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Abstract

In this paper we consider a generalized Kuramoto-Sivashinsky equation. The equiva-

lence group of the class under consideration has been constructed. This group allows us to

perform a comprehensive study and a clear and concise formulation of the results. We have

constructed the optimal system of subalgebras of the projections of the equivalence algebra

on the space formed by the dependent variable and the arbitrary functions. By using this

optimal system, all nonequivalent equations admitting an extension by one of the principal

Lie algebra of the class under consideration can be determined. Taking into account the

additional symmetries obtained we reduce some partial differential equations belonging to

the class into ordinary differential equations. We derive some exact solutions of these equa-

tions.

Keywords: Partial differential equations; Conservation laws; Symmetries; Equivalence

transformations.

1 Introduction

The Kuramoto-Sivashinsky (KS) equation

ut +β1uxx +β2uxxxx +δuxxx +uux = 0, (1)

arises in the modelling of flow on an inclined plane, where β1, β2 and δ are constants. This

equation was introduced by Kuramoto [20] in one-spatial dimension for the study of phase

turbulance in the Belousov-Zhabotinsky reaction. Sivashinsky derived it independently in the

context of small thermal diffusive instabilities for laminar flame fronts. Some authors have pre-

viously studied this equation [18, 19].
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The study of dynamical behaviours such as chaos arises as an effective way to explain

the physics of low-dimensional dynamical systems, i.e., dynamical systems with small num-

ber of state variables. Nevertheless most problems and phenomena in physics and other ar-

eas of science are described by partial differential equations. Among them we highlight the

KS equation. Khellat and Vasegh [17] improved the understanding of the connection between

low-dimensional systems and the KS equation which is subject to spatially periodic boundary

condition and with arbitrary periodic initial condition given by

ut +uxx + kuxxxx +uux = 0, (x, t) ∈ R×R
+,

u(x,0) = f (x), u(x−π , t) = u(x+π , t),

∫ π

−π
f (x)dx = 0,

(2)

where k represents the viscosity. The authors showed that the KS equation (2) leads respec-

tively to stability, pitchfork bifurcation and a new type of behaviour. Sahoo and Saha Ray [27]

considered the time-fractional KS equation given by

Dα
t u+buxx + kuxxxx +auux = 0, (3)

which is a generalization of equation (2), where 0 < α ≤ 1 and a, b and k are arbitrary con-

stants. The authors obtained new types of exact analytical solutions of equation (3) by applying

the tanh-sech method with the help of the fractional complex transform.

There have been several generalizations of the KS equation such as the generalized KS with

dispersive effects [12]

ut +( f (u))x +αuxx +φ(u)xx +βuxxx + γuxxxx = g(u), (4)

where α,β and γ are constants, f (u), φ(u) and g(u) are functions of the dependent variable u.

Here, ( f (u))x =
∂ f (u)

∂u
ux = fuux. In [3] Bruzón et al. considered equation (4) and they made

a full analysis of the symmetry reductions and proved that the nonclassical method applied

to the equation leads to new reductions which cannot be obtained by Lie classical symme-

tries. Furthermore, making use of the new similarity solutions that the nonclassical method

determines, they obtained some exact solutions which cannot be determined by applying a Lie

classical reduction. If α and β are constants, γ = 1, f (u) = α1
2

u2 + βu+α5, g(u) = 0 and

φ(u) = α2
2

u2 +(α3 −α)u+α4, with αi, i = 1, . . . ,5, arbitrary constants, equation (4) includes

the Korteweg-de Vries equation supplements by additional terms of the KS equation which de-

scribes nonlinear convection and the input of energy produced by Marangoni forces on the long

scales together with energy dissipation on short scales. For this equation Bruzón et al. ob-

tained classical and nonclassical symmetries and the reduced equations [2]. We propose herein

a generalized KS equation

ut +( f (u))x +α(u)uxx +(φ(u))xx +β (u)uxxx + γ(u)uxxxx = g(u), (5)

with f (u), g(u), α(u), β (u), γ(u) 6= 0 and φ(u) arbitrary functions. Here (φ(u))xx =
∂ 2φ(u)

∂u2 u2
x +

∂φ(u)
∂u

uxx = φuuu2
x +φuuxx.
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Since in different fields arise many equations that involve several arbitrary functions, such

as industrial mathematics, mathematical biology and fluid mechanics, the study of variable-

coefficient equations has increased in the last decades [4, 5, 6, 9, 10, 15, 16, 22, 33, 35].

