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Abstract

We propose two exchange economy evolutionary models with het-
erogeneous agents, in which the share updating mechanisms depend
on the goods’ consumption, described in terms of the calorie intakes.
In the first setting we assume that the share updating rule is mono-
tone in the calorie intake, while in the second framework we suppose
that it is non-monotone. In both scenarios we investigate whether
there may be multistability phenomena involving nontrivial market
stationary equilibria at which the calorie intakes for the two groups
of agents differ. The answer is negative in the first setting, while it is
affirmative in the second framework.
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1 Introduction

In the present paper we aim to let emerge the richness of asymptotic dynamic
behaviors hidden inside the model proposed in [1] and further developed in
[2]. Indeed, in order to explore the variety of asymptotic outcomes intrin-
sic in those works, we here relax some too restrictive assumptions made
therein. More precisely, we reconsider the exchange economy evolutionary
models with agents heterogeneous in the structure of preferences, in which
the weights assigned to the two consumption goods in the Cobb-Douglas util-
ity functions do not coincide across groups, dealt with in [1, 2], by allowing
the endowments of the two goods to differ across groups of agents, in agree-
ment with the possible extensions proposed in [1]. Moreover, like in [1, 2],
we assume that the growth rate of each population group is determined by a
biological payoff function, which depends on the consumption of the group’s
agents, described in terms of the assumed calorie intake. However, we here
consider two functional forms for the share updating mechanism, and we in-
vestigate how the different modeling choices influence the number of steady
states and their features. Indeed, in the first model we analyze, like in [1],
the rule according to which shares are updated is monotonically increasing
in the calorie intake, while in the second framework we study, as in [2], we re-
place the monotone population growth rate assumed in [1] with a bell-shaped
map, increasing with the calorie intake up to a certain threshold value, above
which it becomes decreasing.
The need to relax some of the hypotheses made in [1, 2] comes from the
following simple observation. In both the frameworks in [1, 2], under the
endowment homogeneity assumption, at the unique nontrivial (i.e., charac-
terized by the coexistence between the two groups of agents) locally stable
equilibrium the calorie intakes for the two groups coincide, albeit the hetero-

