

Uniwersytet Śląski

University of Silesia

https://opus.us.edu.pl

Publikacja / Publication Control of Dynamics of the Modified Newton - Raphson Algorithm,
 Gościniak Ireneusz Remigiusz, Gdawiec Krzysztof

DOI wersji wydawcy / Published version DOI http://dx.doi.org/10.1016/j.cnsns.2018.07.010
Adres publikacji w Repozytorium URL /
Publication address in Repository https://opus.us.edu.pl/info/article/USL8c9f3e481fb647818776b86e92606c49/

Data opublikowania w Repozytorium /
Deposited in Repository on Feb 6, 2024

Rodzaj licencji / Type of licence

Cytuj tę wersję / Cite this version
Control of Dynamics of Gościniak Ireneusz Remigiusz, Gdawiec Krzysztof:

the Modified Newton - Raphson Algorithm, Communications in Nonlinear
Science and Numerical Simulation, vol. 67, 2018, pp. 76-99, DOI:10.1016/j.
cnsns.2018.07.010

Title: Control of Dynamics of the Modified Newton-Raphson Algorithm

Author: Ireneusz Gościniak, Krzysztof Gdawiec

Citation style: Gościniak Ireneusz, Gdawiec Krzysztof. (2019). Control of
Dynamics of the Modified Newton-Raphson Algorithm. “Communications
in Nonlinear Science and Numerical Simulation” Vol. 67 (2019), p. 76-99.
DOI 10.1016/j.cnsns.2018.07.010

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

Control of Dynamics of the Modified Newton-Raphson
Algorithm

Ireneusz Gościniaka,∗, Krzysztof Gdawieca

aInstitute of Computer Science, University of Silesia, Bȩdzińska 39, 41–200 Sosnowiec,
Poland

Abstract

Many algorithms that iteratively find solution of an equation are described in the
literature. In this article we propose an algorithm that is based on the Newton-
Raphson root finding method and which uses an adaptation mechanics. The
adaptation mechanics is based on a linear combination of some membership
functions and allows a better control of algorithm’s dynamics. The proposed
approach allows to visualize the adaptation mechanics impact on the operation
of the algorithm. Moreover, various iteration processes and their operation
mechanics are discussed in this research. The understanding of the impact of
the proposed modifications on the algorithm’s operation can be helpful at using
other algorithms. The obtained visualizations have also an artistic potential
and can be used for instance in creating mosaics, wallpapers etc.

Keywords: root finding, dynamics, iterations, visualization

1. Introduction

Determining the local minimum of a function F is a task implemented by
algorithms which are based on the function’s value or gradient. The movement
direction of a particle is determined by the gradient. A step is calculated from
the position of the particle reached in the previous iteration and the next posi-
tion is determined by using the gradient [1]. The gradient descent method is a
typical example of this kind of methods and it can be written in the following
form:

z′i = zi − γ∇F(zi), (1)

where −∇F – negative gradient, γ – step size, z′i – the current position of
the ith particle in a D dimensional environment, zi – the previous position of
the ith particle. This approach is used by many different algorithms and their
properties are well described in the literature.

∗Corresponding author
Email addresses: ireneusz.gosciniak@us.edu.pl (Ireneusz Gościniak),

kgdawiec@ux2.math.us.edu.pl (Krzysztof Gdawiec)

Preprint submitted to Communications in Nonlinear Science and Numerical SimulationJuly 11, 2018

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

Another approach in solving the minimization problem is the use of evolu-
tionary algorithms. The analysis of particle’s motion in this group of algorithms
is not a trivial problem [2, 3]. A similar behaviour to the evolutionary algorithms
show the Particle Swarm Optimization (PSO) algorithms [4]. The interaction
of particles in the swarm causes a very complex behaviour. The motion of a
particle in the PSO algorithm is described using the following formula:

z′i = zi + v′i, (2)

where z′i – the current position of the ith particle in a D dimensional environ-
ment, zi – the previous position of the ith particle, v′i – the current velocity
of the ith particle in a D dimensional environment that is described by the
following equation:

v′i = ωvi + η1r1(zpbest i − zi) + η2r2(zgbest − zi), (3)

where vi – the previous velocity of the ith particle, ω – inertia weight (ω ∈
[0, 1]), η1, η2 – acceleration constants (η1, η2 ∈ (0, 1]), r1, r2 – random numbers
generated uniformly in the [0, 1] interval, zpbest i – the best position of the ith
particle, zgbest – the global best position of the particles.

Inertia weight (ω) and acceleration constants (η1, η2) are responsible for
the particle motion. The inertia weight is responsible for the balance of the
exploration and exploitation. Numerous approaches to setting the inertia weight
have been proposed in the literature. These control rules of inertia weight can
be classified as follows:

1. constant [5],
2. random [6],
3. time varying, e.g., linear decreasing [7], sigmoid increasing/decreasing [8],

simulated annealing [9], Sugeno function [10], exponential decreasing law
[11] and [12], logarithmic decreasing law [13],

4. adaptive control (using feedbacks of the optimization process), e.g., best
fitness [14] and [15], fitness of the current and previous iterations [16],
global best and average local best fitness [17], particle rank [18], distance
to particle and global best positions [19], distance to global best position
[20].

The inertia weight value greater than 1.2 performs exploration process.
Whereas, if the inertia weight value is smaller than 0.8 it is responsible for
the exploitation. The value of inertia weight mostly presented in literature is
within the range of [0.4, 0.9] (see [21]).

Acceleration constants η1, η2 affect the pulling of particles towards the best
position. The η1 pulls the particle towards its own best position zpbest i and
the η2 attracts all the particles towards the global best position zgbest [22]. The
particles can be trapped in false optima for too high values of η1, η2. If η1, η2
take too low values the algorithm cannot reach solution.

The parameters tuning is a very important problem for these groups of
algorithms [23, 22] and the particle dynamics is determined by the adaptation
mechanics resulting from particles co-operation.

2

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

Graphical visualization is one of many different methods to analyse the dy-
namics [24]. In the root finding problem the methods of visualizing the dynamics
have even their own name, namely polynomiography [25]. In these methods the
algorithm counts the number of iterations required to obtain the root of a given
polynomial. Next, the number of iterations is visualised using some colour map.
This method can be used not only for polynomials but also for other functions.
Despite the fact that the name polynomiography is related to polynomials we
will use the same name for the methods of visualizing the dynamics for arbitrary
functions.

In this paper, we propose a method for solving non-linear system of equa-
tions that is based on the Newton-Raphson method and the idea of the PSO
algorithms. Like in the PSO algorithm the proposed method introduces the in-
ertia weight and the acceleration constant, but we replace the constant values of
these parameters with the adaptation mechanics. Visualization method is used
to show the influence of the adaptation functions on the particle’s behaviour.
Graphical results presented in this paper allow to provide not only the discus-
sion on the behaviour of a particle, but they have also aesthetic character and
artistic meaning.

The rest of the paper is organized as follows. In Sec. 2 we introduce the
root finding algorithm that is based on the Newton-Raphson method and the
PSO algorithm idea. Then, in Sec. 3 we define the adaptation mechanics that
is used in the proposed algorithm. In the next section – Sec. 4 – we present
some iteration processes known in the literature. The algorithm for creating
polynomiographs is presented in Sec. 5. Then, in Sec. 6 we discuss the research
results illustrated by the obtained polynomiographs. Finally, in Sec. 7 we give
some short concluding remarks.

2. The algorithm

The problem of solving a system of D non-linear equations with D variables
is widely known and studied problem in the literature. There are many different
methods for solving such systems and one of the most commonly used methods
is the Newton-Raphson method [26].

Let f1, f2, . . . , fD : RD → R and let

F(z1, z2, . . . , zD) =


f1(z1, z2, . . . , zD)
f2(z1, z2, . . . , zD)

...
fD(z1, z2, . . . , zD)

 =


0
0
...
0

 = 0. (4)

To solve the equation F(z) = 0, where F : RD → RD is a continuous
function with continuous first partial derivatives and z = [z1, z2, . . . , zD] using
the Newton-Raphson first we select a starting point z0 = [z10 , z

2
0 , . . . , z

D
0]. Then,

we use the following iterative formula:

zn+1 = zn − J−1(zn)F(zn) n = 1, 2, . . . , (5)

3

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

where

J(z) =


∂f1
∂z1

(z) ∂f1
∂z2

(z) . . . ∂f1
∂zD

(z)
∂f2
∂z1

(z) ∂f2
∂z2

(z) . . . ∂f2
∂zD

(z)
...