On the other hand, equivalence transformations are used mainly for classifying classes of

differential equations with arbitrary functions [7, 8, 11, 21, 24, 25, 28, 29]. Just like symmetries

of a differential equation transform solutions of the equation into other solutions, equivalence

transformations map every equation of a class C of differential equations into an equation of

the same class. Ovsiannikov [24] defined a methodology and notation for dealing with such

transformations, for which he used the term equivalence transformations. He derived some

results about them, including important properties:

a) The transformations act on every equation in the class C.

b) The transformations are fixed point transformations, in the sense that they do not depend

on the arbitrary elements, and are realized on the point space (independent and dependent

variables) associated with the differential equations.

c) The transformations act on the arbitrary elements as point transformations of an aug-

mented space of independent and dependent variables and additional variables represent-

ing values taken by the arbitrary elements.

The collection of all such transformations constitutes Ovsiannikov’s equivalence group. In [1]

Akhatov, Gazizov and Ibragimov, by using Ovsiannikov’s method, determined the infinitesimal

form of transformations for a potential form of the nonlinear diffusion equation.

Ibragimov, Torrisi and Valenti used the equivalence group to give a preliminary symmetry

group classification. They found the equivalence group for a large class of nonlinear hyperbolic

equations and executed the preliminary classification for a finite-parameter subgroup [13]. By

using the weak equivalence classification, Torrisi and Tracinà [30] obtained a classification with

respect to thermal conductivity and the internal energy at equilibrium of a system of partial

differential equations (PDEs) which describe the unidimensional heat conduction in a homoge-

neous isotropic rigid body. In [26], Lie symmetries for a class of drift-diffusion systems were

found following a different procedure based on the weak equivalence classification already in-

troduced in [30, 31, 32]. They authors claimed that even if this approach does not guarantee

obtaining a complete symmetry classification, yet this method provides a systematic way for

obtaining wide classes of symmetries when arbitrary functions appear.

In [36], Vaneeva, Popovych and Sophocleous discussed how point transformations can be

used for the study of integrability, in particular, for deriving classes of integrable variable-

coefficient differential equations. They described the procedure of finding the equivalence

groupoid of a class of differential equations focusing on the case of evolution equations and they

applied this study to a class of fifth-order variable-coefficient Korteweg-de Vries-like equations.
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Two alternative ways to solve completely the group classification problem for a variable coeffi-

cient Gardner equation were presented in [37]: the gauging of arbitrary elements of the class by

the equivalence transformations and the method of mapping between classes. Recently, Tracinà

[34] proved a criterion, based on the property of nonlinear self-adjointness, for the existence of

an invertible point transformation which maps a given PDE to a linear PDE.

On the other hand, Gandarias and Ibragimov [11] found and employed the Lie algebra of the

generators of the equivalence transformations of a fourth-order non-linear evolutionary equa-

tions given by

ut + f (u)uxxxx +g(u)uxuxxx +h(u)u2
xx +d(u)u2

xuxx − p(u)uxx −q(u)u2
x = 0.

In this paper we obtain the equivalence transformations of the generalized KS equation

(5). We determine the generators of the equivalence algebra. Equivalence algebra is used to

perform a preliminary group classification. By using a theorem on projections we solve the

problem of preliminary group classification of class (5) by means of the construction of the op-

timal system of subalgebras of the nonzero projections of the equivalence algebra on the space

(u, f ,g,α,β ,γ,φ). The optimal system allows us to obtain all nonequivalent equations (5) ad-

mitting an extension by one of the principal Lie algebra of class (5). Taking into account some

nonequivalent equations which admit an additional symmetry, we have reduced equation (5)

with the corresponding coefficients f ,g,α,β ,γ,φ into ODEs. Finally, some exact solutions are

obtained.

2 Equivalence transformations

In this section we determine the equivalence transformations of class (5). An equivalence trans-

formation of class (5) is a nondegenerate point transformation from (t,x,u) to (t̃, x̃, ũ) with the

property that it preserves the differential structure of the equation, that is, it transforms any

equation of class (5) to an equation from the same class but with different arbitrary elements,

f̃ (ũ), g̃(ũ), α̃(ũ), β̃ (ũ), γ̃(ũ) and φ̃(ũ) from the original ones. The set of equivalence transfor-

mations forms a group denoted by E .

