
Scattering of the ϕ8 kinks with power-law asymptotics

Ekaterina Belendryasova1 and Vakhid A. Gani1, 2, ∗

1National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),

Kashirskoe shosse 31, Moscow 115409, Russia

2Theory Department, National Research Center Kurchatov Institute,

Institute for Theoretical and Experimental Physics,

Bolshaya Cheremushkinskaya st. 25, Moscow 117218, Russia

Abstract

We study the scattering of the ϕ8 kinks off each other, namely, we consider those ϕ8 kinks that

have power-law asymptotics. The slow power-law fall-off leads to a long-range interaction between

the kink and the antikink. We investigate how the scattering scenarios depend on the initial

velocities of the colliding kinks. In particular, we observe the ‘escape windows’ — the escape of

the kinks after two or more collisions, explained by the resonant energy exchange between the

translational and vibrational modes. In order to elucidate this phenomenon, we also analyze the

excitation spectra of a solitary kink and of a composite kink+antikink configuration.
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I. INTRODUCTION

Topological solitons (kinks) in (1 + 1)-dimensional non-linear field-theoretical models

are of growing interest for theoretical physics from high energy physics and cosmology to

condensed matter [1–3]. This interest can be motivated by a number of reasons. First, the

dynamics of certain physical systems can be described by (1+1)-dimensional models. Second,

the structure and dynamics of many objects in (2 + 1) and (3 + 1) space-time dimensions

can be modeled by the (1+1)-dimensional theory. For example, a three- or two-dimensional

domain wall generated by a real scalar field looks like a one-dimensional topological field

configuration (a soliton, or a kink) if viewed from the perpendicular direction. Topological

defects in (1 + 1) dimensions exist also in more complex models with two or more fields.

In [4, 5] the authors investigated the soliton-like configurations in the model with one real

and one complex scalar fields. In [6–11] the kink-like structures were studied in models with

two interacting real scalar fields, while in [12] some interesting results for several real scalar

fields were obtained. The authors of [13, 14] have found an exact analytic solution that

describes a domain wall with a localized configuration of the scalar triplet on it. A method

for calculating the bubble profile in a bounce solution for a multi-field potential with a false

vacuum was elaborated in [15]. In [16] kinks collisions in a two-field model with multiple

vacua were studied.

Interactions of kinks with each other and with spatial defects (impurities) are of great

importance and have attracted the attention of physicists and mathematicians for a long

time. The history of the subject is rather old and vast, see, e.g., the review [3]. The first

studies of the kink-antikink collisions date back to the 1970s and 1980s. For example, the

author of Ref. [17] observed the formation of a large-amplitude bion in the collisions of the

kink and antikink of the ϕ4 model at the initial velocity vin = 0.1 (in units of the speed of

light). The bion is a long-living bound state of the kink and antikink, and its formation had

been a surprise, the common expectation being that the kink and antikink would annihilate,

with all their energy being emitted in the form of small-amplitude waves. Other works of

that time established that the capture and the bion formation occur at initial velocities

below a certain critical value, vin < vcr, while at vin > vcr the kinks would bounce off each

other and escape. Besides that, at vin < vcr a new interesting phenomenon was observed

— the so-called ‘escape windows’, see, e.g., Refs. [18–20]. This was understood to be a
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consequence of the resonant energy exchange between the translational and the vibrational

modes of the kinks.

Later the resonance phenomena have been found and investigated in other models, such as

the modified sine-Gordon [21] and the double sine-Gordon [22–27]. Moreover, it was shown

that the resonance energy exchange between the translational and the vibrational modes

is possible even if the kink’s excitation spectrum does not contain any vibrational modes

[26, 28]. In this case the energy was accumulated in the vibrational mode of the composite

kink+antikink configuration. Note that in some processes the resonance frequency was

different from the frequency of the vibrational mode of the kink(s).

Today, the study of the properties of topological defects is a vast and very fast developing

area. Interactions of kinks with each other and with impurities have been studied [29–43];

see also results for branes [44], bubble-like structures [45, 46], interactions of breathers [47],

and so on [48–54]. Many interesting and important results have been obtained in the (1+1)-

dimensional models with polynomial potentials: ϕ4, ϕ6, ϕ8, and so on [55–61, 63–70]. An

impressive progress has been achieved in the studies of Q-balls [71–78], embedded topological

defects, e.g., a skyrmion on a domain wall [79, 80], a Q-lump on a domain wall [81], fermionic

states on a domain wall [82–87], etc. [88–93]. Topologically non-trivial field configurations

could be responsible for a variety of phenomena observed in the early Universe [94, 95].

