point x0. The right hand side figures show

the same errors around the image of x0 after 23 time units.

As should be expected, if no divisions are done (first row) the results of the propagation are good around

the central point x0 = (1, 0) and become worse when the distance to it increases. When the division350

algorithms are incorporated to the procedure, the precision is enhanced for points that are far away from

the central point, as it is shown in the last two rows of the figure.
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Figure 12: For the simple pendulum, errors obtained using the JT propagation without divisions (top), with the subdivision

algorithm introduced in this paper (center), and using the ADS subdivision algorithm (bottom). In the left column the errors

are displayed with respect to the initial state (x0, ẋ0), and in the right column with respect to the final state (xf , ẋf ). In the

three cases, the initial condition is (x0, ẋ0) = (1, 0), and a square box of 0.035 units is propagated during 23 time units.
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The plots in the second row of Figure 12 show the accuracy obtained with the subdivision algorithm

introduced in this paper. Clearly, the size of the set of points which are propagated with higher precision

has increased by a factor lager than 2 when compared with the non-subdivision case. Note that, in these355

error plots, one cannot distinguish the subdivisions done by the procedure. This is due to the fact that at

each subdivision step the new neighborhoods are set to cover in the best possible way the full domain, and

the new neighborhoods to be propagated are selected independently from the previous polynomials.This is

one of the major differences with respect to the ADS procedure, where at each division step a polynomial is

split in two, and the new polynomials depend on the previous ones. The accuracy obtained with the ADS360

algorithm is shown in the last row of the figure. The division done by the method is detected by the eight

“rectangles” corresponding to the regions with the lowest values of the errors. The central point of the grid

is one of the points with highest error. This is because this point is, after the first splitting, at the region

between two new polynomials and, therefore, far away from best propagated domains, that are those ones

close to the central points associated to each step.365

No subdivisions Subdivisions algorithm ADS algorithm

log(error) average -6.29 -8.07 -8.081

Maximum error 3.483941e-05 3.694106e-06 3.868810e-07

% of points worse than with no divisions - 3.98% 9.13%

Number of polynomials stored 1 47 32

Total propagation time τ =
∑
τi 23 81.6 385.28

CPU propagation time (s) 0.15 0.519 2.542

2 · 105 evaluations CPU time (s) 0.107 0.667 0.131

Table 1: Summary of the results obtained in a pendulum JT propagation using and without using the subdivision algorithms.

Table 1 summarises some of the results displayed in Figure 12. For each of the three procedures, it gives

the average of the logarithm of the errors obtained for the 2 · 105 samples used, as well as the maximum

error. We can see that the two subdivision algorithms improve the final accuracy (average of the errors) by

two orders of magnitude. The improvement in the maximum error is of one order of magnitude for the

subdivisions algorithm and of two orders for the ADS algorithm.370

For both methods, the percentage of points which have been propagated with less precision than the

non-division propagation is also given in the above table. Although at first sight it may be surprising to

have points with lower accuracy using the subdivision algorithm than without using it, this has a clear

explanation: all those points are close to the initial condition and for them the non-subdivision propagation

has the best accuracy. If no division is done, the central point is propagated up to the ODE numerical375

integrator algorithm accuracy, while in the splitting algorithms the central point is not propagated with such
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high accuracy (but of course inside the threshold accuracy required).

The final number of polynomials stored in the memory is also given in Table 1. If no subdivision is made,

there is only one polynomial stored, as it is obviously expected. The new covering algorithm stores more

polynomials, since each time that a subdivision happens, a new set of polynomials is added, while in the380

ADS algorithm only one new additional polynomial must be added.

The propagation is done from an initial time t0 up to a final time tf = 23. However, each time that a

division is required and new polynomials are added, the required time to propagate all the polynomials up

to the final time is also added to the computation. For this reason, if we define τi as the time during which

the polynomial Pi is propagated, this is: if Pi(ξ) ≈ φtf,i(t0,i, x + ξ), then τi = tf,i − t0,i. In this way, the385

total propagation time displayed in the table is given by τ =
∑
τi.