The equivalence transformations for our equation can be obtained by applying Lie’s in-

finitesimal criterion [24]. Unlike classical symmetries, we require not only the invariance of

class (5) but also the invariance of the auxiliary system

ft = fx = gt = gx = αt = αx = βt = βx = γt = γx = φt = φx = 0. (6)

We consider the one-parameter group of equivalence transformations in the augmented space
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(t,x,u, f ,g,α,β ,γ,φ) given by

t̃ = t + ε τ(t,x,u)+O(ε2),
x̃ = x+ ε ξ (t,x,u)+O(ε2),
ũ = u+ ε η(t,x,u)+O(ε2),
f̃ = f + ε ω1(t,x,u, f ,g,α,β ,γ,φ)+O(ε2),
g̃ = g+ ε ω2(t,x,u, f ,g,α,β ,γ,φ)+O(ε2),
α̃ = α + ε ω3(t,x,u, f ,g,α,β ,γ,φ)+O(ε2),

β̃ = β + ε ω4(t,x,u, f ,g,α,β ,γ,φ)+O(ε2),
γ̃ = γ + ε ω5(t,x,u, f ,g,α,β ,γ,φ)+O(ε2),
φ̃ = φ + ε ω6(t,x,u, f ,g,α,β ,γ,φ)+O(ε2),

(7)

where ε is the group parameter. In this case, the vector field takes the following form

Y = τ∂t +ξ ∂x +η∂u +ω1∂ f +ω2∂g +ω3∂α +ω4∂β +ω5∂γ +ω6∂φ . (8)

We notice that the fourth derivative with respect to x appears in the equation, therefore we need

to take into account the fourth prolongation of the operator (8)

Ỹ =Y +ζ t∂ut
+ζ x∂ux

+ζ xx∂uxx
+ζ xxx∂uxxx

+ζ xxxx∂uxxxx
+ ω̃ i

t ∂ f i
t
+ ω̃ i

x∂ f i
x
+ ω̃ i

u∂ f i
u
, (9)

where f i, i = 1, . . . ,6, represents each component ( f ,g,α,β ,γ,φ). The coefficients ζ J is de-

fined by

ζ J(t,x,u(4)) = DJ(η − τut −ξ ux)+ τuJt +ξ uJx,

with J = ( j1, . . . , jk), 1 ≤ jk ≤ 2 and 1 ≤ k ≤ 4, u(4) denotes the sets of partial derivatives up

to fourth order and Dt , Dx are the total derivatives with respect to t and x [23]. Lastly, the

coefficients ω̃ i
r are given by

ω̃ i
r = D̃r(ω

i)− f i
t D̃r (τ)− f i

x D̃r (ξ )− f i
u D̃r (η) ,

where

D̃r = ∂r + f i
r∂ f i.

For further information on how prolongations of higher order can be obtained, one can refer to

references [28, 29].

The invariance of system (5)-(6) under the one-parameter group of equivalence transformations

(7) with infinitesimal generator (8) leads to a system of determining equations. After having

solved the determining system, omitting tedious calculations, we obtain the associated equiva-

lence algebra LE of class (5) which is finite-dimensional and is spanned by
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Y1 = ∂t , Y2 = ∂x, Y3 = ∂u,

Y4 = t∂t − f ∂ f −g∂g −α∂α −β∂β − γ∂γ −φ∂φ ,

Y5 = x∂x + f ∂ f +2α∂α +3β∂β +4γ∂γ +2φ∂φ ,

Y6 = u∂u + f ∂ f +g∂g +φ∂φ ,

Y7 = t∂x+u∂ f , Y8 = ∂α −u∂φ ,

Y9 = ∂ f , Y10 = ∂φ .

From generators (10) we get the finite form of the equivalence transformations:

Theorem 1 The equivalence group of class (5) consists of the transformations

t̃ = (t + ε1)eε4, x̃ = (x+ ε7t + ε2)eε5, ũ = (u+ ε3)eε6,

f̃ = ( f + ε7u+ ε9)e−ε4+ε5+ε6, g̃ = ge−ε4+ε6, α̃ = (α + ε8)e−ε4+2ε5 ,

β̃ = βe−ε4+3ε5 , γ̃ = γe−ε4+4ε5 , φ̃ = (φ − ε8u+ ε10)e−ε4+2ε5+ε6,

(10)

where εi, i = 1, . . . ,10, are arbitrary constants.