geneity in the structure of preferences. We will refer to such feature as to
weak coexistence, while we will talk of strong coexistence in those cases in
which there exist nontrivial locally stable equilibria at which the calorie in-
takes for the two groups of agents differ. Since the weak coexistence detected
in [1, 2] is in deep disagreement with the empirical outcomes and limits the
interpretative value of those settings, we here allow for endowment hetero-
geneity to try to fix the issue. In particular, in our investigation we adopt a
bifurcation analysis approach.
We stress that both the share updating mechanisms we consider are empir-
ically grounded. Namely, according to [1], a monotone population growth
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rate is suitable to represent the long-run centuries-old trend, as the diet of
a population group affects its long-term survival. On the other hand, bi-
ological payoff functions monotonically increasing in the calorie intake well
describe food regimes characterized by a calorie shortage, but they are not
appropriate to represent the framework of contemporary developed countries
and the negative effects of overconsumption on health and survival, which
are instead properly described by bell-shaped maps. Indeed, as argued in [3],
monotone survival functions do not fit aggregate data and a broad epidemio-
logical literature (see e.g. [4, 5, 6, 7]) has shown a non-monotone relationship
between the corpulence and mortality risks. Such non-monotone relationship
is clearly represented by Waaler’s U -shaped curves in [8], commented from
an intertemporal viewpoint in [9]. The relevance of those findings gave rise
to the so-called “economics of obesity” (cf. the survey [10]). Hence, the
second setting we deal with, as the one in [2], is suitable to represent the
long-run centuries-old trend from the industrial revolution on, while the first
framework we consider, like that in [1], is well-suited to describe the long-run
centuries-old trend before the industrial revolution.
We recall that evolutionary frameworks with binary choices at a collective
level have been considered, for instance, in [11, 12, 13, 14]. On the other
hand, differently from those papers, the binary choice here occurs between
preference structures that characterize the two groups of agents, which are
embedded in a general equilibrium framework, where a price mechanism op-
erates.
As regards the findings obtained in [1, 2], we recall that both settings result
in one-dimensional continuous-time dynamical systems. More precisely, the
analysis in those papers concerns the existence and local stability of trivial
and nontrivial market stationary equilibria. In [1] at most one nontrivial
market stationary equilibrium, which when exists is stable, and two trivial
equilibria are found. Moreover, by construction, at the nontrivial market
stationary equilibrium the calorie intakes coincide across groups. In [2], in
addition to the three equilibria in [1], (up to) two additional nontrivial mar-
ket stationary equilibria are detected. Furthermore, the (possibly existing)
nontrivial equilibrium found in [1] may become unstable in the context con-
sidered in [2], and also the two trivial equilibria may have different dynamic
behaviors with respect to [1]. In particular, unlike the framework in [1],
the setting in [2] displays multistability phenomena, characterized by the
presence of multiple, trivial and nontrivial, locally stable market stationary
equilibria.
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We remark that, as explained in [2], multistability may be considered as a
source of richness for the framework under analysis because, other parameters
being equal, i.e., under the same institutional, cultural and social conditions,
it allows to explain different historical trajectories and evolutionary paths.
The initial conditions, leading to the various attractors, represent indeed a
summary of the past history, which in the presence of multistability phenom-
ena does matter in determining the evolution of the system. Such property,
in the literature on complex systems, is also called “path-dependence” (see
[15]). Moreover, in the specific context we deal with, the presence of multiple
equilibria well represents the variety of historical experiences across differ-
ent countries in relation to the approach they adopt towards food, diet and
consequently towards obesity (consider e.g., according to [10], the different
scenarios in the U.S. and in the Mediterranean countries).
On the other hand, the multistability phenomena detected in [2] are not fully
satisfying from an interpretative viewpoint, as at the only involved nontrivial
market stationary equilibrium the calorie intakes for both groups of agents
coincide, i.e., there is just weak coexistence.
For such reason, in the present paper we add to the frameworks considered
in [1, 2] the heterogeneity assumption for endowments, and we study market
equilibria, which link equilibrium price and optimal consumption quantities
to population shares, in view of investigating whether that new heterogene-
ity hypothesis may generate multistability phenomena involving nontrivial
market stationary equilibria with strong coexistence, at which the calorie
intakes for the two groups of agents differ. As we will see, we find that the
answer is negative in the setting proposed in [1], while it is affirmative in the
framework in [2]. Indeed, in the former context, even under the endowment
heterogeneity assumption, we do not observe multistability phenomena, since
the possible outcomes are those detected in [1] and recalled above. In the
latter framework, in addition to the results obtained in [2], we find instead
multistability phenomena in which the nontrivial equilibrium is characterized
by different calorie intakes for the two groups of agents. We stress that this
is a crucial difference between the homogeneous and heterogeneous endow-
ment settings, because in case of strong coexistence the involved nontrivial
equilibrium displays a deeper degree of heterogeneity between groups, not
only in terms of population shares, but also from a caloric viewpoint.
Finally, we perform a bifurcation analysis in order to understand how the
market stationary equilibria with different calorie intakes do emerge. We ob-
tain a qualitative result, showing that, according to the relative endowment
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values, those equilibria can appear through a transcritical or a saddle-node
bifurcations. Our analysis allows us to discuss the local stability and the
basins of attraction of the stationary equilibria that emerge through such
bifurcations.
The remainder of the paper is organized as follows. In Section 2 we present
the general model. In Sections 3 and 4 we respectively describe the settings
with monotone and non-monotone population growth rates. In Section 5 we
perform a bifurcation analysis, showing the possible dynamic scenarios and,
in particular, those characterized by the presence of strong coexistence. In
Section 6 we briefly discuss our results and propose some possible extensions
of our models.

2 The model

We start our discussion recalling the framework with homogeneous endow-
ments in [1], where the authors consider a continuous-time model describing
an exchange economy with a continuum of agents, which may be of type α or
of type β. There are two consumption goods, x and y, and agent preferences
are described by Cobb-Douglas utility functions, i.e., Ui(x, y) = xiy1−i, for
i ∈ {α, β}, with 0 < β < α < 1. Both kinds of agents have the same endow-
ments of the two goods, denoted respectively by wx and wy. The analysis is
performed in terms of the relative price p(t) = py(t)/px(t), where px(t) and
py(t) are the prices at time t for goods x and y, respectively. The size of
the population of kind α (β) at time t is denoted by A(t) (B(t)) and the
normalized variable a(t) = (A(t))/(A(t) + B(t)) represents the fraction of
the population composed by the agents of type α.
We now present the definition of market equilibrium, we will refer to in the
remainder of the paper.

