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Abstract

We consider the n—body problem defined on surfaces of constant positive curva-
ture. For the 5 and 7-body problem in a collinear symmetric configuration we obtain
initial positions which lead to relative equilibria. We give explicitly the values of
masses in terms of the initial positions. For positions for which relative equilibria
exist, there are infinitely many values of the masses that generate such solutions. For
the 5 and 7-body problem, the set of parameters (masses and positions) leading to
relative equilibria has positive Lebesgue measure.

1 Introduction

We consider the generalization of the gravitational n—body problem to spaces of
positive constant curvature proposed by Diacu, Pérez-Chavela and Santoprete [6} [7].
The problem has its roots on the ideas about non-Euclidean geometries proposed by
Lovachevski and Bolyai in the 19th century [2, 11]. For more details about the history
of this fascinating problem we refer the interested readers to [3].

In this paper we focus on a special type of solutions, the so called relative equi-
libria. Roughly speaking, they are solutions of the equations of motion where system
of particles moves as a rigid body, or in other words where the mutual distances
between the particles remain constant along the time. In the classical gravitational
Newtonian case these kind of solutions have been deeply analyzed since the Euler and
Lagrange times until present days. Relative equilibria in curved spaces (positive and
negative curvature) have been also widely studied in recent years, see for instance
[3, 4, 5] 6, 8, @, 10, 14} 15l 16l [17], where existence, stability and bifurcations, among
others properties of different families have been studied.

In the negative curvature case, recently the authors analyzed the collinear relative
equilibria for 5 and 7 bodies on negative curved spaces, founding some interesting
results [15]. This paper is a natural continuation on this research line.

A collinear relative equilibria in curved spaces is a relative equilibrium where the
particles lie at every time ¢ on the same rotating geodesic. The results presented
on this paper are, as mentioned above, are related with symmetric collinear relative
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equilibria for the 5 and 7-body problem on positive curved spaces. In both cases
we tackle the problem about the distribution of the particles in order to get relative
equilibria. We show that for positions that generate relative equilibria there exist
infinitely many values of masses that lead to those solutions. The set of parameters
(positions and masses) has positive Lebesgue measure.

We have also get conditions for the no existence of relative equilibria, in fact this
result is generalized for the general n—symmetrical case.

2 Statement of the main results

Consider a surface of constant curvature 1. In this paper we use the stereographic
model M2, given by the complex plane C endowed with the metric

4dzdz .
dszm, Z:U+IU€C. (1)

We denote by z; the position of the particle with mass m;. The distance between
any two points in this space satisfies

2(zz + 2i2) + (lzl* = D)(125] = 1)
(lze| + 1) (2] +1)

cos(d(2k, 2j)) =
The potential is given by

U(q) = Z mim; cot(d(gi, q;))-

1<j

And the kinetic energy is defined by
1 4
T= - (Y TE—— A
2 Z T am
From the Euler-Lagrange equations, the equations of motion take the form

_ 22:i21> (1+ |ZZ'|2)2 a_U )
1+ |22 2 0%’

Z;
where

n

U _ 2mpm;(1+ |z (L + 2)° (1 + Z2) (25 — 2)
0z (Ul + D212 +1)% = 20207 + 22) + (2]? = D(|2[2) — 112)*2

The main results of this paper are the following

Theorem 1. In the 5-body problem on M? we consider 5 particles on the same
geodesic with masses my = p,mo = ms = 1 and mq = ms = m, and initial positions
21=0, z0=—23=0a>0, 24 = —25 =1 > a (Figure[l),

e Ifar —1 <0, then do not exist relative equilibria.

e For any other parameters, there exist relative equilibria.



Theorem 2. In the 7-body problem on M?, we consider particles on the same geodesic
with masses my = p, mg = ms = 1, my = ms = M. mg = m7y = m, and initial
positions z1 = 0, 20 = —23 = > 0. 24 = —25 =y > 0. zg = —2z7y = z > 0,
(x <y < z). The equator of S* under the stereographic projection goes to the unit
circle on M?, we call it the geodesic circle.

e Ifms,ms3, my, ms, mg, m7 lie inside the geodesic circle, then do not exist relative
equilibria.

e If mo, mg, my, ms, mg, m7 lie outside the geodesic circle, then there exist initial
positions that generate relative equilibria.

e Ifmy, mg lie inside the geodesic circle, and my4, ms, mg, m7 lie outside the geodesic
circle with y < z < %, then do not exist relative equilibria. If y < 1/x < z or
1/x <y < z then it is possible to find relative equilibria.

e Ifmy, mg, my, msy lie inside the geodesic circle, and mg, m7 lie outside the geodesic
circle with z < 1/y, then do not exist relative equilibria. If 1/y < z < 1/z or
1/x < z then it is possible to find relative equilibria.

Before to proceed with the proof of the above results we must point the formal
definition of relative equilibria and the frame work in which we will be working.

Let Iso(M?) be the group of isometries of M2, and let {G(¢)} be a one-parametric
subgroup of Iso(M?).

Definition 3. A Relative Equilibrium of the curved n-body problem is a solution of
(2) which is invariant relative to the subgroup {G(t)}.