Proof. From (10) it follows that u = e−ε6 ũ− ε3. Thus,

ut = eε4−ε6 ũt̃ +ε7eε5−ε6 ũx̃, ux = eε5−ε6 ũx̃, uxx = e2ε5−ε6 ũx̃x̃, uxxx = e3ε5−ε6 ũx̃x̃x̃, uxxxx = e4ε5−ε6 ũx̃x̃x̃x̃.

(11)

Moreover,

f =−ε7u− ε9 + eε4−ε5−ε6 f̃ , g = eε4−ε6 g̃, α =−ε8 + eε4−2ε5α̃,

β = eε4−3ε5β̃ , γ = eε4−4ε5 γ̃, φ = ε8u− ε10 + eε4−2ε5−ε6 φ̃ .

(12)

Hence,

fu =−ε7 + eε4−ε5 f̃ũ, φu = ε8 + eε4−2ε5 φ̃ũ, φuu = eε4−2ε5+ε6 φ̃ũũ. (13)

Substituting (11)-(13) and then dividing the result by eε4−ε6 we obtain

ũt̃ + f̃ũũx̃ + α̃ ũx̃x̃ + φ̃ũũũ2
x̃ + φ̃ũũx̃x̃ + β̃ ũx̃x̃x̃ + γ̃ ũx̃x̃x̃x̃ = g̃. �
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3 Theorem on Projections

At this point, it is useful to know the most general symmetry algebra admitted by equation (5)

when the functions f , g, α , β , γ and φ are arbitrary. This symmetry algebra is known as the

principal Lie algebra Lp. Equivalence transformations are widely used in the study of PDEs,

in particular, in nonlinear PDEs. For instance, they can be used for obtaining the principal Lie

algebra as well as for finding extensions of the principal Lie algebra once the arbitrary elements

are fixed. Let us introduce the following projections of the equivalence operator (8)

X = pr(x,u)(Y ) = τ∂t +ξ ∂x +η∂u, (14)

Z = pr(u,Ψ)(Y ) = η∂u +ω1∂ f +ω2∂g +ω3∂α +ω4∂β +ω5∂γ +ω6∂φ , (15)

where x = (t,x) and Ψ = ( f ,g,α,β ,γ,φ) represent the set of independent variables and the set

of arbitrary functions respectively. The equivalence generator Y of class (5) can be written as a

linear combination of the elements of LE

Y =
10

∑
i=1

ciYi

= (c1 + c4t)∂t +(c2 + c5x+ c7t)∂x +(c3 + c6u)∂u +(c9 + c7u+(−c4 + c5 + c6) f )∂ f

+(−c4 + c6)g∂g +(c8 +(−c4 +2c5)α)∂α +(−c4 +3c5)β∂β

+(−c4 +4c5)γ∂γ +(c10 − c8u+(−c4 +2c5 + c6)φ)∂φ .

(16)

In order to obtain the principal Lie algebra we apply the following theorem:

Theorem 2 Let Y be an equivalent operator for equation (5), the projection X = pr(x,u)(Y ) ∈
Lp if and only if the projection Z = pr(u,Ψ)(Y ) is identically zero.

Taking into account Theorem 2, we require the vanishing of the projection Z

Z = (c3 + c6u)∂u +(c9 + c7u+(−c4 + c5 + c6) f )∂ f +(−c4 + c6)g∂g +(c8 +(−c4 +2c5)α)∂α

+(−c4 +3c5)β∂β +(−c4 +4c5)γ∂γ +(c10 − c8u+(−c4 +2c5 + c6)φ)∂φ ,

(17)

this leads us to

c3 = c4 = c5 = c6 = c7 = c8 = c9 = c10 = 0.

Thus, we get that the principal Lie algebra Lp is given by

7



X = pr(x,u)(Y ) = c1Y1 + c2Y2.