...
...

...
∂fD
∂z1

(z) ∂fD
∂z2

(z) . . . ∂fD
∂zD

(z)

 (6)

is the Jacobian matrix of F and J−1 is its inverse.
Let N(z) = −J−1(z)F(z). Using N the Newton-Raphson method can be

written in the following form:

zn+1 = zn + N(zn), n = 0, 1, 2, (7)

Basing on the idea of the PSO algorithm we can propose another method
for solving (4). Let z0 ∈ RD be a starting position and v0 = [0, 0, . . . , 0]
be a starting velocity. To find the roots of (4) we use the following iterative
algorithm:

zn+1 = zn + vn+1, (8)

where vn+1 is the current velocity of the particle (vn+1 = [v1n+1, v
2
n+1, . . . , v

D
n+1]),

zn is the previous position of the particle (zn = [z1n, z
2
n, . . . , z

D
n]).

The algorithm determines the current position of the particle summing the
previous position of particle zn with its current velocity vn+1. Combining the
Newton-Raphson method with the PSO approach the current velocity of the
particle is determined by the inertia weight and the acceleration constant as
follows:

vn+1 = ωvn + ηN(zn), (9)

where vn+1 – the current velocity of the particle, vn – the previous velocity of
the particle, ω ∈ [0, 1) – inertia weight, η ∈ (0, 1] – acceleration constant.

The inertia weight (ω) and the acceleration constant (η) influence the par-
ticle’s behaviour. They can be changed depending on the algorithm’s progress.
The effect of changes of these parameters determines particle dynamics, and it
will be visualized using the algorithm described in Sec. 5.

3. Applying mechanics of adaptation

The particle’s dynamics is a function of inertia weight (ω) and the accelera-
tion constant (η). These parameters can be changed during the progress of the
iteration process. The change can be made depending on the value of ‖F(zn)‖,
because the lower the value of ‖F(zn)‖ the better the position of particle for
the problem being analysed. It is possible to propose a modification of (9) by
applying the adaptation functions ω, η : R→ R. In order to simplify the defini-
tion of the adaptation function, a linear combination of membership functions
µ1, µ2, µ3 and corresponding weights ω1, ω2, ω3, η1, η2, η3 is proposed.

As membership functions we can use different functions that are used in
fuzzy numbers theory. In this paper we propose the use of the following three

4

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

Figure 1: Membership functions for modelling the adaptation functions

membership functions:

µ1(x) =


1 if x < A,
B−x
B−A if A ≤ x ≤ B,
0 if B < x,

(10)

µ2(x) =


x−A
B−A if A ≤ x < B,

1 if B ≤ x < C,
D−x
D−C if C ≤ x ≤ D,
0 if x < A ∨D < x,

(11)

µ3(x) =


0 if x < C,
x−C
D−C if C ≤ x < D,

1 if D ≤ x,
(12)

where x,A,B,C,D ∈ R and A < B ≤ C < D. The graphs of µ1, µ2, µ3 are
presented in Fig. 1.

Having membership functions µ1, µ2, µ3 we define the adaptation functions
in the following way:

• the inertia adaptation function

ω(x) = ω1 · µ1(x) + ω2 · µ2(x) + ω3 · µ3(x), (13)

where x ∈ R and ω1, ω2, ω3 ∈ [0, 1),

• the acceleration adaptation function

η(x) = η1 · µ1(x) + η2 · µ2(x) + η3 · µ3(x), (14)

where x ∈ R and µ1, µ2, µ3 ∈ (0, 1].

Each of the adaptation functions is defined by seven parameters: ω1, ω2, ω2, A,
B, C, D for the ω function and η1, η2, η3, A, B, C, D for the η function. Fig. 2
presents examples of adaptation functions. The parameters defining these two

5

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) inertia adaptation function (b) acceleration adaptation function

Figure 2: Examples of adaptation functions

function were the following: (a) ω1 = 0.7, ω2 = 0.5, ω3 = 0.3, A = 0.6, B = 2,
C = 3, D = 4, (b) η1 = 0.3, η2 = 0.5, η3 = 0.7, A = 0, B = 1, C = 3, D = 5.

Using the inertia and acceleration adaptation functions we modify (9) in the
following way:

vn+1 = ω(‖F(zn)‖)vn + η(‖F(zn)‖)N(zn), (15)

This approach allows to control changes in particle dynamics depending on
‖F(zn)‖.

4. Iteration processes

Iterative algorithms are widely used in many computational tasks, e.g., root
finding [25], eigenvalue problem [27], solving of differential equations [26]. In
these iterative methods usually the so-called Picard iteration is used, i.e., iter-
ation of the following form:

zn+1 = T(zn), n = 0, 1, 2, . . . , (16)

where T is some mapping and z0 is a starting point.
The literature on the approximate finding of fixed points is full of other types

of iteration processes. These processes are divided into two types: explicit and
implicit. In this paper we focus on the explicit ones. Let us recall some of the
most widely used iteration method of this type.

1. The Mann iteration [28]:

zn+1 = (1− αn)zn + αnT(zn), n = 0, 1, 2, . . . , (17)

where αn ∈ (0, 1] for all n ∈ N.

2. The Ishikawa iteration [29]:

zn+1 = (1− αn)zn + αnT(un),

un = (1− βn)zn + βnT(zn), n = 0, 1, 2, . . . ,
(18)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.

6

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

3. The Agarwal iteration [30] (S-iteration):

zn+1 = (1− αn)T(zn) + αnT(un),

un = (1− βn)zn + βnT(zn), n = 0, 1, 2, . . . ,
(19)

where αn ∈ [0, 1] and βn ∈ [0, 1] for all n ∈ N.
4. The Das-Debata iteration [31]:

zn+1 = (1− αn)zn + αnT
II(un),

un = (1− βn)zn + βnT
I(zn), n = 0, 1, 2, . . . ,

(20)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.
5. The Khan-Cho-Abbas iteration [32]:

zn+1 = (1− αn)TI(zn) + αnT
II(un),

un = (1− βn)zn + βnT
I(zn), n = 0, 1, 2, . . . ,

(21)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.
6. The generalized Agarwal iteration [32]:

zn+1 = (1− αn)TIII(zn) + αnT
II(un),

un = (1− βn)zn + βnT
I(zn), n = 0, 1, 2, . . . ,

(22)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.

The Picard, Mann, Ishikawa and the Agarwal iterations are used in finding
fixed points of a single mapping T, whereas the Das-Debata, Khan-Cho-Abbas
and the generalized Agarwal iterations are used in finding common fixed points
of two (TI , TII) or three (TI , TII , TIII) mappings. Moreover, let us notice
that some of the iterations reduce to other, e.g., the Mann iteration reduces
to the Picard iteration when αn = 1 for all n ∈ N. The possible conversions
between the introduced iterations are presented in Tab. 1. The iteration in the
column converts to the iteration in a row; ”−” means that there is no possible
conversion. More iteration processes for finding fixed points of a single mapping
and their dependencies can be found in [33].

When we look at (8) we see that this algorithm uses the Picard iteration,
where the mapping T is given by the following formula:

T(zn) = zn + vn+1. (23)

Mapping T is defined by three parameters: the function F, the inertia adapta-
tion function ω given by (13), and the acceleration adaptation function η given
by (14).

In the algorithm we can replace the Picard iteration by the other presented
iterations. In the case of several mappings we use the same function F, but
different inertia and acceleration adaptation functions to define the mappings.

Some of the iterations use an additional sample point un (reference point).
In those cases, two steps are performed: the reference point un (a sample) is
determined in the first step, and then a new position of the particle zn+1 is
calculated. This allows to better control the particle’s movement.