As we can also see in the table, although the subdivision algorithm stores more polynomials than the

ADS procedure, the total propagation time is shorter. The explanation for this fact is the following: in the

subdivision algorithm, after the first subdivision four polynomials are needed; each time a subdivision point

is reached the four polynomials are rearranged in order to cover the full region but, due to the dynamics of390

the pendulum along the trajectories considered, the algorithm does not need more than four polynomials

at any subsequent step. Therefore, the final propagated time is close to four times the time required for a

single polynomial propagation. However, all the polynomials must be stored in order to compute the full

propagation. In the ADS procedure, each time that a subdivision is made it is not possible to combine it

with a previous one and, consequently, the propagation time becomes larger.395

The last two parameters displayed in Table 1 are related to the CPU time (with a 3GHz Intel Core i7

) required to calculate the two main operations of the algorithms: the propagation of all the polynomials

needed to warranty the precision together with the operations related to the subdivision procedure, and the

propagation of the 2 · 105 sample points, once all the polynomials have been computed. The former mainly

gives the computational cost of the propagation of the polynomials, and it is almost proportional to the total400

propagation time (the cost associated to the subdivisions is almost negligible). The second CPU time is the

time required to evaluate the polynomials at set of samples around the initial condition x0. The propagation

of the 2 · 105 samples used to obtain the errors shown in Figure 12 using a RKF-78 propagation is of 47 s.

We can see that the division algorithm does that task slower than a single JT propagation and introduces

a small overhead due to the pre-computation of the correct polynomial used in the evaluation. The ADS405

algorithm requires almost no overhead, while the covering algorithm has an additional overhead due to the

fact that multiple polynomial evaluations are required.

5.1.2. Non-regular point

The second test case consist in the propagation of a neighbourhood of a point x0 = (0, 2) of the separatrix.

The time of propagation for this example is tf = 5 adimensional time units, and the maximum order of the410
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polynomials used by the JT has been set equal to 5.

The same comparisons and indicators of the preceding example have been used. The figures obtained for

the distribution of the errors with respect to the initial conditions using the three methods are similar to

those ones of the previous case. However, due to the dynamics of the system near the separatrix, after some

time, the propagation of the initial neighbourhood U0 concentrates on a narrow band around the separatrix,415

therefore, such plots does not give information of the errors as a function of the final positions.

Table 2 summarises the results obtained in this case. One can see that both subdivision algorithms

improve the final accuracy by two orders of magnitude in the average of the errors. Now, the improvement

in the maximum error is of two orders for the subdivision algorithm, and of three orders for the ADS

algorithm. This larger improvement is justified by the fact that it is not possible to approximate the flow420

map with enough accuracy using low order polynomials, therefore, either a higher order is used or more

polynomials are introduced, as it is the case of the subdivision algorithms.

For the total number of polynomials stored, the ADS method requires less polynomials. Observe however

that, since the division is done by two at some point of the propagation, the point that is propagated is no

longer on the separatrix and, therefore, the propagation becomes more regular. This fact makes that the425

points near the separatrix are better propagated without using the subdivision algorithms than using them.

On the other hand, the covering algorithm always covers the separatrix. Thus the propagation requires more

polynomials but the number of samples that are better computed is higher.

No subdivisions Subdivisions algorithm ADS algorithm

log(error) average -5.23 -7.15 -7.07

Maximum error 4.60e-03 6.79e-05 4.65e-6

% of points worse than without divisions - 0.660% 15.14%

Number of polynomials stored 1 14 10

Total propagation time τ =
∑
τi 5 19 11.28

CPU propagation time (s) 0.101 0.371 0.274

2 · 105 evaluations CPU time (s) 0.116 0.190 0.146

Table 2: Summary of the results obtained in a pendulum JT propagation around the separatrix with and without using the

subdivision algorithms.

The total propagation times τ and the CPU times for the propagations and the sample evaluations shown

does not show any relevant fact.430
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5.2. Propagation results for Kepler’s problem

For Kepler’s problem we have used as reference orbit one with adimensional initial condition (x, y, ẋ, ẏ) =

(1, 0, 0,
√

1.5), that corresponds to an elliptical orbit around the Earth whose perigee is around 1000 km from

its surface. We have used a square neighborhood around this initial condition of 0.035 adimensional units

in each direction, that corresponds to approximately 200 km in positions and 276 m/s in velocities.435

As in the case of the pendulum, the output results of a RKF-78 numerical integration has been taken as

a reference, and we have used polynomial approximations of the flow of degree 5. Also a non-subdivision

polynomial propagation has been used in order to see which are the benefits of using the subdivision proce-

dures.