Consequently, for arbitrary functions f , g, α , β , γ and φ , equation (5) admits the two-dimensional

Lie algebra generated by

X1 = ∂t , X2 = ∂x. (18)

We are interested in obtaining extensions of the principal Lie algebra, for this purpose, we will

make use of the following theorem:

Theorem 3 Let Y be an equivalent operator for equation (5). The operator X = pr(x,u)(Y ) is

admitted by equation (5) with specific functions

f = F(u), g = G(u), α = A(u), β = B(u), γ = Γ(u), φ = Φ(u), (19)

if and only if these functions are invariant with respect to the projection Z = pr(u,Ψ)(Y ).

The proof of Theorem 2 and 3 can be found in [14].

4 Optimal system of one-dimensional subalgebras

Generally, it is not usually feasible to obtain all the possible group-invariant solutions, since

there can be an infinite number of Lie subgroups of the Lie group of symmetries G of a given

equation. Therefore, we would like to classify all the possible invariant solutions into different

classes such as two solutions belonging to the same class are equivalent (one solution can be

transformed into the other under the action of an element of the Lie symmetry group) and so-

lutions belonging to different classes are not equivalent (these solutions are not related by any

element of the Lie symmetry group). This classification problem can be solved by constructing

the optimal system of subalgebras [23, 24].

An optimal system of one-dimensional Lie subalgebras includes essential information about

different types of invariant solutions [23, 24]. Let G be the Lie algebra of G. We say two

one-dimensional subalgebras h and h̃ are equivalent if h̃ = Ad g(h) where Ad g is the adjoint

action of g on G . Moreover, for each V ∈ G is defined a linear operator ad V : G −→ G ,

ad V (W ) = [V,W ], where [ , ] represents the Lie bracket. A set of one-parameter subalgebras

forms an optimal system if every one-parameter subalgebra of G is equivalent to an exclusive

element of the set under some component of the adjoint representation h̃ = Ad g(h),g ∈ G.

Through the employment of the exponential map Exp from G to G it is possible to construct

the adjoint action Ad G of the underlying Lie group by means of the formula [23]

Ad(exp(εV ))W =
∞

∑
n=0

εn

n!
(ad V )n(W ) =W − ε[V,W ]+

ε2

2
[V, [V,W ]]− . . .

8



Table 1: Table of commutators

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

Z1 0 0 0 Z1 Z7 −Z8 0 0

Z2 0 0 0 0 Z5 Z6 Z7 Z8

Z3 0 0 0 0 −Z5 −2Z6 −Z7 −2Z8

Z4 −Z1 0 0 0 0 0 −Z7 −Z8

Z5 −Z7 −Z5 Z5 0 0 0 0 0

Z6 Z8 −Z6 2Z6 0 0 0 0 0

Z7 0 −Z7 Z7 Z7 0 0 0 0

Z8 0 −Z8 2Z8 Z8 0 0 0 0

The classification of all nonequivalent equations (with respect to a given equivalence group

E ) admitting extensions of the principal Lie algebra is known as a preliminary group classifica-

tion. The method of preliminary group classification is simple and effective when the classifi-

cation is based on finite-dimensional equivalence algebra LE . In our case, we take into account

the ten-dimensional subalgebra (10) and use it for obtaining a preliminary group classification.

According to Theorem 3 the problem of preliminary group classification of equation (5) with

respect to the finite-dimensional algebra (10) is equivalent to constructing the optimal system

of subalgebras given by

Z1 = ∂u, Z2 =− f ∂ f −g∂g −α∂α −β∂β − γ∂γ −φ∂φ , Z3 = f ∂ f +2α∂α +3β∂β +4γ∂γ +2φ∂φ ,

Z4 = u∂u + f ∂ f +g∂g +φ∂φ , Z5 = u∂ f , Z6 = ∂α −u∂φ , Z7 = ∂ f , Z8 = ∂φ ,

where Zi, i = 1, . . . ,8, are the nonzero projections of (10) on the space (u,Ψ).

Therefore, we consider G the symmetry algebra with basis {Z1, . . . ,Z8}. First, we construct

the commutator table for G which is a 8×8 table whose (i, j)-th entry expresses the Lie bracket

[Zi,Z j]. Commutator table is shown in Table 1. From the commutator table for this algebra, we

construct the adjoint action Ad G on the basis {Z1, . . . ,Z8} of G . We show the adjoint action in

Table 2, where the (i, j)-th entry gives Ad(exp(εZi))Z j.