Notice also results on interaction solutions in (2 + 1) dimensional non-linear equations, see

[96] and references therein.

Apart from numerically solving the equations of motion, various approximate methods

are widely used for modeling of the kink-antikink interactions. In particular, the collective

coordinate approximation [56, 97–104] treats the kink+antikink configuration as a system

with one or several degrees of freedom. For instance, the distance between kink and antikink

can be considered as a single (translational) degree of freedom. Modifications of the collective

coordinate method, which include additional degrees of freedom (e.g., vibrational ones), have

been elaborated, see, e.g., [97, 98, 100].

Another approximation is the Manton’s method [2, Ch. 5], [105–108]. This method esti-

mates the force between the kink and (anti)kink at large separations using the asymptotics

of the kinks. Note that at the moment the applicability of the method is well-proven only

for kinks and solitons with exponential asymptotics.

Certain (1+1) dimensional field-theoretical models with polynomial potentials have kinks
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with power-law asymptotics (at one or both spatial infinities) [55, 58, 61, 62] (see also [109–

111] for some other results on long-range interaction of kinks). Interactions of such kinks are

not well investigated, therefore their detailed study is of current interest [112]. Due to the

power-law tails, the kinks ‘feel’ and perturb each other at much larger distances compared

to the case of exponential tails. This our paper presents the first systematic study of the

interaction of kinks with power-law tails.

In this paper we study the scattering of the kink and the antikink of the ϕ8 model [55, 58–

61, 69]. This model is employed, e.g., to model massless mesons with self-interaction [55],

and to describe successive phase transitions [58]. Each kink (antikink) of the ϕ8 model has

power-law asymptotics at one spatial infinity and exponential asymptotics at the other. In

our numerical simulation, we start from the initial configuration in the form of the kink and

the antikink, which are separated by a large distance and are turned with their power-law

tails towards each other. The initial velocities of the kinks are equal in the laboratory frame

of reference.

For the used ansatz we found that the kink and antikink repel each other. There are

two critical values of the initial velocity, v
(1)
cr and v

(2)
cr , which separate three different regimes

of the kink-antikink scattering. At the initial velocities vin < v
(1)
cr kinks do not collide. At

v
(1)
cr < vin < v

(2)
cr the incident kinks become trapped, they form a bound state (a bion), but

there is also a pattern of ‘escape windows’, within which the kinks are able to escape. For

vin > v
(2)
cr the two incident kinks always escape after the collision.

In the range v
(1)
cr < vin < v

(2)
cr we found a complicated pattern of ‘escape windows’ —

narrow intervals of the initial velocity that allow the kink and antikink escape to infinities

after two, three, or more collisions. We also find the connection between the escape windows

and the frequencies of the vibrational modes of the composite kink+antikink configuration.

We analyze the small oscillations of the field between the collisions, and investigate the

excitation spectrum of the kink+antikink configuration.

We also investigate the oscillations in the situation when the field homogeneously deviates

from the vacuum value in a large space domain. Such oscillations could contribute in the

kink-antikink interaction, because due to the power-law tails the kinks substantially affect

the values of the field even at large distances.

Our paper is organized as follows. In Section II we briefly discuss field-theoretical models

in (1 + 1) dimensional space-time that have topologically non-trivial solutions — the kinks.
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We also introduce the ϕ8 model, write out its kinks, and discuss their properties. In Section

III we present a detailed numerical study of the kink-antikink scattering. Section IV presents

the analyses of the excitation spectra of an isolated kink, and of the composite kink+antikink

configuration. The results of the analysis of small oscillations of the field at the collision point

are also given in this Section. In Section V we deal with spatial homogeneous oscillations of

the field near a vacuum value. Finally, in Section VI we give an outlook and the conclusion.

II. GENERAL PROPERTIES OF MODELS WITH POLYNOMIAL POTENTIALS.

KINKS OF THE ϕ8 MODEL

Consider a field-theoretical model with a real scalar field in (1+1)-dimensional space-time

with its dynamics defined by the Lagrangian

L =
1

2

(
∂ϕ

∂t

)2

− 1

2

(
∂ϕ

∂x

)2

− V (ϕ), (1)

where V (ϕ) is the potential, which defines the self-interaction of the field ϕ. The Lagrangian

(1) yields the equation of motion for the field ϕ(x, t):

∂2ϕ

∂t2
− ∂2ϕ

∂x2
+
dV

dϕ
= 0. (2)

We are interested in the models with non-negative potentials having two or more degenerate

minima (vacua of the model) ϕ
(vac)
1 , ϕ

(vac)
2 , and so on, with V (ϕ

(vac)
1 ) = V (ϕ

(vac)
2 ) = ... = 0.