Definition 2.1 Given the economy and the population share a(t), a market

equilibrium at time t is a vector (p∗(t), x∗

i (t), y
∗

i (t)), with i ∈ {α, β}, such
that:

− every kind of agent chooses a utility-maximizing consumption bundle,

given p∗(t);

− the markets for the two goods clear.
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The market equilibrium price at time t is then given by

p∗(t) =

[
1−

(
a(t)α + (1− a(t))β

)]
wx(

a(t)α + (1− a(t))β
)
wy

and the consumer equilibrium quantities of the two goods for an agent of
type i ∈ {α, β} are

x∗

i (t) = i(wx + p∗(t)wy) =
iwx

a(t)α+(1−a(t))β
,

y∗i (t) = (1− i)
(

wx

p∗(t)
+ wy

)
= (1−i)wy

1−(a(t)α+(1−a(t))β)
.

The framework we are going to analyze generalizes the one recalled above,
as we relax the homogeneity assumption for endowments across groups.
Hence, we introduce the endowments of good x for the agents of type α
and β, denoted respectively by wx,α and wx,β, and similarly we will denote
by wy,α and wy,β the endowments of good y for the agents of type α and β,
respectively. Recalling Definition 2.1, we have the following result.

Proposition 2.1 Given the economy with heterogeneous endowment distri-

bution and a(t), the market equilibrium price at time t is

p∗(t) =
a(t)(1− α)wx,α + (1− a(t))(1− β)wx,β

a(t)αwy,α + (1− a(t))βwy,β

and the consumer equilibrium quantities of the two goods for an agent of type

i ∈ {α, β}, compatible with the market equilibrium, are

x∗

i (t) = i(wx,i + p∗(t)wy,i), y∗i (t) = (1− i)

(
wx,i

p∗(t)
+ wy,i

)
,

i.e.,

x∗

α(t) = α
(

a(t)wx,αwy,α+(1−a(t))βwx,αwy,β+(1−a(t))(1−β)wx,βwy,α

a(t)αwy,α+(1−a(t))βwy,β

)
,

x∗

β(t) = β
(

(1−a(t))wx,βwy,β+a(t)(1−α)wx,αwy,β+a(t)αwx,βwy,α

a(t)αwy,α+(1−a(t))βwy,β

)
,

y∗α(t) = (1− α)
(

a(t)wx,αwy,α+(1−a(t))βwx,αwy,β+(1−a(t))(1−β)wx,βwy,α

a(t)(1−α)wx,α+(1−a(t))(1−β)wx,β

)
,

y∗β(t) = (1− β)
(

(1−a(t))wx,βwy,β+a(t)(1−α)wx,αwy,β+a(t)αwx,βwy,α

a(t)(1−α)wx,α+(1−a(t))(1−β)wx,β

)
.
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Proof. The desired conclusions follow by simple computations, solving the
consumer maximization problems for agents of types α and β and using the
market clearing condition for one of the two goods. �

Once we specify a dynamical rule for the population share evolution, it is
also possible to give the definition of market stationary equilibrium, for both
the homogeneous and heterogeneous endowment contexts.

Definition 2.2 Given the economy, the vector (a∗, p∗, x∗

i , y
∗

i ), i ∈ {α, β}, is
a market stationary equilibrium if a∗ is constant and if, given a∗, (p∗, x∗

i , y
∗

i ),
i ∈ {α, β}, is a market equilibrium for every t.

For the sake of brevity, in what follows we will identify market stationary
equilibria just with the population share a, since it determines all other
equilibrium components, which will be constant as well.