7

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

Table 1: Conversions of iterations (iteration in the column converts to the iteration in a row;
”−” – no possible conversion)

P
ic

a
rd

M
a
n

n
Is

h
ik

aw
a

A
g
a
rw

a
l

D
a
s-

D
eb

a
ta

K
h

a
n

-C
h

o
-A

b
b

a
s

g
en

er
al

iz
ed

A
g
a
rw

a
l

P
ic

ar
d

×
α

=
1

α
=

0
α

=
0

α
=

0
α

=
1

o
r

α
=

1
o
r

o
r

β
=

0
α

=
1

β
=

0
α

=
1

α
=

1
β

=
0

β
=

0
β

=
0

M
an

n
−

×
β

=
0

−
β

=
0

−
−

Is
h

ik
aw

a
−

−
×

−
T
I

=
T
I
I

−
−

A
ga

rw
al

−
−

−
×

−
T
I

=
T
I
I

=
T
I
I
I

T
I

=
T
I
I

=
T
I
I
I

D
as

-D
eb

at
a

−
−

−
−

×
−

−
K

h
an

-C
h

o-
A

b
b

as
−

−
−

−
−

×
T
I

=
T
I
I
I

ge
n

er
al

iz
ed

A
ga

rw
al

−
−

−
−

−
−

×

8

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

5. Visualization of the dynamics

The visualization of the dynamics of the proposed methods relays on the
ideas used in polynomiography [34]. First, we select one of the iteration methods
presented in Sec. 4. Depending on the selected iteration method we set the
appropriate number of inertia and acceleration adaptation functions, i.e., ω, η
for a single transformation T, and from ωI , ηI , ωII , ηII up to ωIII , ηIII –
depending on the chosen iteration method – for transformations TI , TII , TIII .
Each of the functions is given by seven parameters: ω1, ω2, ω3, Aω, Bω, Cω,
Dω, for the ω function, and η1, η2, η3, Aη, Bη, Cη, Dη for the η function.
Moreover, we set the maximum number of iterations m, which the algorithm
should perform, the accuracy of the computations ε > 0, and we also select a
colouring function C : N → {0, 1, . . . , 255}3 and the area of interest A. Then,
for each z0 in A we use the algorithm. The computations are proceed till the
convergence criterion is not satisfied:

‖zn+1 − zn‖ < ε (24)

or the maximum number of iterations is not reached. Finally, using the colour-
ing function C we assign colour to z0 using the number of iterations that the
algorithm has performed.

The pseudocode of the visualization algorithm is presented in Algorithm 1.
The Iq in the algorithm is the selected iteration method and q is its vector

of parameters. For simplicity we use the following notation A
{I|II|III}
{ω|η} , where

we give the number of the transformation in the superscript, the name of the
function which this parameter defines in the subscript, and | denotes alternative.

The solution space A is defined in a D-dimensional space, thus the algorithm
returns polynomiograph in this space. For D = 2, a single image is obtained.
When D > 2 cross sections of A with a two-dimensional plane for visualization
can be made.

6. Discussion on the research results

In this section we present the results of conducted research. In the research
we visualized – using the method introduced in Sec. 5 – the dynamics of the
algorithm from Sec. 2 with the adaptation functions described in Sec. 3 and
various iteration processes from Sec. 4. Using the visualizations we analyse the
behaviour of the algorithm depending on its different parameters.

A standard function used in the literature on root finding methods is the
cubic complex polynomial c3 − 1. We can transform this complex function
into system of two real equations with two variables in the following way. Let
c = x + iy where i =

√
−1 and x, y ∈ R. Moreover, let p(c) = c3 − 1. To solve

the following non-linear equation

p(c) = 0, (25)

9

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

Algorithm 1: Visualization of the dynamics

Input: F – function, A ⊂ RD – solution space, m – the maximum
number of iterations, Iq – iteration method, q ∈ [0, 1]N –

parameters of the iteration Iq, ω
{I|II|III}
{1|2|3} , η

{I|II|III}
{1|2|3} ,

A
{I|II|III}
{ω|η} , B

{I|II|III}
{ω|η} , C

{I|II|III}
{ω|η} , D

{I|II|III}
{ω|η} ,– parameters

defining functions T {I|II|III}, C – colouring function, ε –
accuracy

Output: visualization of the dynamics

1 foreach z0 ∈ A do
2 i = 0
3 v0 = [0, 0, . . . , 0]
4 while i ≤ m do
5 zn+1 = Iq(zn)
6 if ‖zn+1 − zn‖ < ε then
7 break

8 i = i+ 1

9 colour z0 with C(i)

Figure 3: Colour map used in the experiments.

this equation can be written as follows:

0 = c3 − 1 = (x+ iy)3 − 1 = x3 − 3xy2 − 1 + (3x2y − y3)i. (26)

In this case, equation (26) can be transformed into system of two equations with
two variables:

F(x, y) =

[
f1(x, y)
f2(x, y)

]
=

[
0
0

]
= 0, (27)

where f1(x, y) = x3 − 3xy2 − 1 and f2(x, y) = 3x2y − y3. Of course, the set
of solutions of this system has three elements which are the following: [1, 0],
[−0.5,−0.866025], [−0.5, 0.866025].

To solve (27) we used the method introduced in Sec. 2. The same colour
map (Fig. 3) was used to colour all of the obtained polynomiographs. Further-
more, in every experiment we used the following common parameters: A =
[−2.0, 2.0]2 ([−0.5, 0.5]2 is used for the magnification of the centre parts of poly-
nomiographs), m = 128, r = 1.0e−2, image resolution 800× 800 pixels.

Because we need to give values of many parameters, so for simplicity we
introduce the following convention for the description of the parameters of the
adaptation functions. The shape of an adaptation function results directly from
this description. All the parameters values must be specified for the correct

10

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

description of the adaptation function. We set the default value of 0.0 for all the

parameters – it means that {ω|η}{−|I|II|III}{1|2|3} = 0.0 and {A|B|C|D}{−|I|II|III}{ω|η} =

0.0 (”−” means that superscript is omitted for a single transformation T). Only
values other than zero are given in the description of the parameters.

The algorithm used in the experiments was implemented in the C++ pro-
gramming language. The experiments were conducted on a computer with the
Intel Core i5-2520M processor, 4 GB RAM, and Linux 3.16.7-42-desktop open-
SUSE 13.2 (Harlequin 64-bits, KDE Platform Version 4.14.9).

6.1. The Picard iteration

Fig. 4 presents polynomiographs obtained using the proposed method and
the Picard iteration. The inertia adaptation function was modelled by using
only the µ1 membership function. This example also clarifies the convention
of parameters description. Continuing the analysis of the example shown in
Fig. 4, parameters A and B are required to determine the function µ1. In the
description of the example from Fig. 4a the value of Aω (which is omitted in the
description) is equal to 0.0 (by default) and Bω is equal to 10.0, and parameter
ω1 (whose value is greater than zero and determines the use of µ1) is equal to
0.7. These parameters indicate that the slope of the function µ1 varies linearly
from 0.7 to 0.0 in the range from Aω = 0.0 to Bω = 10.0 and the function µ1

outside of this range is equal to 0.0. Because ω2 = ω3 = 0 the inertia function
is determined only by using the membership function µ1. By continuing, the
parameters η1 = η2 = 0 (by default) so the acceleration function is determined
only by the µ3 membership function. Parameters Cη and Dη are equal to 0.0
(by default) and η3 has value equal to 0.7 – these settings indicate that the
acceleration function assumes a constant value equal to 0.7 in the whole range.
In the example illustrated in Fig. 4b, the value of Aω = 3.0 is given in the
description of the image and the remaining parameters are the same as in the
example shown in Fig. 4a. It means that the inertia function returns a value
equal to 0.7 in the range from 0.0 to Aω = 3.0, while the slope of the function
µ1 changes linearly from 0.7 to 0.0 in the range from Aω = 3.0 to Bω = 10, and
outside of these ranges µ1 takes the value equal to 0.0. The acceleration function
is defined as in the example from Fig. 4a. The used convention of parameters
specification greatly simplifies the description without affecting its quality. The
parameter t in the image description denotes the average number of iterations
required to create one point of polynomiograph.

In Fig. 4a and b we can observe the effect of changing the Aω parameter in
the function µ1, and in Fig. 4c and d the effect of changing the Bω parameter.
Modelling of particle’s dynamics by the ω function is realized for small values of
‖F(zn)‖. It results in visible changes in the central part of the polynomiographs.

The effect of modelling the ω function, in which only the membership func-
tion µ2 is used, i.e., ω1 = ω3 = 0.0 is shown in Fig. 5. The acceleration adapta-
tion function η is the same as in the previous example. As it can be observed
the µ2 function significantly influences the polynomiographs smoothing. Areas

11

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) Bω = 10.0, t = 11.40 (b) Aω = 3.0, Bω = 10.0, t =
14.06

(c) Aω = 1.0, Bω = 3.0, t =
10.80

(d) Aω = 1.0, Bω = 7.0, t =
12.29

Figure 4: Polynomiographs of the Picard iteration for ω1 = 0.7, η3 = 0.7 and varying Aω and
Bω .