Figure 13 shows the accuracies of the three JT propagations. On the left hand side plots, the accuracy440

of each propagation is displayed against the initial distance to the central point x0. One can observe that

the non-subdivision propagation behaves as expected. The closer to the central point the better accuracy

is achieved. However, that does not happen in the two subdivision algorithms. In both of them a bigger

precision is obtained in average but the points closer to the central point are propagated with less accuracy

than in the non-subdivision case. This happens because the methods change the independent term of the445

propagated polynomials each time that a subdivision is made and, therefore, the central point looses the

high precision at which it is propagated in the non-division propagation. The right hand side plots of the

figure show the logarithm of the error as a function of the final state (xf , yf ). We can see that those points

which are worse propagated are the ones that finish in an extreme position. Also it is worth to mention that,

although the plots show the results in two dimensions, actually the space is four-dimensional. Therefore two450

points at the same configuration point may have different velocities.

Table 3 shows a summary of the results obtained. As in the previous cases, the division algorithms

increase the accuracy of the results by one order in average. In this case, better accuracy is obtained due to

two main factors: on one hand the integration time is smaller (in order to compensate the higher dimension),

and on the other hand the order used in the JT is higher. A look to the maximum errors shows that the455

ADS algorithm has better accuracies than the covering algorithm, however the percentage of points which

are worse propagated is higher.

The number of polynomials and the propagation time required by the ADS procedure is around twice

the one needed by the covering method. As before, the relation between the CPU time and the total

propagation time is almost linear. A small overhead from the expected linear behaviour (4 seconds in the460

covering algorithm and 3 seconds in the ADS algorithm) is detected due to the division procedure. The

evaluation CPU time for the RK78 propagation is of 10.36 s. Again, the division algorithms are slower due

to the fact that the appropriate polynomial must be located to do the evaluation. The covering algorithm

also requires additional evaluation time due to the several polynomial evaluations that must be done.
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Figure 13: For the Kepler problem, errors obtained using the JT propagation without divisions (top), with the subdivision

algorithm introduced in this paper (center), and using the ADS subdivision algorithm (bottom). In the left column the decimal

logarithm of the errors are displayed with respect to the initial distance to the center. In the right column the decimal logarithm

error is plotted in colour with respect to the final state (xf , yf ) (without taking into account the velocity of the point). In all

cases the initial condition is the point (x0, y0, ẋ0, ẏ0) = (1, 0,
√

1.5, 0) in a square box of 0.035 non-dimensional units propagated

during 3 time units.
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No subdivisions Subdivisions algorithm ADS algorithm

log(error) average -7.77828 -8.99259 -8.97618,

Maximum error 1.393011e-04 3.564957e-05 5.803936e-07

% of points worse than without subdivisions - 17.7086% 22.5463%

Number of polynomials stored 1 35 78

Total propagation time τ =
∑
τi 3 47.40 99.44

CPU propagation time (s) 3.36 57.43 114.34

2 · 105 evaluations CPU time (s) 0.5 1.42 0.57

Table 3: Summary of the results obtained in a Kepler’s problem propagation using and without using division algorithms.

6. Conclusions465

A new subdivision algorithm has been introduced to improve the numerical propagation of ODE using Jet

Transport procedures. The algorithm has been compared against the Automatic Domain Splitting method,

as well as the non-subdivision basic strategy.

The developed procedure uses the more expansive and contractive directions of the flow to locate the

covering sets. When needed, the number of sets, together with the associated polynomials, either increases470

adding new sets or decreases merging some of them, always keeping the required accuracy in the computa-

tions.

The developed algorithm looses the property, characteristic of the Jet Transport propagations, of keeping

the expansion of the flow up to an arbitrary order at the final time. In the new algorithm, several polynomials

are stored at each subdivision step and its composition provides the final value of the propagation. The475

polynomial composition must be done independently for each sample. Unfortunately, due to both the nature

of the algorithm and to the final function to be approximated, this drawback cannot be avoided.

An important characteristic of the Jet Transport propagation using Taylor expansions is its good local

accuracy properties around the central point of propagation. Other expansions using Chebyshev or Hermite

polynomials, can be useful to propagate uncertainties without the dependency of the central propagation480

point or with a wider convergence radius but, for a given accuracy, it is not clear which one is better from

the computational point of view.
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