The energy functional for the field ϕ is

E[ϕ] =

∫ ∞
−∞

[
1

2

(
∂ϕ

∂t

)2

+
1

2

(
∂ϕ

∂x

)2

+ V (ϕ)

]
dx. (3)

In the static case the equation of motion (2) takes the form

d2ϕ

dx2
=
dV

dϕ
, (4)

and the energy of a static configuration can be found as

E[ϕ] =

∫ ∞
−∞

[
1

2

(
dϕ

dx

)2

+ V (ϕ)

]
dx. (5)

In order for this integral to be convergent, i.e. for the energy of a configuration to be finite,

it is necessary that the field tends to the vacuum values at x→ ±∞, i.e.

lim
x→−∞

ϕ(x) = ϕ
(vac)
i , lim

x→+∞
ϕ(x) = ϕ

(vac)
j . (6)
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From Eq. (4) we can easily obtain a first order differential equation for the function ϕ(x):

dϕ

dx
= ±
√

2V . (7)

If the potential V (ϕ) has two or more degenerate minima, the set of all static configurations

with finite energy can be split into disjoint equivalence classes — topological sectors —

according to their limiting behavior at x → ±∞. Configurations with ϕ(+∞) 6= ϕ(−∞)

are called topological, while those with ϕ(+∞) = ϕ(−∞) are called non-topological. A

configuration belonging to one topological sector can not be transformed into a configuration

from another topological sector via a sequence of configurations with finite energies, i.e.,

through a continuous deformation.

We will denote a topological sector by two numbers — the limits of the field at x→ −∞

and x → +∞. For example, in the case given by (6) the configuration belongs to the

topological sector
(
ϕ

(vac)
i , ϕ

(vac)
j

)
.

The ϕ8 model, which we will study below, is defined by the Lagrangian (1) with the

potential

V (ϕ) = ϕ4(1− ϕ2)2. (8)

The potential (8) has three degenerate minima, ϕ
(vac)
1 = −1, ϕ

(vac)
2 = 0, and ϕ

(vac)
3 = 1, see

Fig. 1. The model possesses two kinks, ϕ(−1,0)(x) and ϕ(0,1)(x), and two corresponding an-

-1.0 -0.5 0.5 1.0 φ

0.05

0.10

V

FIG. 1: The potential of the ϕ8 model.

tikinks, ϕ(0,−1)(x) and ϕ(1,0)(x). The expressions for the kinks and antikinks can be obtained

only implicitly. In particular, substituting the potential (8) into Eq. (7) and integrating, we

come to the following implicit expression for kinks (−1, 0) and (0, 1):

2
√

2 x = − 2

ϕ
+ ln

1 + ϕ

1− ϕ
. (9)
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The corresponding antikinks can be obtained from (9) by the transformation x→ −x:

2
√

2 x =
2

ϕ
− ln

1 + ϕ

1− ϕ
. (10)

The kinks and antikinks of the ϕ8 model are shown in Fig. 2. The mass of a kink can be
 

FIG. 2: Kinks and antikinks of the ϕ8 model.

found from Eq. (5), it is the same for all kinks and antikinks of the model:

Mk =
2
√

2

15
. (11)

A moving kink (antikink) can be obtained by the Lorentz boost, its energy depends on the

velocity v as

Ek =
Mk√
1− v2

. (12)

Each kink has exponential asymptotics at one spatial infinity and power-law asymptotics

at the other. For the kinks ϕ(−1,0)(x) and ϕ(0,1)(x) we have

ϕ(−1,0)(x) ≈ −1 +
2

e2
e2
√

2 x, x→ −∞, (13)

ϕ(−1,0)(x) ≈ − 1√
2 x

, x→ +∞, (14)

ϕ(0,1)(x) ≈ − 1√
2 x

, x→ −∞, (15)

ϕ(0,1)(x) ≈ 1− 2

e2
e−2
√

2 x, x→ +∞. (16)

Below we use the following notation: the kinks belong to the sectors (−1, 0) and (0, 1),

while the antikinks belong to the sectors (1, 0) and (0,−1). Sometimes we use the term

‘kink’ for both kinks and antikinks for brevity.
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III. KINKS SCATTERING AT LOW ENERGIES. RESONANCE PHENOMENA