12

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) Bω = 2.0, Cω = 8.0, Dω =
10.0, t = 6.39

(b) Bω = 4.0, Cω = 6.0, Dω =
10.0, t = 5.58

(c) Aω = 0.2, Bω = 4.0, Cω =
6.0, Dω = 8.0, t = 5.42

(d) Aω = 0.5, Bω = 5.0, Cω =
6.0, Dω = 8.0, t = 5.50

Figure 5: Polynomiographs of the Picard iteration for ω2 = 0.7, η3 = 0.7 and varying Aω ,
Bω , Cω , Dω .

with high dynamics (areas presenting a wide range of changes) are not subject
to numerous changes in comparison to the previous drawings.

In Fig. 6 the effect of modelling the ω function using only the µ3 function
(ω1 = ω2 = 0.0) is presented. As in the previous cases the same acceleration
adaptation function η was used to obtain the polynomiographs. Modelling of
particle’s dynamics by the inertia adaptation function ω is within the range of
high values of ‖F(zn)‖. We see that also in this case the use of different µ3 mem-
bership functions significantly influences the smoothing of polynomiographs.

Modelling of dynamics by the acceleration adaptation function is special be-
cause the adaptation function should not have a value of 0 (it causes particle
immobility) – the minimum and maximum values of the µ1, µ2, µ3 membership
functions are determined by the appropriate selection of coefficients. The mem-
bership functions µ1 and µ3 are used because of the specific selection of param-
eters for modelling acceleration adaptation function in the example presented
in the Fig. 7 (this parameter description is consistent with the used convention,
η2 is equal to 0.0). Because the value of η1 is higher than the value of η3, so
the µ1 membership function has a greater impact on the dynamics shown in

13

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) Dω = 5.0, t = 6.05 (b) Cω = 1.0, Dω = 5.0, t =
5.85

(c) Cω = 3.0, Dω = 10.0, t =
5.54

(d) Cω = 8.0, Dω = 10.0, t =
5.64

Figure 6: Polynomiographs of the Picard iteration for ω3 = 0.7, η3 = 0.7 and varying Cω and
Dω .

14

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) Bη = 10.0, Dη = 10.0, t =
12.46

(b) Aη = 3.0, Bη = 10.0, Cη =
3.0, Dη = 10.0, t = 12.51

(c) Aη = 1.0, Bη = 3.0, Cη =
1.0, Dη = 3.0, t = 15.19

(d) Aη = 1.0, Bη = 7.0, Cη =
1.0, Dη = 7.0, t = 13.45

Figure 7: Polynomiographs of the Picard iteration for ω3 = 0.5, η1 = 0.7, η3 = 0.1 and
varying Aη , Bη , Cη , Dη .

Fig. 7. The inertia adaptation function returns constant value equal to 0.5. For
the images in Fig. 7a and b the parameter Aη changes, whereas for the images
in Fig. 7c and d the parameter Bη is changing. The use of the η adaptation
function causes a high acceleration of the particle for small values of ‖F(zn)‖.

The next example shows the modelling of acceleration adaptation function
with the dominating influence of the µ2 membership function (the shape of µ2 is
modelled by changing Aη, Bη, Cη, Dη parameters). For the examples presented
in Fig. 8a and b, high acceleration values are obtained in the range of small
and medium values of ‖F(zn)‖ (membership function µ1 is omitted and η3 has
a small value) and in images in Fig. 8c and d in the medium range (η1 and
η3 both have a small value equal to 0.1). The images of particle dynamics in
Fig. 8c and d are more smoothed in comparison to drawings in Fig. 8a and b.
All these images show interesting patterns.

The modelling of acceleration adaptation function with the dominant influ-
ence of the µ3 membership function because η1 is equal to 0.1 and η3 is equal to
0.7 (the µ2 membership function is omitted) is shown in the next example. High
values of particle acceleration shown in Fig. 9 are obtained for the high values

15

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) Bη = 2.0, Cη = 8.0, Dη =
10.0, t = 13.07

(b) Bη = 4.0, Cη = 6.0, Dη =
10.0, t = 21.44

(c) η1 = 0.1, Aη = 0.2, Bη =
4.0, Cη = 6.0, Dη = 8.0, t =
12.76

(d) η1 = 0.1, Aη = 0.5, Bη =
5.0, Cη = 6.0, Dη = 8.0, t =
13.18

Figure 8: Polynomiographs of the Picard iteration for ω3 = 0.5, η2 = 0.7, η3 = 0.1 and
varying Aη , Bη , Cη , Dη .

16

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) Bη = 5.0, Dη = 5.0, t =
10.38

(b) Aη = 1.0, Bη = 5.0, Cη =
1.0, Dη = 5.0, t = 11.70

(c) Aη = 3.0, Bη = 10.0, Cη =
3.0, Dη = 10.0, t = 13.69

(d) Aη = 8.0, Bη = 10.0, Cη =
8.0, Dη = 10.0, t = 15.29

Figure 9: Polynomiographs of the Picard iteration for ω3 = 0.5, η1 = 0.1, η3 = 0.7 and
varying Aη , Bη , Cη , Dη .

of ‖F(zn)‖. Modelling of particle dynamics presented on the polynomiographs
in Figs. 9c and d is performed for higher values of ‖F(zn)‖ than for the images
in Fig. 9a and b. All these pictures show interesting graphic designs.

The most interesting images are obtained by combining dynamics modelling
by the ω and η adaptation functions. Polynomiographs in Fig. 10 present various
images for different modelling parameters. They represent artistic designs.

The central areas of the polynomiographs (areas of high dynamics) also
create interesting mosaics. Magnification of the central parts of selected poly-
nomiographs are shown in Fig. 11.

6.2. The Mann iteration

The Mann Iteration introduces the α parameter, which reduces the dynamics
of the particle. The Picard iteration is obtained when α = 1, and for the
value equal to 0.0 the particle is in immobility. Fig. 12 shows images for the
varying values of α, the remaining parameters are set as in the the example
presented in Fig. 10a – it means that for α = 1 we obtain the same image.
Looking at the obtained images we see that the differences in particle dynamics

17

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) t = 77.75 (b) t = 110.95

(c) t = 26.48 (d) t = 12.49

Figure 10: Polynomiographs of the Picard iteration for varying several parameters (parameters
of examples presented in images: (a) ω2 = 0.7, Bω = 0.5, Cω = 3.0, Dω = 10.0, η3 = 0.7,
Dη = 10.0; (b) ω2 = 0.5, Bω = 0.5, Cω = 3.0, Dω = 10.0, η3 = 0.6, Dη = 10.0; (c) ω2 = 0.7,
Aω = 0.2, Bω = 4.0, Cω = 6.0, Dω = 8.0, η2 = 0.7, η3 = 0.1, Bη = 2.0, Cη = 8.0, Dη = 10.0;
(d) ω1 = 0.7, ω2 = 0.5, ω3 = 0.3, Aω = 0.6, Bω = 2.0, Cω = 3.0, Dω = 4.0, η1 = 0.3,
η2 = 0.5, η3 = 0.7, Bη = 1.0, Cη = 3.0, Dη = 5.0).

18

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) Fig. 4c (b) Fig. 6b

(c) Fig. 8b (d) Fig. 10d

Figure 11: Magnification of the central part of selected polynomiographs of the Picard itera-
tion.

19

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) α = 0.8, t = 20.93 (b) α = 0.6, t = 24.96

(c) α = 0.4, t = 32.71 (d) α = 0.2, t = 75.02

Figure 12: Polynomiographs of the Mann iteration for ω1 = 0.7, Aω = 1.0, Bω = 3.0, η2 = 0.7,
η3 = 0.1, Bη = 4.0, Cη = 6.0, Dη = 10.0 and varying α.

are significant. Limiting the particle’s dynamics increases the average number
of iterations needed to create the polynomiographs. Moreover, comparing the
images with the one obtained for the Picard iteration we see that the patterns
differ in a significant way. The change in the shape is visible in all areas of the
images.