3 The monotone population growth rate set-

ting

According to [1], the calorie intake Ki(t) of an agent of type i ∈ {α, β}
at time t is given by a linear combination of the units xi(t) and yi(t) of
goods x and y he consumes, weighted respectively with the calories that
each agent derives from the consumption of a unit of good x and of good y,
i.e., Ki(t) = cxxi(t) + cyyi(t). In that framework, denoting by K the calorie
subsistence level, the growth rate of the population of type i is assumed to
be

Ki(t)−K, (3.1)

so that the evolution of the two groups of consumers is described by the
following system {

dA(t)
dt

= (Kα(t)−K)A(t)

dB(t)
dt

= (Kβ(t)−K)B(t)

which, in terms of the normalized variable a(t), becomes equivalent to

da(t)

dt
= a(t)(1− a(t))(Kα(t)−Kβ(t)). (3.2)
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Since in the homogeneous endowment setting considered in [1]

Kα(t)−Kβ(t) = (α− β)

(
cxwx

a(t)α + (1− a(t))β
−

cywy

1− a(t)α− (1− a(t))β

)
,

(3.3)
(3.2) can be rewritten as

da(t)

dt
= (α−β)a(t)(1−a(t))

(
cxwx

a(t)α + (1− a(t))β
−

cywy

1− a(t)α− (1− a(t))β

)
.

Notice that K does not affect the one-dimensional differential equation.
Recalling Definition 2.2, market stationary equilibria will be called trivial
if they are not characterized by the coexistence between the two groups of
agents, and nontrivial otherwise. In addition to the trivial market stationary
equilibria a = 0 and a = 1, a nontrivial market stationary equilibrium is
given by a = a∗, with

a∗ =
(1− β)cxwx − βcywy

(α− β)(cxwx + cywy)
, (3.4)

as long as a∗ ∈ (0, 1), i.e., for cxwx ∈ ((βcywy)/(1− β), (αcywy)/(1− α)) .
Such market stationary equilibrium, when it exists, is always stable for the
model considered in [1]. In that paper no comments are made on the local
stability of the dynamical system at a = 0 and a = 1. However, a simple
continuity argument shows that, when a∗ ∈ (0, 1), then a = 0 and a = 1 are
always unstable. When instead a∗ /∈ (0, 1), a = 0 may be unstable and a = 1
stable, or vice versa.
We stress that, by construction, at a = a∗ it necessarily holds that Kα(t) =
Kβ(t), for every t, and thus such equilibrium, although nontrivial, is not char-
acterized by a strong coexistence between groups, i.e., by an heterogeneity
in terms of calorie intakes.

When allowing for heterogeneous endowments, and thus employing the
equilibrium expressions found in Proposition 2.1, the resulting formulation
for

Kα(t)−Kβ(t) = cx(x
∗

α(t)− x∗

β(t)) + cy(y
∗

α(t)− y∗β(t)) (3.5)

is much more complicated than the one in (3.3) and we do not report it for
sake of brevity.
In the next result, we find the market stationary equilibria for (3.2) in the
more general context.
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Proposition 3.1 Given the economy, the market stationary equilibria for

(3.2) with heterogeneous endowments are a = 0, a = 1, and up to two non-

trivial ones in (0, 1).

Proof. Inserting (3.5) in (3.2) and setting da(t)/dt = 0, the solutions are
given by a = 0, a = 1, plus the roots of Kα(t)−Kβ(t) = 0. Since the latter is
a quadratic equation, it admits up to two solutions in (0, 1), corresponding
to the nontrivial market stationary equilibria. �

Several numerical simulations we performed suggest that, like for the
framework considered in [1], at most one of the two nontrivial market sta-
tionary equilibria found in Proposition 3.1, we denote by a = a∗ in analogy
with (3.4), lies in (0, 1). When a∗ belongs to (0, 1), it is always stable, while
a = 0 and a = 1 are always unstable. When instead a∗ does not belong to
(0, 1), then a = 0 may be unstable and a = 1 stable, or vice versa (see the
red graph in Figure 1 (A), (B) and (I)).

Hence, it seems that, even relaxing the homogeneity assumption on the
endowments in the monotone population growth rate framework considered
in [1], no coexistence phenomena may arise. Moreover, by construction, at
the nontrivial market stationary equilibria it holds that Kα(t) = Kβ(t), for
every t, and thus they do not allow for a strong coexistence between groups.

4 The non-monotone population growth rate

setting

In the present section we recall the framework with homogeneous endowments
analyzed in [2] and we explain how it changes when endowments may differ
across groups.