It is well known that, in order to obtain relative equilibria on M2, it is enough
to study solutions given by the action w(t) = ez(t) (see [13]), i.e. solutions of
the equations of motion where the orbits of the bodies are Euclidean circles. In the
same paper, the authors show the necessary conditions for the existence of relative

equilibria, which are given by:.

Proposition 4. Consider n point particles with masses myi,mo, ..., My MOVING 0N
M2. A necessary and sufficient condition for the solution 21, za, ..., 2z, of (@) to be
a relative equilibrium is that the coordinates satisfy the following system given by the
rational functions:

1—rdz f: mj(rjz + 1)2(1 + 2:2) (25 — 2) @)
24— 3/2 ;
WD 4G T

where T;j = (7‘2-24-1)2(7‘]2-4-1)2— [2(z,~2j+zj2i)+(ri2—1)(7’]2-—1)]2, and |z| =r; € [0,7).

It is clear, as they show, that for three particles placed on a geodesic, there exist
masses and positions that satisfy such condition. For n > 4 nothing is know until
now. The ideas to extend the results about the existence of relative equilibria for
n > 4, are simple and clear, nevertheless the computations are not easy, as we will
show in this work.



3 Proof of Theorem [1

For the symmetric collinear 5-body problem, after a suitable rotation, without loss of
generality we can consider the initial positions for the configuration as z; =0, 2o =
—z3 =a, z4 = —z5 =1 (see Figure[I]).

Figure 1: Five bodies on a geodesic in M2, with a < 1 < r at time ¢ > 0.

First case. This case corresponds to the particles lying inside the geodesic circle
defined in Theorem 2] i.e. 0 < a <r < 1. Using equation (B]) for particle zo and z4,
we have

1 (a? +1)2 (1-a*a lp n mra(r? +1)(1 — r)(1 — a?)
8a ( —a2)? 1+ a2) 242 (a?r? —1)2(a® —r?) ’
% N L A= lp Imr?+1)?
(ar +1)2(a—71)2  (r+a)?(ar —1)2 (1+r2)% 272 8r(r2—-1)2°
(4)
1 1 1 (1—r2)r
L 5. —(a?+1)? - 0.
erma 2((1 +1) [(ar +1)%2(a —r)? + (r+a)?(ar — 1)2} (1+17r2)4 >
1 (a® +1) (1—7r2)r
Proof. Let us define H = 3 (ar “ TR 1) — Tk We have
3_H__( +1)(ar+a+r—1)(ar—a—r—1) (5)
da (r+a)*(1 —ar)? '
1-— 1
Then %—Ij =0iff a; = 7’—1—2 or ag = % We take a; since a € (0,1).

PH  A(r+1)*

= . Th
922 (72 T 1)4 >0 en we

The value aq is a minimum (for a fixed r) since

compute

>0, r=(0,1).

1—7r (r2+r+2)(2r2 —r+1)
H(a=—l,r)=
a+r (r24+1)%
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Hence

1 (1—1%

gla* +1)° (ar +1)%(a —1)? - (r+a)2(ar—12| (1+72)

P
4>H>0.

O

Lemma (B]) implies that second equation of system (I4]) is never satisfied, since
left part is positive and right part is negative for a,r < 1.
Second case. We have 1 < a < r. Using condition (3)) then

(@®—1a  1p 1 (@@+1)2 1 mE*+1)? 1 m(r?+1)?
(1) 2a 8a@—12  2(ar+1)2a—r2 ' 20 +a2(ar —1)2
(r—)r  1p 1 (a®+1)? 1 (a®+1)? Lm(r? +1)>
AT+t 272 2(ar+12(a—-r)2 2@ +a)2(ar—1)2 " 8r2(r2—1)2
(6)

We need to see whether or not there exist parameters a, r, u and m such that last
system is satisfied. Adding both equations of system (@) we have

A= Bu+ Cm, (7)
with
B (@>—1a (A —rHr
A= (@+1)*  (1+r2)?
Lo e 11 1 B 1
+2( +1) < 4a2(a? —1)2 +(a7‘+1)2(a—7")2 (r+a)2(ar—1)>’ ()
=3 (m+)<0
2 \a? 1?2 ’
1 1 1 1 1
i LR (e v R e sy R o) R

The sign of A can be positive or negative. From equation (7)) we have
A—Bp=Cm. 9)

We have that there exist masses that generate relative equilibria if A— Bp > 0 or

The mass relation is given by

A— Bu
o

m =

Third case. We have 0 < a <1 <.
Here we have two sub cases, when ar —1 < 0 or ar —1 > 0. Recall that ar—1 =10
correspond to a singularity of the equations of motion.



Consider first the subcase ar — 1 < 0.

(1—-a*a  1p 1 (a®+1) 2m(7’2 +1)%2ar(r? — 1)(1 — a?)