Similar observations are made for the images in Fig. 13, but for other adapta-
tion functions. In the previous example, the inertia adaptation function returned
0.7 in the range from 0.0 to Aω = 1.0 and then it decreased linearly to 0.0 for
Bω = 3.0. Whereas the acceleration adaptation function grew linearly from 0.0
(for Aη = 0.0) to 0.7 (for Bη = 4.0), then (for Cη = 6.0) it decreased linearly
to 0.1 (for Dη = 10.0), and for the arguments greater than Dη it returned 0.1.
In the example from Fig. 13 the inertia adaptation function decreases from 0.7
to 0.3 (in the ranges defined by the values of Aω, Bω, Cω and Dω), whereas the
acceleration adaptation function increases from 0.3 to 0.7 (in the ranges defined
by Aη, Bη, Cη and Dη), so the parameters used in this example were the same
as those used for the Picard iteration in Fig. 10d. It is not difficult to notice,
by comparing the polynomiographs, that these adaptation functions cause dif-
ferent particle dynamics. Also for these images, with the decreasing value of α
we notice a decrease in particle dynamics – it also results in the increase in the

20

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) α = 0.8, t = 12.24 (b) α = 0.6, t = 13.32

(c) α = 0.4, t = 15.45 (d) α = 0.2, t = 19.93

Figure 13: Polynomiographs of the Mann iteration for ω1 = 0.7, ω2 = 0.5, ω3 = 0.3, Aω = 0.6,
Bω = 2.0, Cω = 3.0, Dω = 4.0, η1 = 0.3, η2 = 0.5, η3 = 0.7, Bη = 1.0, Cη = 3.0, Dη = 5.0
and varying α.

average number of iterations needed to create the image.
For the Mann iteration it is not difficult to see that, similarly to the case of

Picard iteration, the particle dynamics paints attractive patterns. The magnifi-
cation of the central parts of selected images is shown in Fig. 14. The obtained
patterns are intriguing and have a high aesthetic value.

6.3. The Ishikawa and the Das-Debata iterations

The Ishikawa iteration is a two step iteration. In the first step, a reference
point is created using the Mann iteration. The β parameter is responsible for the
dynamics of this point. In the second step, a new particle position is determined
as the linear combination of the particle’s position from the previous iteration
and the processed reference point. The α parameter influences the particle
dynamics. The Ishikawa iteration uses the same mappings during processing of
the particle and the reference point – it also means that we have the same set
of ω and η adaptation functions. The Das-Debata iteration is a generalization
of the Ishikawa iteration by introducing two different mappings – it gives much
wider range of possibilities for controlling particle dynamics.

21

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) Fig. 12d (b) Fig. 13a

(c) Fig. 13b (d) Fig. 13c

Figure 14: Magnification of the central part of selected polynomiographs of the Mann iteration.

22

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) β = 0.2, t = 13.25 (b) β = 0.4, t = 11.10

(c) β = 0.6, t = 10.20 (d) β = 0.8, t = 10.01

Figure 15: Polynomiographs of the Das-Debata iteration for α = 0.9, ωI1 = 0.7, ωI2 = 0.5,
ωI3 = 0.3, AIω = 0.6, BIω = 2.0, CIω = 3.0, DIω = 4.0, ηI1 = 0.3, ηI2 = 0.5, ηI3 = 0.7, BIη = 1.0,

CIη = 3.0, DIη = 5.0, ωII1 = 0.7, AIIω = 1.0, BIIω = 3.0, ηII2 = 0.7, ηII3 = 0.1, BIIη = 4.0,

CIIη = 6.0, DIIη = 10.0 and varying β.

Images in Fig. 15 show the change in polynomiographs for the Das-Debata
iteration in dependence on the β parameter. The parameters used for defining
the TI mapping are the same as in the example of the Picard iteration presented
in Fig. 10a, and for the TII mapping the same as in the example presented in
the Fig. 10d. Although some settings are repeated in the description of the
drawings, they are always given to facilitate their interpretation. The increase
in the value of β increases the reference point dynamics. It results in decrease
in the number of iterations needed to create the image.

Fig. 16 shows polynomiographs of the Das-Debata iteration for a varying α.
The parameters that define the TI and TII transformations are the same as
in the previous example. From the results we see that the decrease in particle
dynamics by decreasing the value of the α parameter results in the increase in
the average number of iterations needed to create the polynomiographs.

In the examples presented in Fig. 17 and 18 the parameters defining the
TI and TII mappings have been changed. In the previous example, the values
returned by the inertia adaptation function decreased from 0.7 to 0.3 and the
values of the acceleration adaptation function increased from 0.3 to 0.7 (the

23

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) α = 0.9, t = 9.89 (b) α = 0.7, t = 10.07

(c) α = 0.5, t = 11.52 (d) α = 0.3, t = 13.84

Figure 16: Polynomiographs of the Das-Debata iteration for β = 0.9, ωI1 = 0.7, ωI2 = 0.5,
ωI3 = 0.3, AIω = 0.6, BIω = 2.0, CIω = 3.0, DIω = 4.0, ηI1 = 0.3, ηI2 = 0.5, ηI3 = 0.7, BIη = 1.0,

CIη = 3.0, DIη = 5.0, ωII1 = 0.7, AIIω = 1.0, BIIω = 3.0, ηII2 = 0.7, ηII3 = 0.1, BIIη = 4.0,

CIIη = 6.0, DIIη = 10.0, and varying α.

24

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) β = 0.2, t = 11.52 (b) β = 0.4, t = 10.42

(c) β = 0.6, t = 9.43 (d) β = 0.8, t = 10.15

Figure 17: Polynomiographs of the Das-Debata iteration for α = 0.9, ωI1 = 0.7, AIω = 1.0,
BIω = 3.0, ηI2 = 0.7, ηI3 = 0.1, BIη = 4.0, CIη = 6.0, DIη = 10.0, ωII1 = 0.7, ωII2 = 0.5,

ωII3 = 0.3, AIIω = 0.6, BIIω = 2.0, CIIω = 3.0, DIIω = 4.0, ηII1 = 0.3, ηII2 = 0.5, ηII3 = 0.7,
BIIη = 1.0, CIIη = 3.0, DIIη = 5.0 and varying β.

shapes of the functions result from the values of A, B, C and D parameters).
In the given example, the particle inertia is high for the small values of ‖F(zn)‖
(it is due to the inertia adaptation function) and the particle acceleration is
strongly stimulated for the medium values of ‖F(zn)‖ (it is due to the accel-
eration adaptation function). There is a noticeable difference between these
examples showing the widening of the areas of high dynamics in the central
part of polynomiographs. Fig. 17 shows lower dynamics for smaller values of
β. It results in the increase in the average number of iterations. Similarly, the
decrease in dynamics with decreasing values of α is observed in Fig. 17. In
addition, it is possible to notice (by comparing the obtained polynomiographs)
that the mixing of features of particle dynamic stimulation resulting from the
shapes of ω and η adaptation functions is visible on polynomiographs.

Selecting the appropriate parameters’ values for the ω and η adaptation
functions in the Das-Debata iteration gives the possibility to control the dy-
namics of the particle practically in the whole area of the polynomoiograph as
it is presented in images in Fig. 19. Moreover, despite the limitations imposed
by the Ishikawa iteration, a wide range of dynamic controls has been obtained –

25

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) α = 0.9, t = 9.36 (b) α = 0.7, t = 10.08

(c) α = 0.5, t = 10.70 (d) α = 0.3, t = 12.44

Figure 18: Polynomiographs of the Das-Debata iteration for β = 0.9, ωI1 = 0.7, AIω = 1.0,
BIω = 3.0, ηI2 = 0.7, ηI3 = 0.1, BIη = 4.0, CIη = 6.0, DIη = 10.0, ωII1 = 0.7, ωII2 = 0.5,

ωII3 = 0.3, AIIω = 0.6, BIIω = 2.0, CIIω = 3.0, DIIω = 4.0, ηII1 = 0.3, ηII2 = 0.5, ηII3 = 0.7,
BIIη = 1.0, CIIη = 3.0, DIIη = 5.0 and varying α.

26

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

it is shown in Fig. 20. Particle dynamics control gives the opportunity to create
interesting graphic designs.

High particle dynamics contributes to creating very interesting patterns.
Even fragments of polynomiographs can be an artistic inspiration. Fig. 21 shows
the magnification of the central parts of some polynomiographs presented in the
previous examples. We see that the patterns create interesting mosaics.