In substance, the optimal system can be constructed by taking a general element Z =
a1Z1 +a2Z2 + . . .+a8Z8 ∈ G , where ai, i = 1, . . . ,8, are arbitrary constants, and simplifying it

as much as possible through well-considered applications of adjoint maps to Z, Ad(exp(εZi))Z,

and discrete symmetries. For further information on how optimal system can be constructed,

one can refer, as example, to reference [23].

To conclude, we obtain the following optimal system of one-dimensional subalgebras of (20)

9



Table 2: The adjoint action on the basis {Z1, . . . ,Z8}
Ad Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

Z1 Z1 Z2 Z3 Z4 − εZ1 Z5 − εZ7 Z6 + εZ8 Z7 Z8

Z2 Z1 Z2 Z3 Z4 e−εZ5 e−εZ6 e−ε Z7 e−ε Z8

Z3 Z1 Z2 Z3 Z4 eεZ5 e2ε Z6 eε Z7 e2εZ8

Z4 eεZ1 Z2 Z3 Z4 Z5 Z6 eε Z7 eε Z8

Z5 Z1 + εZ7 Z2 + εZ5 Z3 − εZ5 Z4 Z5 Z6 Z7 Z8

Z6 Z1 − εZ8 Z2 + εZ6 Z3 −2εZ6 Z4 Z5 Z6 Z7 Z8

Z7 Z1 Z2 + εZ7 Z3 − εZ7 Z4 − εZ7 Z5 Z6 Z7 Z8

Z8 Z1 Z2 + εZ8 Z3 −2εZ8 Z4 − εZ8 Z5 Z6 Z7 Z8

Z(1) = Z1, Z(2) = Z2, Z(3) = Z1 +Z2, Z(4) = Z1 +Z8, Z(5) = aZ2 +Z3, Z(6) = Z7 +aZ8,

Z(7) = Z1 +aZ2 +Z3, Z(8) = aZ2 +bZ3 +Z4, Z(9) = cZ2 +dZ3 +Z5, Z(10) = aZ2 +bZ3 +Z6,

Z(11) = Z2 +Z3 +Z7, Z(12) = 2Z2 +Z3 +Z8, Z(13) = Z4 +Z5 +aZ6, Z(14) = Z4 −Z5 +aZ6,

Z(15) = Z1 +aZ2 +bZ3 +Z5, Z(16) =−Z1 +aZ2 +bZ3 +Z5, Z(17) = Z1 +aZ2 +bZ3 +Z6,

Z(18) =−Z1 +aZ2 +bZ3 +Z6, Z(19) = Z1 +Z2 +Z3 +Z7, Z(20) = Z1 +2Z2 +Z3 +Z8,

Z(21) = mZ2 +mZ3 +Z4 +Z5, Z(22) = 2aZ2 +aZ3 +Z4 +Z6, Z(23) = (1+a)Z2 +aZ3 +Z4 +Z7,

Z(24) = (1+2a)Z2 +aZ3 +Z4 +Z8, Z(25) = aZ2 +aZ3 +Z6 +Z7, Z(26) = Z2 +Z4 +Z7 +mZ8,

Z(27) = Z1 +2aZ2 +aZ3 +Z5 +mZ6, Z(28) =−Z1 +2aZ2 +aZ3 +Z5 +mZ6,

Z(29) = Z1 +aZ2 +aZ3 +Z6 +mZ7, Z(30) =−Z1 +aZ2 +aZ3 +Z6 +mZ7,

Z(31) =−Z2 −Z3 +Z4 +Z5 +Z8, Z(32) = 2Z2 +Z3 +Z4 +mZ6 +Z7,

Z(33) = 2aZ2 +aZ3 +Z5 +bZ6 +Z8, Z(34) = 2aZ2 +aZ3 +Z5 +bZ6 −Z8,

(20)

where a, b, c 6= 2d, m 6= 0 are arbitrary constants.
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5 Reductions and exact solutions

The symmetry group of a partial differential equation (PDE) is the largest transformation group

which acts on dependent and independent variables of the equation so it transforms solutions

of the equation into other solutions. Lie symmetry groups are considered to be one of the

most powerful methods to construct exact solutions of PDEs. Local symmetries admitted by a

PDE are useful for obtaining invariant solutions. This technique is based on the following: if a

differential equation is invariant under a Lie group of transformations, then a reduction trans-

formation exists. In the case of PDEs with two independent variables, this technique yields a

similarity variable and a similarity solution which allow us to transform the PDE into an ODE,

which is generally easier to solve.