T (1+a)r T 2a2 8a2(1-a2)? (a2 -1)2(r2-a2)?
(r*=Dr  1p 1 (a*+41)? 1 (a*+1)? Lm(r? +1)>
T+t 272 2(ar+1)2(a—7)2  2(r+a)?(ar —1)2 * 8r2(r2 —1)%°

(10)
Lemma 6. — (1= (z21)°

(1 + $2)4 + 1/8 (22—-1)222 >0,z € (07 1)

Proof. We have

(1—22)z (2+1)* 1 f(2)g(z)
Ayt T e TR - @ D

with
flx) = 2* 4223 +22% 2241 > 0, g(x) = h(z)+D(z) where h(z) = 2(22—22+8)
and D(z) = —22° —22* + 2234 822 + 22+ 1. The function D(x) has only one positive
root (Descartes’ rule of signs) between x = 1 and x = 2, we also have D(0) = 1. The
function h(x) is easy to check that is positive if x > 0.
Since f(x) is also positive, we conclude A; > 0.
U

By the above lemma, for this subcase, the first equation of system (I0) has no
solution. Hence there are not relative equilibria for this positions.

Now consider the subcase ar —1 >0

_(1—a )a+1 (a? + 1) _ lp
(14 a2)4 8a2(1—a2) - 2a?
m(r? +1 1
11
<(a7‘+1 a—r)2+(r+a)2(ar—1)2>’ (11)
(r2 —1)r 2m~(a +1 2(r2—1)(1—a ) lp  1m(?+1)°
1+ r2)4 a’r? —1)2(a 272 8r2(r2 —1)%
(
If we add both equations of system (II), then we have
= Fu+ Fsm, (12)
with
P :_(1—a2)a 1 (a? +1)? N (r2 —1)r B 2ar(a? + 1)%(r2 — 1)(1 — a?)
(1+a?)*  8a%(1—a?)? (1+1r2)* (a?r? —1)%(a® — r?)?
1/1 1
B=—(=+= 1
2 2<a2+rz><07 (13)
o (2H1)° 1 N 1 R Gl D
s 2 (ar +1)2(a—7)?  (r+a)?(ar —1)? 8r2(r2—1)2 7~

The sign of F} can be positive or negative. From equation (I2),
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F3m = F1 — FQ,U.

We have that there exist relative equilibria if F; — Fou > 0 or

F <
B oM
The mass relation is
_ -y
F3

We summarize the conditions in the following table. Consider the values in (g])

and (I3).

Positions Masses
a<r<l No relative equilibria
A-B
A>0 peERT, m= S
C
l<a<r A A—Bpu
A<O — < = —
B~ "MT T
ar—1<0 No relative equilibria
- F
ar—1>0| F, >0 | peRT, m= 1" 2H
F3
a<l<r
Fy Fy — Fop
<0 | = <u, = —
' Fy fo F3

Corollary 7. In the 4-body problem on M? we consider 4 particles on the same
geodesic with masses m1 = mo = 1 and m3 = myg = m, in a symmetric configuration
with initial positions z1 = —z0 = a > 0 and z3 = —z4 = r > a. Then do not exist
relative equilibria.

Proof. 1t is enough to analyze the cases a < r < 1 and a < 1 < r with ar < 1. The
proof is similar as in the previous theorem, by considering ;4 = 0. It is enough to
analyze the case a < r < 1 and if a < 1 < r the case ar — 1 < 0.

e Casea<r<l1



The condition (B]) is

1 (a? +1)2 (- a®)a  mra(r? +1)(1 —r?)(1 — a?)
8a2(1 —a?)?2 (1+a2)* (a2r?2 — 1)%2(a® — r?) ’
1 1 1 1— 72 1m(r? +1)2
S(a®+1)? 2 7 T 2 2| ( Tz)z - __771(7‘27)2.
2 (ar +1)%2(a—7) (r+a)?(ar—1) (1+172) 8 r(r2—1)
(14)
Lemma Bl implies that there is no solution for the second equation.
e Casea<l<r,ar<1
Condition [3 is
(- a*)a 1 (a® 4+ 1)? B 2m(r? 4+ 1)%2ar(r? — 1)(1 — a?)
(1+a2)*  8a2(1 —a?)? (@212 — 1)2(r?2 — a?)? ’ (15)
(rP=r 1 (@®+1)* 1 (®+1) 1m(r? +1)°
1+t 2(ar+12(a—7)2 2(r+a)2(ar —1)2  872(r2 —1)2°

We previously checked that
(1=d®a 1 (a®+1)
(14+a2)*  8a?(1—a?)?

Hence first equation has no solutions and we conclude that there are not relative
equilibria. O

> 0.

4 Proof of Theorem

e Case: mo, m3, my, ms, Mg, m7 lie inside the geodesic circle.

We start by considering ms, ms, my4, ms, mg, my7 inside the geodesic circle. This
case correspond to z < y < z < 1. Using condition (B]) for particle z5 we obtain (see

Figure [2).

(1-2%)z 1 1 1p
T <(:13z—|—1)2(:13—z)2 T et o) (@ - 1)2> RECEr
ST BTy AL S S, P
oY (yz+ 12 (z+9y)?%(yz—1)? 8 (22 —1)222

Last equation is never satisfied for p, M, m > 0, since left part is positive. The
proof where left part is positive is similar as in lemma ([l).

e Case: mo, ms, my, ms, Mg, M7 lie outside the geodesic circle.

In this case, system (3] takes the form



d6
q4s @
q2 ’\
—z -y —x q1 ’\
t t ® J f R
x 1| vy z

Figure 2: Seven bodies on a geodesic in M?, with < 1 < y < z at time
t>0.