In such context, instead of dealing with the monotone growth rate in
(3.1), it is assumed, in agreement with the empirical literature, the existence
for the growth rate of a threshold value, above which an increasing calorie
intake becomes harmful, rather than beneficial. In symbols, the growth rate
is given by

1

1 + σ(Ki(t)− K̂)2
,

where σ is a positive parameter representing the intensity of the decrease in
the growth rate due to an increase in the distance between the calorie intake
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Ki(t) and the threshold value K̂. In this manner K̂ is no more interpretable
as the calorie subsistence level K in (3.1), but as the desirable calorie in-
take, which allows maximizing the growth rate. With such modification, the
evolution of the two groups of consumers is described by the following system





dA(t)
dt

= A(t)

1+σ(Kα(t)−K̂)2

dB(t)
dt

= B(t)

1+σ(Kβ(t)−K̂)2

which, introducing the population fraction a(t), becomes equivalent to

da(t)
dt

= a(t)(1− a(t))
(

1

1+σ(Kα(t)−K̂)2
− 1

1+σ(Kβ(t)−K̂)2

)
=

= a(t)(1− a(t))(Kα(t)−Kβ(t))

(
σ(2K̂−Kα(t)−Kβ(t))

(1+σ(Kα(t)−K̂)2)(1+σ(Kβ(t)−K̂)2)

)
.

(4.1)
If endowments are homogeneous across groups, i.e., in the context consid-
ered in [2], the expression for Kα(t) −Kβ(t) is given by (3.3). In this case,
in addition to the trivial market stationary equilibria a = 0 and a = 1, there
are up to three nontrivial equilibria. One of them comes from the condi-
tion Kα(t) = Kβ(t) and coincides with a = a∗ in (3.4), while the other two

nontrivial equilibria derive from the conditionKα(t)+Kβ(t) = 2K̂. The (pos-
sibly existing) nontrivial equilibrium found in [1] may become unstable in the
context considered in [2], and also the trivial equilibria may have different
dynamic behaviors in the two settings. Moreover, unlike the framework in
[1], the setting in [2] displays multistability phenomena, characterized by the
presence of multiple, trivial and nontrivial, locally stable market stationary
equilibria. On the other hand, in the multistability phenomena detected in
[2] at the only involved nontrivial market stationary equilibrium the calo-
rie intakes for both groups of agents coincide, and thus there is just weak
coexistence.

When relaxing the homogeneity assumption on endowments, the expres-
sion for Kα(t)−Kβ(t) is given by (3.5).
In the next result, we find the market stationary equilibria for (4.1) with
heterogeneous endowments.

Proposition 4.1 Given the economy, the market stationary equilibria for

(4.1) with heterogeneous endowments are a = 0, a = 1, and up to four non-

trivial ones in (0, 1).
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Proof. Inserting (3.5) in (4.1) and setting da(t)/dt = 0, the solutions are
given by a = 0, a = 1, plus the roots of Kα(t) −Kβ(t) = 0 and of Kα(t) +

Kβ(t) = 2K̂. Since both Kα(t) − Kβ(t) = 0 and Kα(t) + Kβ(t) = 2K̂ are
quadratic equations, they admit up to two solutions in (0, 1) each, corre-
sponding to the nontrivial market stationary equilibria for (4.1) with hetero-
geneous endowments. �

We stress that the market stationary equilibria coming from the condition
Kα(t) = Kβ(t) coincide with those already discussed at the end of Section 3.
In particular, it seems that at most one of them can lie in (0, 1) and we still
denote it by a = a∗. We will call a = a∗1 and a = a∗2, with a∗1 ≤ a∗2, the other

two nontrivial equilibria, deriving from the condition Kα(t) +Kβ(t) = 2K̂.
These are the most interesting ones from an interpretative viewpoint, being
characterized by strong coexistence, as the calorie intakes for the two groups
differ. Furthermore, like we will see in Figure 1 (F), both of them can lie in
(0, 1), even if by a simple continuity argument at most one of them can be
stable. Of course this is true when no equilibria withKα(t) = Kβ(t) belong to
(0, 1). On the other hand, when an equilibrium with Kα(t) = Kβ(t) belongs
to (0, 1), the latter seems to be always stable, and thus it is not possible that

both the nontrivial equilibria satisfying the condition Kα(t) + Kβ(t) = 2K̂
are stable (cf. Figure 1 (F)).