6.4. The Agarwal and the Khan-Cho-Abbas iterations

Compared to the Ishikawa iteration the Agarwal iteration extends the ability
to control the particle dynamics by introducing additional transformation of zn
– see equation (19). In the following example (Fig. 22) the same parameters
as in the example in Fig. 10 were used for defining mapping T. This example
illustrates the change in particle dynamics obtained by changing the dynamics of
the reference point creation. The dynamics of creating a reference point depends
on the β parameter. The decrease in the value of the β parameter reduces
the dynamics of the reference point – it clearly affects the dynamics of the
particle. The increase in the dynamics of the reference point creation decreases
the average number of iterations required to create the polynomiograph (see
Fig. 22).

The next example – presented in Fig. 23 – shows the effect of changing
the α parameter on particle dynamics for the same settings as in the previous
example. As in the cases discussed above, reducing the particle dynamics by de-
creasing the value of α results in an increase in the average number of iterations
needed to create the polynomiograph – as it is shown in Fig. 23. It is possible to
note that α affects the linear combination of the processed particle position and
the processed reference point position. Moreover, we can observe a remarkable
resemblance between polynomiographs resulting from the shapes of the adap-
tation functions. The inertia adaptation function returns high values for small
values of ‖F(zn)‖, and the acceleration adaptation function returns high values
for medium values of ‖F(zn)‖. The polynomiographs shown in Figs. 22 and 23
are particularly similar in the area of extremes.

The Khan-Cho-Abbas iteration introduces two different mappings, which in
comparison to the Agarwal iteration extends the ability of controlling the par-
ticle dynamics. In the example the parameters for the mappings TI , TIII were
the same as in the case of the image presented in Fig. 10a, and for the TII

mapping the same as in Fig. 20a. Looking at the parameters used to generate
the images in Fig. 24 we can observe that the increase in value of β reduces
the average number of iterations needed for image creation. The obtained poly-
nomiographs confirm that the introduction of two different mappings gives a
wide range of possibilities to control the dynamics of the particle motion. It can
be said that in this case particle dynamics paint images like a brush.

Images in Fig. 25 show the change of particle dynamics due to the value’s
change of the α parameter. In general, the decrease in the α value causes the
increase in the average number of iterations required for the image creation, but
for Fig. 25d, this value has decreased in relation to Fig. 25c. It can be concluded

27

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) t = 20.61 (b) t = 15.19

(c) t = 34.66 (d) t = 16.70

Figure 19: Polynomiographs of the Das-Debata iteration for varying several parameters (pa-
rameters of examples presented in images: (a) α = 0.9, β = 0.8, ωI1 = 0.7, ωI2 = 0.5, ωI3 = 0.9,
AIω = 0.5, BIω = 2.0, CIω = 3.0, DIω = 40.0, ηI1 = 0.3, ηI2 = 0.5, ηI3 = 0.9, AIη = 0.1, BIη = 1.0,

CIη = 3.0, DIη = 5.0, ωII1 = 0.9, ωII2 = 0.7, ωII3 = 0.5, AIIω = 1.0, BIIω = 3.0, CIIω = 5.0,

DIIω = 10.0, ηII1 = 0.5, ηII2 = 0.9, ηII3 = 0.2, AIIη = 1.0, BIIη = 2.0, CIIη = 5.0, DIIη = 100.0;

(b) α = 0.9, β = 0.8, ωI2 = 0.7, BIω = 0.5, CIω = 3.0, DIω = 10.0, ηI1 = 0.5, ηI2 = 0.9, ηI3 = 0.2,
AIη = 1.0, BIη = 2.0, CIη = 5.0, DIη = 100.0, ωII1 = 0.9, ωII2 = 0.7, ωII3 = 0.5, AIIω = 1.0,

BIIω = 3.0, CIIω = 5.0, DIIω = 10.0, ηII3 = 0.7, DIIη = 10.0; (c) α = 0.9, β = 0.9, ωI1 = 0.7,

ωI2 = 0.8, ωI3 = 0.9, AIω = 1.0, BIω = 3.0, CIω = 8.0, DIω = 40.0, ηI1 = 0.5, ηI2 = 0.7, ηI3 = 0.1,
AIη = 0.1, BIη = 4.0, CIη = 6.0, DIη = 10.0, ωII1 = 0.7, ωII2 = 0.5, ωII3 = 0.3, AIIω = 0.6,

BIIω = 2.0, CIIω = 3.0, DIIω = 4.0, ηII1 = 0.8, ηII2 = 0.5, ηII3 = 0.8, BIIη = 1.0, CIIη = 3.0,

DIIη = 5.0; (d) α = 0.9, β = 0.9, ωI1 = 0.7, ωI3 = 0.7, BIω = 1.0, CIω = 1.0, DIω = 3.0, ηI2 = 0.7,

ηI3 = 0.1, BIη = 4.0, CIη = 6.0, DIη = 10.0, ωII1 = 0.7, ωII2 = 0.5, ωII3 = 0.3, AIIω = 0.6,

BIIω = 2.0, CIIω = 3.0, DIIω = 4.0, ηII3 = 0.5, DIIη = 8.0).

28

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) t = 17.19 (b) t = 14.34

(c) t = 46.25 (d) t = 76.42

Figure 20: Polynomiographs of the Ishikawa iteration for α = 0.9, β = 0.9 and varying several
parameters (parameters of examples presented in images: (a) ω1 = 0.9, ω2 = 0.7, ω3 = 0.8,
Aω = 1.0, Bω = 3.0, Cω = 5.0, Dω = 10.0, η1 = 0.2, η2 = 0.1, η3 = 0.5, Aη = 0.5, Bη = 1.0,
Cη = 5.0, Dη = 10.0; (b) ω1 = 0.7, ω2 = 0.3, ω3 = 0.5, Aω = 0.6, Bω = 1.0, Cω = 2.0,
Dω = 3.0, η2 = 0.7, η3 = 0.1, Bη = 4.0, Cη = 5.0, Dη = 6.0; (c) ω2 = 0.7, Bω = 0.5,
Cω = 3.0, Dω = 10.0, η3 = 0.7, Dη = 10.0; (d) ω3 = 0.7, Dω = 10.0, η3 = 0.7, Dη = 10.0).

29

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) Fig. 15d (b) Fig. 16b

(c) Fig. 17a (d) Fig. 18d

Figure 21: Magnification of the central part of selected polynomiographs of the Das-Debata
iteration.

30

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) β = 0.2, t = 16.28 (b) β = 0.4, t = 15.29

(c) β = 0.6, t = 14.25 (d) β = 0.8, t = 13.37

Figure 22: Polynomiographs of the Agarwal iteration for α = 0.5, ω1 = 0.7, Aω = 1.0,
Bω = 3.0, η2 = 0.7, η3 = 0.1, Bη = 4.0, Cη = 6.0, Dη = 10.0 and varying β.

31

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) α = 0.9, t = 12.95 (b) α = 0.7, t = 13.73

(c) α = 0.5, t = 14.87 (d) α = 0.3, t = 15.75

Figure 23: Polynomiographs of the Agarwal iteration for β = 0.5, ω1 = 0.7, Aω = 1.0,
Bω = 3.0, η2 = 0.7, η3 = 0.1, Bη = 4.0, Cη = 6.0, Dη = 10.0 and varying α.

32

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) β = 0.2, t = 25.68 (b) β = 0.4, t = 25.32

(c) β = 0.6, t = 24.75 (d) β = 0.8, t = 23.98

Figure 24: Polynomiographs of the Khan-Cho-Abbas iteration for α = 0.5, ω
{I|III}
2 = 0.7,

B
{I|III}
ω = 0.5, C

{I|III}
ω = 3.0, D

{I|III}
ω = 10.0, η

{I|III}
3 = 0.7, D

{I|III}
η = 10.0, ωII1 = 0.9,

ωII2 = 0.7, ωII3 = 0.8, AIIω = 1.0, BIIω = 3.0, CIIω = 5.0, DIIω = 10.0, ηII1 = 0.2, ηII2 = 0.1,
ηII3 = 0.5, AIIη = 0.5, BIIη = 1.0, CIIη = 5.0, DIIη = 10.0 and varying β.