Lie point symmetries can be obtained by using the invariance criterion [23, 24] which leads

to an overdetermined linear system of equations called determining system. The problem lies

in the fact that, when arbitrary functions appear, the determining system usually becomes very

difficult to solve. In these cases, the method of preliminary group classification is an effective

way to give a group classification. This method does not guarantee a priori a complete group

classification, however, it allows us to obtain symmetries when the determining system is intri-

cate.

Thus, by applying Theorem 3 to the optimal system (20) it is possible to obtain all nonequiv-

alent equations (5) which admit extensions of the principal Lie algebra by one, namely, those

equations belonging to (5) such that they admit, besides the primary operators X1 and X2 (18),

an additional operator X3. We note that due to the extension of the optimal system, we do not

show all nonequivalent equations.

From the associated equivalence algebra (10) we can separate equivalence generators for

class (5) into three different groups: translations (Y1,Y2,Y3,Y9 and Y10), dilatations (Y4,Y5 and Y6)
and generalized Galilean transformations (Y7 and Y8). In order to illustrate the algorithm of

passing from operators of the equivalence algebra (10) or, more specifically, from operators (20)

to the form of the functions f , g, α , β , γ and φ , and the additional operator X3, we consider, by

way of example, some generators involving representatives of the three different groups. Once

we have obtained the new generator X3, we determine the similarity variable and the similarity

solution which allow us to transform the PDE which admits X3 into an ODE. Finally, we obtain

some exact solutions of the corresponding ODE.

Example 1. To begin with, we take the generator

Y =Y3 +Y4 = t∂t +∂u − f ∂ f −g∂g −α∂α −β∂β − γ∂γ −φ∂φ . (21)

Following Theorem 3, we require the invariance of (19) with respect to the operator

Z(3) = pr(u,Ψ)(Y ) = ∂u − f ∂ f −g∂g −α∂α −β∂β − γ∂γ −φ∂φ . (22)
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That means,

Z(3)( f −F(u)) | f=F(u) = 0, Z(3)(g−G(u)) |g=G(u) = 0, Z(3)(α −A(u)) |α=A(u) = 0,

Z(3)(β −B(u)) |β=B(u) = 0, Z(3)(γ −Γ(u)) |γ=Γ(u) = 0, Z(3)(φ −Φ(u)) |φ=Φ(u) = 0,

which yields

f = c1e−u
, g = c2e−u

, α = c3e−u
, β = c4e−u

, γ = c5e−u
, φ = c6e−u

,

where ci are arbitrary constants. Therefore, equation (5) takes the following form

ut + e−u
(

−c1ux +(c3 − c6)uxx + c6u2
x + c4uxxx + c5uxxxx − c2

)

= 0, (23)

which admits the additional symmetry

X3 = t∂t +∂u. (24)

The corresponding invariant solution is written in the form

z = x, u = ln |t|+h(z), (25)

where h(z) must satisfy

c5 h′′′′+ c4 h′′′+(c3 − c6)h′′+ c6

(

h′
)2 − c1 h′+ eh − c2 = 0. (26)

Since that c5 6= 0, equation (26) can be written as an autonomous equation of fourth order

h′′′′ = F(h,h′,h′′,h′′′). The substitution w(h) = (h′)2 leads to the following third-order equation

2c5ww′′′+
(

c5w′±2c4

√
w
)

w′′+2(c3 − c6)w′+4c6w∓4c1

√
w−4c2 +4eh = 0. (27)

Example 2. Let us consider generator

Y = Y4 +Y6 = t∂t +u∂u −α∂α −β∂β − γ∂γ . (28)

By applying Theorem 3, we require the invariance of (19) with respect to the projection

Z = Z(8)
∣

∣

∣

a=1,b=0
= u∂u −α∂α −β∂β − γ∂γ , (29)

which yields

f = c1, g = c2, α =
c3

u
, β =

c4

u
, γ =

c5

u
, φ = c6,
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where ci are arbitrary constants. Thus, equation (5) is given by

uut + c3uxx + c4uxxx + c5uxxxx − c2u = 0, (30)

which admits the additional symmetry

X3 = t∂t +u∂u. (31)