In the next section, we will illustrate the results described so far, as well as
perform a bifurcation analysis, which shows the possible outcomes obtainable
when moving, for instance, parameter wy,α, i.e., one of the newly introduced
endowment values. In particular, we will find that the market stationary
equilibria with different calorie intakes can emerge through a transcritical or
a saddle-node bifurcations. We will discuss qualitatively their appearance,
fixing the value of all parameters, but wy,α.

5 Bifurcation analysis and possible scenarios

In view of the next investigation, it is expedient to introduce the one-dimensional
maps f, g : [0, 1] → R related to (3.2) and (4.1), respectively, in the hetero-
geneous endowments setting and defined as

f(a) = a(1− a)(Kα −Kβ),

g(a) = a(1− a)(Kα −Kβ)

(
σ(2K̂−Kα−Kβ)

(1+σ(Kα−K̂)2)(1+σ(Kβ−K̂)2)

)
,

(5.1)
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with Kα −Kβ like in (3.5).
Let us first focus on the monotone population growth rate setting.

As already recalled in Section 3, in the homogeneous endowments framework
in [1], when a∗ ∈ (0, 1), then a = 0 and a = 1 are always unstable; when
instead a∗ /∈ (0, 1), a = 0 may be unstable and a = 1 stable, or vice versa.
Hence, in that setting no multistability phenomena, characterized by the
presence of multiple locally stable market stationary equilibria, may arise.
The same conclusions seem to hold also in the case of heterogeneous endow-
ments. The corresponding scenarios can be found, for instance, in Figure 1
(A), (B) and (I), where we draw the graph of f in red (and of g in blue)

for cx = 1.5, wx,β = 0.5, cy = 1.3, α = 0.7, β = 0.3 (as well as for K̂ = 2
and σ = 0.9 for g) and we make the other endowment values vary as follows:
wx,α = 0.4, wy,α = 0.1, wy,β = 0.3 in (A), wx,α = 0.4, wy,α = 0.1, wy,β = 0.2
in (B), and wx,α = 0.8, wy,α = 2.5, wy,β = 0.2 in (I). Because of the next dis-
cussion, we also report the endowment values in the remaining frameworks
considered in Figure 1, i.e., wx,α = 0.4, wy,β = 0.2, and wy,α = 0.7 in (C),
wy,α = 1 in (D), wy,α = 1.5005 in (E), wy,α = 1.95 in (F), wy,α = 2.0846 in
(G) and wy,α = 2.5 in (H).

Turning now to the non-monotone growth rate framework, we observe
that, both in the homogeneous and heterogeneous endowments settings, in
addition to reproducing all the scenarios arising from the context in [1], it is
also possible to find multistability phenomena, involving trivial and nontrivial
equilibria. For the homogeneous endowment setting, we refer the reader to
[2], while for the heterogeneous endowments framework, see the graph of g
in blue in Figure 1, where in (A) and (B) we reproduce the scenarios in [1], 1

while in (C)–(F) we obtain multistability phenomena, involving both trivial
and nontrivial equilibria.

We now better study the mutual relationship between the stability of
the equilibria in the monotone and non-monotone growth rate frameworks
with heterogeneous endowments, performing a qualitative bifurcation analy-
sis. In particular, we investigate the emergence/disappearance and stability
gain/loss of equilibria on varying the value of endowment wy,α.
Figure 1 shows that for small values of wy,α maps f and g are analogous

1It is easy to find parameter values which generate the scenario symmetric to (A) with
respect to the x-axis, with both f and g positive on (0, 1). A possible such choice is given by

cx = 0.5, wx,α = 2, wx,β = 0.5, cy = 1.3, wy,α = 0.4, wy,β = 0.3, α = 0.5, β = 0.4, K̂ = 2
and σ = 0.9.
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Figure 1: The graphs of the first iterate of f (in red) and of g (in blue) for
different endowment values.