33

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) α = 0.9, t = 23.39 (b) α = 0.7, t = 24.14

(c) α = 0.5, t = 24.87 (d) α = 0.3, t = 24.38

Figure 25: Polynomiographs of the Khan-Cho-Abbas iteration for β = 0.5, ω
{I|III}
2 = 0.7,

B
{I|III}
ω = 0.5, C

{I|III}
ω = 3.0, D

{I|III}
ω = 10.0, η

{I|III}
3 = 0.7, D

{I|III}
η = 10.0, ωII1 = 0.9,

ωII2 = 0.7, ωII3 = 0.8, AIIω = 1.0, BIIω = 3.0, CIIω = 5.0, DIIω = 10.0, ηII1 = 0.2, ηII2 = 0.1,
ηII3 = 0.5, AIIη = 0.5, BIIη = 1.0, CIIη = 5.0, DIIη = 10.0 and varying α.

that the dependencies influencing the particle dynamics become more complex
due to the different settings of parameters of the adaptation functions.

As in the examples for the Agarwal iteration, in both cases of dynamics
modelling by changing β and α parameters the common features of the obtained
images are shown. All these images can be an artistic inspiration.

The generalized Agarwal iteration in comparison to the Khan-Cho-Abbas
iteration extends the ability to control the particle by introducing a third map-
ping. In the following example the parameters used to define the three map-
pings were the following. For the TI transformation they were the same as in
the case of Fig. 10d, for the TII transformation the ω, η adaptation functions
were defined as in Fig. 10d and 12, respectively, and for the TIII transforma-
tion the parameters were the same as in the case of Fig. 20a. The obtained
polynomiographs are presented in Fig. 26 and 27. As in the previous examples,
the decrease in the value of β and α causes the increase in the average num-
ber of iterations needed for creating the polynomiograph. Due to the different
mappings, the common features of the images are blurred. Polynomiographs
created with high particle dynamics look like they were painted.

34

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) β = 0.2, t = 18.41 (b) β = 0.4, t = 15.48

(c) β = 0.6, t = 14.15 (d) β = 0.8, t = 13.19

Figure 26: Polynomiographs of the generalized Agarwal iteration for α = 0.5, ωI1 = 0.7,
ωI2 = 0.5, ωI3 = 0.3, AIω = 0.6, BIω = 2.0, CIω = 3.0, DIω = 4.0, ηI1 = 0.3, ηI2 = 0.5, ηI3 = 0.7,
BIη = 1.0, CIη = 3.0, DIη = 5.0, ωII1 = 0.7, ωII2 = 0.5, ωII3 = 0.3, AIIω = 0.6, BIIω = 2.0,

CIIω = 3.0, DIIω = 4.0, ηII2 = 0.7, ηII3 = 0.1, BIIη = 4.0, CIIη = 6.0, DIIη = 10.0, ωIII1 = 0.9,

ωIII2 = 0.7, ωIII3 = 0.8, AIIIω = 1.0, BIIIω = 3.0, CIIIω = 5.0, DIIIω = 10.0, ηIII1 = 0.2,
ηIII2 = 0.1, ηIII3 = 0.5, AIIIη = 0.5, BIIIη = 1.0, CIIIη = 5.0, DIIIη = 10.0 and varying β.

35

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) α = 0.9, t = 10.53 (b) α = 0.7, t = 12.01

(c) α = 0.5, t = 14.09 (d) α = 0.3, t = 17.57

Figure 27: Polynomiographs of the generalized Agarwal iteration for β = 0.5, ωI1 = 0.7,
ωI2 = 0.5, ωI3 = 0.3, AIω = 0.6, BIω = 2.0, CIω = 3.0, DIω = 4.0, ηI1 = 0.3, ηI2 = 0.5, ηI3 = 0.7,
BIη = 1.0, CIη = 3.0, DIη = 5.0, ωII1 = 0.7, ωII2 = 0.5, ωII3 = 0.3, AIIω = 0.6, BIIω = 2.0,

CIIω = 3.0, DIIω = 4.0, ηII2 = 0.7, ηII3 = 0.1, BIIη = 4.0, CIIη = 6.0, DIIη = 10.0, ωIII1 = 0.9,

ωIII2 = 0.7, ωIII3 = 0.8, AIIIω = 1.0, BIIIω = 3.0, CIIIω = 5.0, DIIIω = 10.0, ηIII1 = 0.2,
ηIII2 = 0.1, ηIII3 = 0.5, AIIIη = 0.5, BIIIη = 1.0, CIIIη = 5.0, DIIIη = 10.0 and varying α.

36

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

To illustrate various visual effects resulting from the dynamic control capa-
bilities by means of the ω and η adaptation functions, in Fig. 28 the Ishikawa
iteration, the Khan-Cho-Abbas iteration and the generalized Agarwal iteration
are presented for varying several parameters. The obtained images confirm
the possibility to create artistic patterns. The magnification of some selected
polynomiographs (Fig. 29) also shows artistic mosaics.

7. Conclusions

In this paper we proposed an algorithm that is based on the Newton-Raphson
root finding method and which uses an adaptation mechanics. The adaptation
mechanics is based on a linear combination of some membership functions and
allows a better control of algorithm’s dynamics. The proposed approach allows
to visualize the adaptation mechanics impact on the operation of the algorithm.
Moreover, various iteration processes and their operation mechanics were dis-
cussed. The presented linear combination method is very simple. Its use shows
how the dynamics of a particle can be controlled. Similar approaches are used
in control systems [35]. It is possible to optimize the adaptation functions, e.g.,
by means of a genetic algorithm. The presented images are also of aesthetic
importance. They can be used as art projects.

References

[1] E. Polak, Optimization Algorithms and Consistent Approximations,
Springer-Verlag, New York, 1997. doi:10.1007/978-1-4612-0663-7.

[2] I. Gosciniak, Discussion on semi-immune algorithm behaviour based
on fractal analysis, Soft Computing 21 (14) (2017) 3945–3956.
doi:10.1007/s00500-016-2044-y.

[3] I. Gosciniak, Immune algorithm in non-stationary optimization task, in:
2008 International Conference on Computational Intelligence for Modelling
Control Automation, 2008, pp. 750–755. doi:10.1109/CIMCA.2008.181.

[4] T. Weise, Global Optimization Algorithms – Theory and Application, 2nd
Edition, Online available at http://www.it-weise.de/projects/book.pdf,
2009.

[5] Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Pro-
ceedings of IEEE International Conference on Evolutionary Computa-
tion, IEEE Computer Society, Washington, DC, USA, 1998, pp. 69–73.
doi:10.1109/ICEC.1998.699146.

[6] R. Eberhart, Y. Shi, Tracking and optimizing dynamic systems with
particle swarms, in: Proceedings of the 2001 Congress on Evolution-
ary Computation (IEEE Cat. No.01TH8546), Vol. 1, 2001, pp. 94–100.
doi:10.1109/CEC.2001.934376.

37

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) t = 15.36 (b) t = 21.71

(c) t = 23.73 (d) t = 19.65

Figure 28: Polynomiographs of the Agarwal iteration (a, b), the Khan-Cho-Abbas iteration (c)
and generalized Agarwal iteration (d) for varying several parameters (parameters of examples
presented in images: (a) α = 0.5, β = 0.2, ω1 = 0.7, ω2 = 0.1, ω3 = 0.7, Bω = 1.0, Cω = 1.0,
Dω = 3.0, η2 = 0.7, η3 = 0.1, Bη = 4.0, Cη = 6.0, Dη = 8.0; (b) α = 0.2, β = 0.5,
ω1 = 0.9, ω2 = 0.7, ω3 = 0.1, Bω = 4.0, Cω = 6.0, Dω = 8.0, η1 = 0.7, η3 = 0.7, Bη = 1.0,

Cη = 1.0, Dη = 3.0; (c) α = 0.4, β = 0.9, ω
{I|III}
2 = 0.7, B

{I|III}
ω = 0.5, C

{I|III}
ω = 3.0,

D
{I|III}
ω = 10.0, η

{I|III}
3 = 0.7, D

{I|III}
η = 10.0, ωII1 = 0.9, ωII2 = 0.7, ωII3 = 0.8, AIIω = 1.0,

BIIω = 3.0, CIIω = 5.0, DIIω = 10.0, ηII1 = 0.2, ηII2 = 0.1, ηII3 = 0.5, AIIη = 0.5, BIIη = 1.0,

CIIη = 5.0, DIIη = 10.0; (d) α = 0.5, β = 0.9, ηI1 = 0.9, ηI2 = 0.7, ηI3 = 0.1, BIη = 4.0,

CIη = 6.0, DIη = 8.0, ωI1 = 0.7, ωI3 = 0.7, BIω = 1.0, CIω = 1.0, DIω = 3.0, ωII1 = 0.9,

ωII2 = 0.7, ωII3 = 0.8, AIIω = 1.0, BIIω = 3.0, CIIω = 5.0, DIIω = 10.0, ηII1 = 0.2, ηII2 = 0.1,
ηII3 = 0.5, AIIη = 0.5, BIIη = 1.0, CIIη = 5.0, DIIη = 10.0, ωI1 = 0.9, ωI2 = 0.7, ωI3 = 0.8,

AIω = 1.0, BIω = 3.0, CIω = 5.0, DIω = 10.0, ηI1 = 0.2, ηI2 = 0.1, ηI3 = 0.5, AIη = 0.5, BIη = 1.0,

CIη = 5.0, DIη = 10.0).