(@ =Dz p (2 +1)° (2 +1)°
ﬂ+ﬁy__U%§+<U%W+U%ﬂHﬁf+U2@+@%w—U2A4

+<1/2( (2 +1)° +1/2 (2 +1)° >m

2z +1)% (z — 2)? (z+ ) (xz2 — 1)

= G

i <1/2 (y2 +(i;+<—l):+ 0 V2 (2 +(;)2;(rylz)2— 1)2> "

Y s 2
T e

E’i:%z);j —_1/2 z% + <—1/2 o ﬁj;;_ll: S 1/2 E f;’;;(;?i 1)2> M

12 J(f);r(i)i UG J;”;J(;?Q_ TR %

(17)
Let be



(22 — 1)z
A T+t 1/8 (z2 — 1)2 22’
_(y2 -1y (3:2 + 1)2 B (:E2 + 1)2
S T L G PV T S R G s TP o
(2 =1z (2% + 1)2 B (22 + 1)2
A = (14 22)t 12 (zz41)% (x — 2)? 1/ (z+2)* (22 — 1)
ay; — — 1/2 %,

1/2 2 18
as = — ?, ( )
as = — 1/2 2%7

(v*+1)° (> +1)*
by = 9
L e P T P e 1
21 1)?
b _1/8((3 *1)2) -
_ (* +1)° (12 +1)°
R P A P e
B (= +1)° (22 +1)°
o =1/2 (22 4+ 1) (x — 2)* : (z4z)? (2 — 1)
B (2 +1)? (22 +1)°
¢ =1/2 (yz + 1)2 (—z+ y)2 (z+ y)2 (yz — 1)2’ (19)
m (22 +1 2
c3 =1/8 ﬁ

System (I7)) becomes

Ay =aip+ b M +cym,
Az = agp + baM + cam, (20)
Az = azp + bsM + csm.

(2 — 1)z (22+1)°
Lemma 8. m-l/Sm <0, x> 1.
Proof. The function A; can be written as
A=t f(z)g(z)
8x2(x2 —1)2(22 +1)%
with

flx)=a* —223 4222 + 22+ 1 > 0, g(z) = 2® + 227 + 825 4 h(z), h(z) = 32D(x)
and D(z) = 2% — 2% — 22+ 42 — 1. The function D(z) has a minimum (its only critical
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. _ 1 13 11

point) at x = —55(729 + 12v/3441) 10729 1 23T
have D(1) = 2, hence D(z) > 2 for x > 1. We can conclude that h(z) and g(x) are
positive. It is not difficult to check that f(z) is also positive. All this facts implies
that A; < 0.

+ 1~ —0.9334. We

O
. . Ay
The above lemma implies A; < 0. From the first equation we have p = — —
aq
b
ey - c—lm > (0. Substituting this value into the other equations, then
ai ai
as A asb asc
Z L+ [— 2 ! +b2]M+ [—%4-62}7”:142,
e 1 g
a a asc
Shi [— o1 +b3]M+ [—L+63:|m=z43.
ai ai ai
We need to see if last system has positive solutions for M and m.
Adding both equations of last system we get
Ailaz + a3] — a1[As + As]+M (bi[—a2 — as] + a1[bz + b3]) (22)

+m (Cl[—CLQ — ag] + a1[62 + 63]) = 0.

We have A1,a1,as9,a3 < 0; by, by, b3, c1,co,c3 > 0. Let us fix x and z. Notice that
the only functions that depend on y and z simultaneously are b3 and co. Consider
values of y close enough to z in such a way that bj[—ag — a3] + a1[bs + b3] < 0 and
c1[—ag — as] + ajfca + 3] < 0 (since a; > 0). This is enough to conclude that there
exist M and p such that (22]) is satisfied.

e Case: mg, mg lie inside the geodesic circle and myg4, ms, mg, m7 lie outside the
geodesic circle, with y < z < 1/z.

The equation for this case corresponding to particle ms is

1 —2?)x 22 +1)?
_((1+9:2))4 /8 (952—1)2‘)172 T /2%
(v* + 1)2 B (v? + 1)2
i (1/2 (zy + 1)2 (—y+ 115)2 /2 (y + x)2 (zy — 1)2 M (23)
Eryt ()
" (1/2 (22 +1)% (z — 2)? 12 (z+ ) (xz — 1) "

The factors for m and M in the last equation can be seen as

1 ya(y? + 1)*(y* — D(@* - 1)
2 (wy + 1)2(22 — y?)?(zy — 1)?
1 za(22 +1)2(2%2 = 1) (2? — 1)
2 (zz +1)2(22 — 22)2(zz — 1)2

Hence (23)) is never satisfied, since left part of the equation is positive (Lemma [G]).

<0,

< 0.
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e Case: mg, mg lie inside the geodesic circle andmy, ms, mg, m7 lie outside the
geodesic circle, with y < 1/z < z.