The corresponding similarity variable and similarity solution are written in the form

z = x, u = t h(z), (32)

where h(z) must satisfy

c5 h′′′′+ c4 h′′′+ c3 h′′+h2 − c2 h = 0. (33)

In this case, equation (33) does not admit any nontrivial Lie symmetry but the substitution

w(h) = (h′)2 leads to the following third-order equation

2c5ww′′′+
(

c5w′±2c4

√
w
)

w′′+2c3w′+4h2 −4c2h = 0. (34)

Example 3. Now, we consider the generator

Y = Y5 +Y6 = x∂x +u∂u +2 f ∂ f +g∂g +2α∂α +3β∂β +4γ∂γ +3φ∂φ . (35)

The projection (15) is given by

Z = Z(8)
∣

∣

∣

a=0,b=1
= u∂u +2 f ∂ f +g∂g +2α∂α +3β∂β +4γ∂γ +3φ∂φ . (36)

Requiring the invariance of (19) with respect to the operator (36) we obtain that the functions

are given by

f = c1u2
, g = c2u, α = c3u2

, β = c4u3
, γ = c5u4

, φ = c6u3
,

where ci are arbitrary constants. Thus, we conclude that equation (5) with the above functions

ut +2uux (c1 +3c6ux)+u2uxx (c3 +3c6)+ c4u3uxxx + c5u4uxxxx − c2u = 0, (37)

admits the additional symmetry

X3 = x∂x +u∂u. (38)

The corresponding invariant solution is written in the form

z = t, u = xh(z), (39)

where h(z) must satisfy

h′ =−6c6h3 −2c1h2 + c2h. (40)

13



If c6 = 0, equation (40) is the Bernoulli equation, thus we can obtain the corresponding solution

h of the ODE

h(z) =
c2ec2z

2c1ec2z − ec0c2
,

where c0 is a constant of integration. In the case that c6 6= 0, equation (40) is an Abel equation

of the first kind, more specifically is a separable equation whose implicit solution is given by

log(2h(3c6y+ c1)− c2)−2log(h)+

2c1 arctan

(

6c6h+c1√
−c2

1−6c2c6

)

√

−c2
1 −6c2c6

=−2c2z+ c0,

where c0 is an arbitrary constant.

Example 4. Finally, we take into account generator

Y = Y3 +Y7 +Y8 = t∂x+∂u +u∂ f +∂α −u∂φ , (41)

whose projection is

Z = Z(27)
∣

∣

∣

a=0,m=1
= ∂u +u∂ f +∂α −u∂φ . (42)

The invariance of (19) with respect to (42) leads us to

f =
u2

2
+ c1, g = c2, α = u+ c3, β = c4, γ = c5, φ =−u2

2
+ c6,

where ci are arbitrary constants. Equation (5) with the above specific functions

ut +uux + c3uxx −u2
x + c4uxxx + c5uxxxx − c2 = 0, (43)

admits the following additional operator

X3 = t∂x +∂u. (44)

The corresponding invariant solution is written in the form

z = t, u =
x

t
+h(z), (45)

where h(z) must satisfy

z2h′− c2 z2 +hz−1 = 0. (46)

For this reduction, the ODE is a first order equation whose solution is

h(z) =
c2z

2
+

ln(z)+ c0

z
,
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where c0 is a constant of integration. Undoing transformation (45), we obtain a solution of

equation (43) which is given by

u(t,x) =
c2t

2
+

x+ ln(t)+ c0

t
.

6 Conclusions

In this paper we have considered a fourth-order nonlinear partial differential equation con-

taining six arbitrary functions depending on the dependent variable. We have constructed the

equivalence group of the class which is exploited to simplify the classifying equations. We

have determined that class (5) has a ten-dimensional algebra (10). We have used this algebra to

perform a preliminary group classification. According to a theorem on projections, the problem

of preliminary group classification of class (5) is reduced to the construction of the optimal

system of subalgebras of the nonzero projections of (10) on the space (u, f ,g,α,β ,γ,φ). From

the optimal system is possible to obtain all nonequivalent equations (5) which admit an addi-

tional symmetry. In order to clarify the algorithm, we have taken some nonequivalent equations

admitting extensions of the principal Lie algebra. Moreover, we have shown the corresponding

coefficients f ,g,α,β ,γ,φ , and the extra symmetry operator. Finally, by using these symmetries,

we have reduced the PDE into ODEs and some exact solutions have been derived.
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