38

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

(a) Fig. 24c (b) Fig. 26d

(c) Fig. 28a (d) Fig. 28c

Figure 29: Magnification of the central part of selected polynomiographs of the Agarwal and
Khan-Cho-Abbas iterations.

39

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

[7] Y. Shi, R. Eberhart, Empirical study of particle swarm opti-
mization, in: Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), Vol. 3, 1999, pp. 1945–1950.
doi:10.1109/CEC.1999.785511.

[8] R. Malik, T. Rahman, S. Hashim, R. Ngah, New particle swarm optimizer
with sigmoid increasing inertia weight, International Journal of Computer
Science and Security 1 (2007) 35–44.

[9] W. Al-Hassan, M. Fayek, S. Shaheen, PSOSA: An optimized particle swarm
technique for solving the urban planning problem, in: 2006 International
Conference on Computer Engineering and Systems, 2006, pp. 401–405.
doi:10.1109/ICCES.2006.320481.

[10] K. Lei, Y. Qiu, Y. He, A new adaptive well-chosen inertia weight strat-
egy to automatically harmonize global and local search ability in parti-
cle swarm optimization, in: 2006 1st International Symposium on Sys-
tems and Control in Aerospace and Astronautics, 2006, pp. 977–980.
doi:10.1109/ISSCAA.2006.1627487.

[11] G. Chen, X. Huang, J. Jia, Z. Min, Natural exponential inertia weight
strategy in particle swarm optimization, in: 2006 6th World Congress
on Intelligent Control and Automation, Vol. 1, 2006, pp. 3672–3675.
doi:10.1109/WCICA.2006.1713055.

[12] H. Li, Y. Gao, Particle swarm optimization algorithm with exponent de-
creasing inertia weight and stochastic mutation, in: 2009 Second Interna-
tional Conference on Information and Computing Science, Vol. 1, 2009, pp.
66–69. doi:10.1109/ICIC.2009.24.

[13] Y. Gao, X. An, J. Liu, A particle swarm optimization algorithm with loga-
rithm decreasing inertia weight and chaos mutation, in: 2008 International
Conference on Computational Intelligence and Security, Vol. 1, 2008, pp.
61–65. doi:10.1109/CIS.2008.183.

[14] Y. Shi, R. Eberhart, Fuzzy adaptive particle swarm optimization, in: Pro-
ceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat.
No.01TH8546), Vol. 1, 2001, pp. 101–106. doi:10.1109/CEC.2001.934377.

[15] A. Saber, T. Senjyu, N. Urasaki, T. Funabashi, Unit commitment com-
putation – a novel fuzzy adaptive particle swarm optimization approach,
in: 2006 IEEE PES Power Systems Conference and Exposition, 2006, pp.
1820–1828. doi:10.1109/PSCE.2006.296189.

[16] X. Yang, J. Yuan, J. Yuan, H. Mao, A modified particle swarm optimizer
with dynamic adaptation, Applied Mathematics and Computation 189 (2)
(2007) 1205–1213. doi:10.1016/j.amc.2006.12.045.

40

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

[17] M. Arumugam, M. Rao, On the improved performances of the particle
swarm optimization algorithms with adaptive parameters, cross-over oper-
ators and root mean square (RMS) variants for computing optimal control
of a class of hybrid systems, Applied Soft Computing 8 (1) (2008) 324–336.
doi:10.1016/j.asoc.2007.01.010.

[18] B. Panigrahi, V. Pandi, S. Das, Adaptive particle swarm op-
timization approach for static and dynamic economic load dis-
patch, Energy Conversion and Management 49 (6) (2008) 1407–1415.
doi:10.1016/j.enconman.2007.12.023.

[19] Z. Qin, F. Yu, Z. Shi, Y. Wang, Adaptive inertia weight particle swarm op-
timization, in: L. Rutkowski, R. Tadeusiewicz, L. Zadeh, J. Żurada (Eds.),
Artificial Intelligence and Soft Computing – ICAISC 2006, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006, pp. 450–459.

[20] K. Suresh, S. Ghosh, D. Kundu, A. Sen, S. Das, A. Abraham, Inertia-
adaptive particle swarm optimizer for improved global search, in: 2008
Eighth International Conference on Intelligent Systems Design and Appli-
cations, Vol. 2, 2008, pp. 253–258. doi:10.1109/ISDA.2008.199.

[21] A. R. Jordehi, J. Jasni, Parameter selection in particle swarm optimisation:
a survey, Journal of Experimental Theoretical Artificial Intelligence 25 (4)
(2013) 527–542. doi:10.1080/0952813X.2013.782348.

[22] A. Sengupta, V. Mishra, Time varying vs fixed acceleration coefficient PSO
driven exploration during high level synthesis: Performance and quality
assessment, in: 2014 International Conference on Information Technology,
2014, pp. 281–286. doi:10.1109/ICIT.2014.16.

[23] J. Bansal, P. Singh, M. Saraswat, A. Verma, S. Jadon, A. Abraham, Inertia
weight strategies in particle swarm optimization, in: 2011 Third World
Congress on Nature and Biologically Inspired Computing, 2011, pp. 633–
640. doi:10.1109/NaBIC.2011.6089659.

[24] H. Broer, F. Takens, Dynamical Systems and Chaos, Springer-Verlag, New
York, 2011.

[25] B. Kalantari, Polynomial Root-Finding and Polynomiography, World Sci-
entific, Singapore, 2009. doi:10.1142/9789812811837.

[26] W. Cheney, D. Kincaid, Numerical Mathematics and Computing, 6th Edi-
tion, Brooks/Cole, Pacific Groove, CA, 2007.

[27] J. Solomon, Numerical Algorithms: Methods for Computer Vision, Ma-
chine Learning, and Graphics, CRC Press, Boca Raton, 2015.

[28] W. Mann, Mean value methods in iteration, Proceedings of the American
Mathematical Society 4 (3) (1953) 506–510. doi:10.1090/S0002-9939-1953-
0054846-3.

41

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

[29] S. Ishikawa, Fixed points by a new iteration method, Proceedings of the
American Mathematical Society 44 (1) (1974) 147–150. doi:10.1090/S0002-
9939-1974-0336469-5.

[30] R. Agarwal, D. O’Regan, D. Sahu, Iterative construction of fixed points
of nearly asymptotically nonexpansive mappings, Journal of Nonlinear and
Convex Analysis 8 (1) (2007) 61–79.

[31] G. Das, J. Debata, Fixed points of quasinonexpansive mappings, Indian
Journal of Pure and Applied Mathematics 17 (11) (1986) 1263–1269.

[32] S. Khan, Y. Cho, M. Abbas, Convergence to common fixed points by a
modified iteration process, Journal of Applied Mathematics and Computing
35 (1) (2011) 607–616. doi:10.1007/s12190-010-0381-z.

[33] K. Gdawiec, W. Kotarski, Polynomiography for the polynomial infinity
norm via Kalantari’s formula and nonstandard iterations, Applied Mathe-
matics and Computation 307 (2017) 17–30. doi:10.1016/j.amc.2017.02.038.

[34] K. Gdawiec, W. Kotarski, A. Lisowska, Polynomiography based on the non-
standard Newton-like root finding methods, Abstract and Applied Analysis
2015 (2015) Article ID 797594. doi:10.1155/2015/797594.

[35] J. Lilly, Fuzzy control and identification, John Wiley & Sons, Inc., Hoboken,
NJ, 2010. doi:10.1002/9780470874240.

42

Po
br

an
o

z
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a
20

24
-0

5-
01