from a stability viewpoint (see (A) and (B) for wy,α = 0.1), and thus we
find for both the monotone and non-monotone growth rate frameworks the
same dynamic behaviors as in [1], while for large values of wy,α maps f and
g display an opposite behavior (see (H) and (I) for wy,α = 2.5); for interme-
diate increasing values of wy,α, the behaviors of f and g become less and less
similar (see (C) for wy,α = 0.7 through (G) for wy,α = 2.09).
As concerns multistability, we notice that the locally stable equilibria for g
are a = 0, a = a∗ in (C); a = 0, a = a∗, a = 1 in (D); a = 0, a = 1 in (E),
(G) and (H); a = 0, a = a∗2, a = 1 in (F). The unstable equilibria in (C)–
(H) play the role of separating the basins of attraction of the locally stable
equilibria: trajectories will be attracted by one or the other of the various
locally stable equilibria according to the chosen initial condition. In regard
to (A) and (B), since there the monotone and non-monotone growth rate
frameworks are dynamically equivalent to the setting in [1], no multistability
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phenomena may arise and indeed the unique stable equilibrium we find in
(A) is given by a = 0, while in (B) is given by a = a∗. 2

Hence, like for the framework considered in [2], also when introducing het-
erogeneous endowments at most one of the multiple locally stable equilibria
is characterized by the coexistence between the two groups of agents,3 while
in the remaining one(s) just a group survives. On the other hand, differently
from [2], we find scenarios like that in Figure 1 (F) in which at such non-
trivial equilibrium there is strong coexistence, as the calorie intakes for the
two groups of agents differ. For instance at a = a∗2 = 0.4474 in Figure 1 (F)
we have Kα = 2.372717260 and Kβ = 1.627282742. We stress that this is a
crucial difference between the homogeneous and heterogeneous endowments
settings, as a nontrivial equilibrium with Kα 6= Kβ displays a deeper degree
of heterogeneity between groups, not only in terms of population shares, but
also from a caloric viewpoint. In such respect, we remark that the prevailing
group at a = a∗2 is given by agents of type β, who assume a lower quantity
of calories. Moreover, Kβ is slightly closer than Kα to the desirable calorie

intake K̂ = 2, which allows maximizing the growth rate.
For the sake of completeness, we also investigate what happens to the calorie
intakes at the other two locally stable equilibria in Figure 1 (F), i.e., at a = 0
and at a = 1. In such framework at a = 0 we have Kα = 13.151, Kβ = 1.010
and at a = 1 we have Kα = 3.135, Kβ = 5.590. Hence, at a = 0 and at a = 1

the calorie intake of the only surviving group is the closest to K̂ = 2, even if
at a = 0 we observe for the prevailing group a calorie intake lower than K̂,
while at a = 1 we observe for both groups an excess calorie intake. Actually,
this is true not only at a = 0 and at a = 1, but also along the trajectories
tending towards them.

We conclude our analysis by observing that in Figure 1, when increasing

2For the parameter configuration reported in Footnote 3 the unique stable equilibrium
is given by a = 1.

3We stress that we may obtain a nontrivial locally stable equilibrium even when the
endowments of the two goods are both favorable to one group, as happens in Figure 1
(B) with agents of type β. This means that it is not true that the group with larger
endowments, also for the commodity its agents have a stronger preference for, necessarily
prevails, because of agents’ pressure on the price formation mechanism. Indeed, even if
the endowment of a commodity is larger with respect to the endowment of the other good,
its price raises if the demand for it is too high. Due to the increased price, the agents who
prefer it start consuming also the other commodity and this induces a decrease in their
payoff, so that the share of the agents belonging to the other group grows and in such way
no group disappears from the economy.
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the value of wy,α, we find two different kinds of bifurcations for the map g:
a transcritical bifurcation at a = a∗ = a∗2 = 0.6425 for wy,α = 1.5005 and
a saddle-node bifurcation at a = a∗1 = a∗2 = 0.3341 for wy,α = 2.0846 (see
Figure 1 (E) and (G), respectively). Before stating in a formal manner the
corresponding result in Proposition 5.1, we recall the main features related
to the occurrence of such bifurcations. At a transcritical bifurcation a sta-
ble and an unstable equilibria merge and after that the stable equilibrium
becomes unstable and vice versa. This is what happens to a∗ and a∗2 in Fig-
ure 1: indeed for wy,α in a left neighborhood of 1.5005 a∗ is stable and a∗2
unstable (cf. Figure 1 (D)), while for wy,α in a right neighborhood of 1.5005
a∗ becomes unstable and a∗2 gains stability (see Figure 1 (F)), leading to
the most interesting scenario analyzed above. At a (subcritical) saddle-node
bifurcation a pair of hyperbolic equilibria, one stable and one unstable, co-
alesce at the bifurcation point, annihilate each other and disappear. This
is what happens to a∗1 and a∗2: namely, for wy,α in a left neighborhood of
2.0846 a∗1 is unstable and a∗2 stable (see Figure 1 (F)), while for wy,α in a
right neighborhood of 2.0846 a∗1 and a∗2 disappear, becoming complex (see
Figure 1 (H)).