The equations of motion become

(1 -2z (2 + 1) _ " C 2ya(y?+ 1) - D1 —a?)
Tara e e T T E T T A
(22 +1)° (2 +1)°
* <1/2 (xz+ 1)2 (x — 2)2 t1/2 (z+ x)2 (xz — 1)2 m’
2 —1)y (=2 +1)* («2+1)° o
<1+y2>4+1/2<y+x>< EETER <xy+1>< T
+1)° (2 +1)?
+1/8< <1/2 T T s e
(22 1)z 2zx(ac + 1)2(1 —x?)(2? -
s i e Gk
22y(y? + 1)2(y? 22— m (2241 2
- ygﬂ; _)1()2(312 )(zz 2 )M +1/8 (22(_ 1—;2 2)2
(24)
Let be

12



Alz—(l_ 2) /8 (‘T +1)

(14 22)4 m
_(y2—1)y (x —|-1)2 (x2—|—1)2

R R T v T A G PR T T
A (22— Dz 2zx(x? + 1)%(1 — 22)(2% — 1)
T (2222 — 1)2(22 — 22)2

1
al :—1/2?,

1
ag——l/Q?,
a3——1/2i2,

2y £ D207 - (- 2?) 2
N T )
(v +1)°
S g
b 23l % ()
’ (222 =122 - 2%)2
(224 1)° (224 1)° >
=11/2 )
</ (2 +1)% (z — 2)* (z+a)? (xz — 1)

- (2417 (2417
2_<1/2<yz+1>2<—z+y>2“/2<z+y>2<yz—1>2 |

z2+1
C3 —1/8%

We have aq,as,as,by,b3 < 0; Ay, Ag, by, c1,c0,c3 > 0 (Ay is positive by Lemma
[6). System (24]) becomes

Al =aip+ blM +cim,
As = agpt + bo M + com, (26)
As = asgp + bsM + csm.

A a M
From the first equation we have m = 4 ap > (0. Substituting into the

other two equations we have

c1As — oAy = p(ager — caay) + M(bacr — c2br),

27
ClAg — CgAl = ,u(agcl — C3a1) + M(bgcl — Cgbl). ( )

Adding last two equations,
—Cl(Ag + Ag) + Al(CQ + Cg) + M[Cl (a2 + CL3) —aq (62 + 63)] (28)

+ Mlci(bg 4+ b3) — bi(ca + ¢3)] = 0.

13



Notice that among the functions A;, a;, b;,c;,i = 1,2,3, the only values that de—
pend on = and y simultaneously are Ay and by. Cons1der values of y close enough to E?
in such a way that —c; (A + As) + A1(ca +¢3) < 0 and [c1(b2 +b3) — bi(ca +¢3)] >0
are satisfied. When these two inequalities are fulfilled, then we can conclude that
there are values for M and p such that equation (28]) is valid.

e Case: mo,mg lie inside the geodesic circle andmy, ms, mg, my lie outside the
geodesic circle, with 1/z <y < z.

The condition (B]) become

(3: +1) B
‘m“/BW—‘/

2
+<1/2( (o2 +1)° 172 "+ 1)2>M+

yr+1)%(z—y) y+az)?(yo—

(=2 +1)" (= +1)"
<1/2 (zz+1)%(z—2)? 172 (z+2)? (zz—1)° m,

(2~ Dy 2yo(e®+ 127 — 1)(1 - ) M (2 +1)° (2
T i T A ksl
(> +1)? (z +1)?
" <1/2 Cyr1P(zty? 12 (z+y)°(zy— 1)2) "
(22— 1)z 2zz(z* +1)2(1—2?)(z*-1) u
(1+z2)4_ (2222 —1)2(a2 — 22)2 __1/2_2
2e(y* + 12(y° — (= — 1) m (+1)°
(PR 12— 2 M+ 1/8 (22 —1)%22
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Let be

2
A== ((i +f2))f +1/8 (Sz—t;?)xf
A, =W =Dy el + 1Py — (1 —2?)
(1+y?)* (22y? = 1)?(2? —y?)?
Ay :(z2 -1z 2zx(x? +1)2(1 — 22)(22 — 1)
(1 + 22)1 (2222 — 1)2(22 — 22)2
1

ay = — 1/2 ﬁ’

as = — 1/2 %,

a3z = — 1/2 Z%’

(2 +1)° (y2 +1)° )
by = , 30
1 (1/2<y:c+1>2<:c 0 e a1 .
(v +1)°

AT

b= 2@+ 1My — 1 1)

’ W22 - 122 - 222

. (z*+1)° (+*+1)*
1_<1/2 (zz+1)* (z — 2)° 2(z+:13)2(zx—1)2 ’
. (z*+1)° (2> +1)°
2_(1/2<zy+1>2<—z+y>2+1/2<z+y>2<zy—1>2 |

2241 2
C3 :1/8 ﬁ

We have aq,a2,a3,bs <0 and Ay,by,be,c1,c2,c3 > 0. System (29) becomes

Ay =aip+ b M +cym,
Ay = agp + ba M + cam, (31)

Az = azp + bsM + csm.
A bo M
From the second equation, we have y = £z 2 am Substituting into the

a2 a2 a2
other equations we have

a2A1 — a1A2 = M(bﬂlg — a1b2) + m(cla2 — alcg),

32
asAs — agzAly = M(bgag — a3b2) + m((IgCg — agcg). ( )

Adding these two equations,
—ag (A1 + As) + As(ar + ag) + M[az(by + bs) — ba(a1 + as)] (33)

+mlaz(c1 + ¢3) — c2(a + az)] = 0.
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As in the previous case, among the functions A;, a;, b;, ¢;,© = 1,2, 3, the only values
that depend on z and y simultaneously are A, and b;. Fix z and z, and consider
values of y close enough to 1, in such a way that —as(A4; + A3) + Asz(ar +az) > 0
(since Az(a; + a3) > 0 ) and az(by + bg) — ba(ar + az) < 0 (since ag(by + b3) < 0).
This is enough to conclude the existence of m, M > 0 such that ([B3]) holds. Notice
that for this values of x,y, z we have p > 0.

e Case: mg, mg, my, my lie inside the geodesic circle and mg, m7 lie outside the
geodesic circle, with z <y <1< z < 1/y.

The equation corresponding to particle g4 is

-y (224 1)° (=+1)*
(14y2)4 1/2 (yz+1)* (—y +z)? 12 (y+z)2(yz—17% 1/2 y? (34)
M2 +1)7 2p2(22 + 1)2(22 — 1)(1 — 2)
—-1/8 — m,
(y2 —1)%y2 (y22%2 — 1)%(y? — 22)?

Left part of latter equation is positive by Lemma[5l Hence equation (34]) is never
satisfied for any pu, M, m > 0.

e Case: mg, mg,my, my lie inside the geodesic circle and mg, m7 lie outside the
geodesic circle, with z <y <1< 1/y<z<1/x

U U Gt O TR e Ve L P
(1 +22)* (22 —1)%22 222 (%y? — 1)%(2? — y?)?
B 2202(2% +1)2(22 — 1)(1 — 2?)
(22y% — 1)2(22 — 22)2 ’
_(1 =)y (> +1)° @2+1)*
I L PPy s e s T vy R e
B M(y2+1)2 < (z2+1)2 (22—1—1)2 )m
e T\ e e
(2 - 1)z (22 +1)° (@>+1)° _ on
(1+22) 1 (zz+1)% (z — 2)? 172 (z42)(zz—1)% 12 22
(y2+1)2zy (22—1) (—y2+1)M m(22+1)2
H P A )

(35)
Let be

16



T (m2+1)2

(1-a?
A==y T e

(

<

2

(a2 +1)?

y+2z)(zy—1)*
(x2+1)2

1—9? 2 +1
Ao == 1+32;4y+1/2 (my—k(l)2(—)y+a:)2
(22— 1)z (m2+1)2
St P e
_ 1
al—_ﬁa
1
T
B 1
a3__2—zgv

2xy(y® + 1)1 —yH(A - 2?)
- 2

SR T R Cer
2
b= 18 WY
(> =17y
py 2 WD) (E 1) (1)
(y222+ 1) (2 - 227
o= 222(22 +1)%(22 — 1)(1 — 2?)

(2222 —1)2(22 — 22)2

(z4z)? (zz —1)°

I

The signs of A; and Ag are given by lemmas (@) and (&), respectively.
We have Ay, A, Az, by,ba,c,c5 > 0; a1,a,2,a3,b2,c;1 < 0. Then system (33

becomes

Al =aip+ blM +cim,
A2 = ag + b2M + com,
Az = azp + bsM + csm.

(37)

From the second equation we have m = 42 — 2, — lc’—zM . Substituting into the

c2 c2
other two equations,

CQAl — A261 = ,u(alcg — C1CL2) + M(b102 — Clbg),

(38)

coAg — Agcs = p(asca — czag) + M(bgea — c3bs).

Adding the two equations,

—co(A1+A3)+Ag(c1+c3)+plea(ar +as) —az(cr+e3)|+Mca(bi +b3) —ba(c1+c3)] = 0.

17
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Notice that co and b3 are the only equations that depend simultaneously on z
and y. Fix y and . We can take z in such a way that ¢ and bs are as large
as we want, in this way we pick z such that —cy(A1 + As) + Az(c1 + ¢3) < 0 and
ca(b1 +b3) —ba(c1 +¢3) > 0. Then there exist u and M positive such that (B9]) holds.

e Case: mg, mg, my, my lie inside the geodesic circle and mg, m7 lie outside the
geodesic circle, with z <y <1< 1/z <z

1—22)z 22 +1)° 240 1) 2y (—2+1) (—22+1) M
S gt = 2 S
(22 +1) (22 +1)°
+<1/2(zx+1)2(x—z)2+1/2(z+a:)2(zx—1)2>m’
=9y (ﬂf“rl)2 (w2+1)2 _ 1k
v <xy+1> B y+x 12 y+x> RS AT
2 24 1)
Y < < zy+1 <) z>2“2<z+(y>2<+z;—1>2>m’
(zz—l)z z (2? +1) ( ) x—i—l
I+ 27 = 2
yzy—|—1 2-1) (P + 1) M m (22 +1)°
U85 ( <y2zz(2> W zz(—n? s <z2(—1>222

Let be
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_ (1— 22z (2% +1)
A= T e
22 2 2 2 2
AQZ—(l y2)?i_|_1/2 (.Z' 2+1) 5 1/2 ($2+1) 5
(1+9?) (zy+1)2 (—y+ ) (y+2)° (xy—1)
(=12 e (@) (1) (<2 4 1)
A3 1 2\4 2 .2\2/(..2.2 2 ’
(1+22) (2% — 22)" (2222 -1
1
(11——1/2?,
1
a2——1/2?,
1
@,——1/2;,
) ey () ()
1_ (a2 — y2)% (a2 — 12
by 1 WD
B (y2 —1)y?’
SURVENViks | MC I )
(y2 — 22) ’

y222 — 1)
2

YNGR ) )

(z+a) (zz —1)°

cQ=<1/2 (2 +1)° +1/2 (2 +1)° )

The signs of A; and Ag are given by lemmas (@) and (&), respectively.