Proposition 5.1 For the map g = g(a;wy,α) in (5.1) a transcritical bifurca-

tion occurs at ã = 0.6425 for w̃y,α = 1.5005, while a saddle-node bifurcation

occurs at ã = 0.3341 for w̃y,α = 2.0846.

Proof. According to [16, page 369], for the occurrence of a transcritical
bifurcation we just have to check the following conditions:

g(ã; w̃y,α) = 0, ∂g

∂a
(ã; w̃y,α) = 0, ∂g

∂wy,α
(ã; w̃y,α) = 0,

∂2g

∂a ∂wy,α
(ã; w̃y,α) 6= 0, ∂2g

∂a2
(ã; w̃y,α) 6= 0,

while for the saddle-node bifurcation, we have to check the following condi-
tions (cf. [16, page 364]):

g(ã; w̃y,α) = 0,
∂g

∂a
(ã; w̃y,α) = 0,

∂g

∂wy,α

(ã; w̃y,α) 6= 0,
∂2g

∂a2
(ã; w̃y,α) 6= 0.

Direct (software-assisted) computations show that all the above conditions
are satisfied. In particular, it holds that:
∂2g/∂a ∂wy,α(ã; w̃y,α) = 1.559, ∂2g/∂a2(ã; w̃y,α) = 6.4117, ∂g/∂wy,α(ã; w̃y,α) =
−0.127 and ∂2g/∂a2(ã; w̃y,α) = −3.9246.
This completes the proof. �
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6 Conclusion

In the present paper we added to the frameworks considered in [1, 2] the
heterogeneity assumption for endowments, and we studied market equilibria,
which link equilibrium price and optimal consumption quantities to popu-
lation shares. The aim was indeed that of investigating whether the new
heterogeneity hypothesis may generate multistability phenomena involving
nontrivial market stationary equilibria with strong coexistence, at which the
calorie intakes for the two groups of agents differ. We found that the answer
is negative in the monotone population growth rate setting proposed in [1],
while it is affirmative in the non-monotone growth rate framework in [2].
Finally, we performed a bifurcation analysis in order to understand how the
market stationary equilibria with different calorie intakes do emerge. We ob-
tained a qualitative result, showing that, according to the relative endowment
values, those equilibria can appear through a transcritical or a saddle-node
bifurcations. Our analysis allowed us to discuss the local stability and the
basins of attraction of the stationary equilibria that emerge through such
bifurcations.
We believe the settings considered, even in the simplified versions analyzed
in [1, 2], can be a starting point for other research works.
From a mathematical viewpoint, it would indeed be interesting to study the
various models taking time as discrete, rather than continuous, in order to
investigate how the dynamics change and which new phenomena arise.
From a modeling viewpoint, the non-monotone frameworks analyzed here
and in [2] could instead be modified to represent the fashion cycle. In such
case, we would still deal with a bell-shaped map, describing, rather than the
relationship between calorie intake and population growth rate, the link be-
tween consumption and imitative behavior, below the saturation level, and
between consumption and snob behavior, above such level. In order to in-
terpret the fashion cycle, and in particular its multistability phenomena, we
need to identify (at least) two lifestyles, described by different preference
structures; for each lifestyle we would introduce an attractiveness degree,
which depends in a nonlinear bell-shaped manner on the consumption of
the representative agent belonging to the population share who adopts that
particular preference structure. Then, the two attractiveness degrees would
jointly determine the population switching mechanism between the different
lifestyles.
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