(41)

We have Ay, Ay, by1,b3,c1,c2,c5 > 0 and ,aq,az,a3,by < 0. The system (40) be-

comes

Ay =aip+ b M +cym,
Ay = agp + ba M + com,
Az = azp + bsM + csm.
A2 as b2M

From the second equation we have m = — — —— —
(&) Co (&)

the other two equations we have

CgAl — 01A2 = ,u(alcg — Clag) + M(b102 — Clbg),
CgAg — 03A2 = ,u(agcg — Cgag) + M(bgCQ — Cgbg).

Adding last two equations,
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> (0. Substituting into

(43)



—c9(A1 + A3) + Aa(c1 + ¢3) + plez(ar + ag) — az(eq + ¢3)]

+ Mca(by 4 bg) — ba(cy + c3)] = 0. (44)

Notice that ca(by + b3) — ba(c1 + ¢3) > 0. If we take 1/z close enough to 0, or z
large enough, we have that ag is very large in absolute value, hence in this way we
can choose z such that co(a; + ag) — az(c1 + ¢3) < 0. At this point we can conclude
that there exist p and M positive such that ([44) holds.

With all the above we have finished the proof of Theorem 2

Corollary 9. In the 6-body problem on M? we consider 6 particles on the same
geodesic with masses m1 = mg = 1, mg = my = M and ms = mg = m, in a
symmetric configuration with initial positions z1 = —z9 =z >0, 23 = —z4 =y > 0
and z5s = -z =2 >0 (x <y < z).
e Ifms,ms3, my, ms, mg, m7 lie inside the geodesic circle, then do not exist relative
equilibria.

e Ifmo, mg lie inside the geodesic circle, and my, ms, mg, m7 lie outside the geodesic
circle with y < z < %, then do not exist relative equilibria. If y < 1/x < z or
1/z <y < z then it is possible to find relative equilibria.

Proof. The proof is similar as in Lemma [l Consider pu = 0.

e If mg, m3, my, ms, mg, m7 lie inside the geodesic circle, then this case correspond
tor<y<z<l.

Using condition (3]) for particle zg we get,

_%+1(2+1)2< 1 + ! >:

1+22)% "2 (w2 +1)2(z—2)? (2 +2)(zz — 1) (45)
1 1 1(22+1)%m
30 (G ) M s

Last equation is never satisfied for M, m > 0, since left part is positive.

e Now we analyze the case when mo, mg lie inside the geodesic circle andmy, ms, mg, ms

lie outside the geodesic circle, with y < z < 1/x.

The equation for this case corresponding to particle ms is




The factors for m and M in the last equation can be seen as

1yz(y® +1)% @y - D(® - 1)
2 (zy +1)%(2? — y?)*(wy — 1)?
1 zz(22 4+ 1)2(22 = 1)(2? - 1)
2 (zz 4+ 1)2(22 — 22)2(22 — 1)2 <0

Hence (40) is never satisfied, since left part of the equation is positive.

<0,

o Case y < 1/x < z.

Considering p = 0, system (26) becomes

A =biM +cim,

Ay = byM + com, (47)
Az = b3M + csm.

Ay b M

From second equation m = <} — 5= > 0. Substituting into the other two
equations and adding them we have

—Cl(Ag + A3) + Al(CQ +c3) + M[Cl(bg +b3) —bi(co + 63)] =0. (48)

Among the functions A;, a;, b;, c;, i = 1,2, 3, the only values that depend on z and
y simultaneously are Ay and b;. Consider values of y close enough to %, in such a way
that —ci (A2 + A3) + A1(ca + ¢3) < 0 and [c1(by + b3) — bi(ca + ¢3)] > 0 are satisfied.
When these two inequalities are fulfilled, then we can conclude that there are values
for M such that equation (48] is valid.

e Let us analyze the case when my, mg lie inside the geodesic circle andmy, ms, mg, mz
lie outside the geodesic circle, with 1/z <y < z.

System (BII) becomes

A =biM +cim,
Ay = boM + com, (49)
Ag = bsM + c3m.

With b3 < 0, and A1, by, be,c1,co,c3 > 0. It is important to notice that Ay and Ag

might be positive or negative, and last system makes sense only if As, A3 > 0. For
1y, z fixed, consider x close enough to 0 in such a way that Ay, A3 > 0, for this value

of x, Ay is very large.
From third equation from the above system w2 s=m>0. Substituting into

the other two equations and adding them we have

Az _ bsM

C3(A1 + Ag) — A3(Cl + C2) = M[C3(b1 + b2) — b3(61 + 62)]. (50)

It is easy to check that right part of last equation is positive. Left part is positive
because we have chosen x such that A; is large enough. Hence, there exist M > 0
such that last equation holds.

O
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We can generalize the above result for n masses with symmetric configuration for
the case where no relative equilibria exist.

Proposition 10. Consider n (odd) particles on M?. We consider particles on the
same geodesic with masses mi, mg =mg =1, mqg =ms,...,My—1 = My, and initial
positions 0 = 21 < z9 = —23 < 24 = —25 < +++ < Zp_1 = —2zp. Then do not exist
relative equilibria if

e The n particles are inside the geodesic circle.

o All the particles except the bodies 2 and 3 are outside the geodesic circle with
Zn—1 < 1/22

o All the particles except the bodies n — 1 and n are inside the geodesic circle with
Zn—1 < 1/Zn_3.

Proof. e Case z,_1 < 1.
Equation for particle n — 1 in condition (3] is

n

) 3 mi(z +1)°
(1+ 23—1)4 2(1 4 2i2n-1)2(2i — 2n-1)?

i=1,i#n—1
n

B m;(27 + 1)2

- Z ) 2(,. _ 2
i=1, i#n—1, i#2,3 2(1 + zi2n-1)%(2i — 2n-1)

(25 +1)? (25 +1)°
2(1 4 z22n-1)%(22 — 2n—1)?  2(1 + z329-1)%(23 — 2n-1)%
(51)
By Lemma (Bl we have
-2 ) (B + 1 (3 +1) .
(1 + Z%_1)4 2(1 + Zgzn_1)2(22 — Zn_1)2 2(1 + ngn_1)2(23 — Zn_1)2 '
Hence expression (51l) has no solution for m; > 0.
e Case z,-1 > 24 > 1> 29 and 2z, < 1/29.
Equation for particle 2 in condition (3]) is
_ (1 — Z%)ZQ N En: mZ(le + 1)2(1 + ZiZQ)(Zi — 2’2)
Tr ) 2, 20+ )Pl =)
’ (52)
_ z": mi(z] + 121+ zize) (2 —22) 1 (25 +1)°
L2, A0tz FlE - =P B0 - 373
We can write last equation as
B (1-— z%)zg 1 (zg +1)2 B Zn: mi(zi2 + 1D2(1 + zi22) (2 — 22) (53)

(1+20)% " 8(1—23)%22 2[(1 + z22) (21 — 22)

i=1,i£2,3
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Left part is positive by lemma (@]). Right part can be seen as

C12mi | omy [ (22 +1)? B (22 +1)? }
29 2 (1 + 2422)2(24 — 2’2)2 (2’42’2 — 1)2(24 + 2’2)2
me (s +1)° ~ (s + 1) .
+ 2 [(1 + 2622)%(26 — 22)%2 (2622 — 1)?(z6 + z2)2} + (54)
.y EL+1? (B4 |
2 (4 zn122)2 (201 — 22)2 (zn-122 — 1) (201 + 22)2 ]
We have
[ (22 +1)? B (22 4+ 1)? }  zizm(Z 1) - 1D)(22— 1) “0
(1+222)%(z — 22)2  (ziza — 1)2(z2i 4+ 22)2 ] (ziz2 + 1)%(2 — 22)%(2122 — 1)2(55) ’

for i =4,6,8,...,n — 1. Hence expression (54]) has no solution for m; > 0.
e Case z,—1 > 1> 2z,-3> 29 and 2z, < 1/z,_3.

Equation for particle n — 3 in condition (3] is

_ (1 - Zg_g)zn—Zi zn: mZ(le + 1)2(1 + ZiZQ)(Zi — 2’2)

(142 _5)* ity 2+ zi22)3 (2 — 22)

n—2

.S mi(27 +1)?
2(1 + ZiZn_1)2(Zi — Zn_1)2

i=1,i#n—1
oSy B+ (B ) |
2 [(T+2zp122)% (201 — 22)% (2n—122 — 1) (201 + 22)2

_ 75:2 mi (27 +1)°
i=1,i#2,3,;n—1 21+ zizn-1)*(zi = 2n0-1)?
(25 +1) (25 +1)°
2(1 + 222p-1)%(22 — 2n—1)?  2(1 + z325—1)%(23 — 2n—1)?
4 Moot [ (2p—1 +1)° B (21 +1) }
2 [(T+2zp122)% (201 — 22)% (2n—122 — 1) (201 + 22)2
(56)
Last expression can be seen as
(-2 3)z-s (23 +1)? (25 +1)° _
(1 + 22_3)4 2(1 + Zgzn_1)2(22 — Zn_1)2 2(1 + Zgwn_1)2(2’3 — Zn_1)2
B nz_f mi(27 + 1)2
i=1,i#2,3,n—1 201+ zizp-1)?(2i — 2zn-1)”
L Mo [ (21 +1) _ (n-1 +1)?
2 [(T+2n-122)%(2n-1 — 22)%  (2n—122 — 1)%(2n-1 + 22)?
(57)
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In last equation, left part is positive (Lemma[5]) and right part is negative (as seen
in equation [55] ). O
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