We performed numerical simulations of the ϕ8 kink-antikink scattering. To do that, we

used the initial conditions in the form of the kink (−1, 0) and the antikink (0,−1), centered

at x = −ξ and x = ξ, respectively. The kink and the antikink are moving towards each

other with initial velocities vin. We numerically solved the partial differential equation (2)

with the potential (8), employing the following initial configuration (ansatz) from which one

can extract the values of ϕ(x, 0) and ϕt(x, 0):

ϕ(x, t) = ϕ(−1,0)

(
x+ ξ − vint√

1− v2
in

)
+ ϕ(0,−1)

(
x− ξ + vint√

1− v2
in

)
. (17)

In this configuration, the kink and the antikink face each other with the power-law tails, so

one would hope to capture the effects of the long-range interaction between the two solitons.

In our simulation we used the initial kink-antikink half-distance ξ = 15. The second

order partial differential equation (2) was solved using the standard explicit finite difference

scheme,

∂2ϕ

∂t2
=
ϕk+1
j − 2ϕkj + ϕk−1

j

δt2
,

∂2ϕ

∂x2
=
ϕkj+1 − 2ϕkj + ϕkj−1

δx2
, (18)

where (j, k) number the corresponding coordinates of the grid points, (xj, tk), on a grid with

the time step δt = 0.008 and the spatial step δx = 0.01. To check our numerical results, we

repeated selected computations with δt = 0.004 and δx = 0.005. We also checked whether

the total energy is conserved as the grid time increases.

 

(a) Kinks’ escape at vin = 0.08010

 

(b) Bounce off at vin = 0.14990

FIG. 3: Kinks scattering at vin < v
(1)
cr (a), and at vin > v

(2)
cr (b).
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The dependence of the kink-antikink scattering on the initial velocity vin looks intriguing.

We found two critical values of the initial velocity, v
(1)
cr = 0.08067 and v

(2)
cr = 0.14791. At

vin < v
(1)
cr the kinks approaching each other stop at some distance, and then escape to

infinities, see Fig. 3(a). This means that kinks repel each other: if the initial velocity is

too small, the kink and the antikink are not able to overcome the mutual repulsion, and do

not collide. On the other hand, at initial velocities vin > v
(2)
cr , the two incident kinks always

escape to infinities after collision, see Fig. 3(b).

The most intricate structure of the kink-antikink scattering is found in the range of initial

velocities v
(1)
cr < vin < v

(2)
cr . In this regime we observe the capture and the formation of a

bound state of the two kinks, see Fig. 4(a). There is also a complicated pattern of the

so-called ‘escape windows’ — small ranges of the initial velocity, within which the kinks are

able to escape to infinities. Note that, as opposed to the reflection at vin > v
(2)
cr , within an

escape window the kinks escape to infinities after two or more collisions, see Figs. 4(b)–4(d).

The accepted explanation of these escape windows is the resonance energy exchange

between the translational and the vibrational modes of the kinks. For example, consider

a two-bounce window, i.e. a window within which the kinks escape after two collisions,

see Fig. 4(b). At the first collision, a part of the kinetic energy is transferred into the

vibrational modes of the kinks (or into those of the composite kink+antikink configuration).

After that, due to the loss of the kinetic energy, the kinks are not able to escape, and they

return and collide again. If a certain relation between the frequency of the vibrational mode

and the time between the first and the second collisions holds, the energy transmitted into

the vibrational mode can be returned back into the translational mode, and the kink and

antikink are then able to escape.

The resonance return of the energy back to the translational mode does not need to occur

after the second collision; it can also happen in any subsequent collision, so the kinks can

escape to infinities after three or more collisions. According to this, the escape windows can

be classed into two-bounce ones, three-bounce ones, etc., see Figs. 4(c), 4(d).

Time dependence of the field φ at x = 0, ϕ(0, t), corresponding to a bion and to two-,

three-, and four-bounce windows are shown in Fig. 5. In Fig. 6 we present the pattern

of selected two-bounce windows and a series of three-bounce windows found by us. All

escape windows are located in the range 0.1446 < vin < v
(2)
cr and form a fractal structure.

Two-bounce windows are the broadest and located in the mentioned interval of the initial
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(a) Bion formation at vin = 0.14500

 

(b) Two-bounce window, vin = 0.14641

 

(c) Three-bounce window, vin = 0.14608

 

(d) Four-bounce window, vin = 0.14726

FIG. 4: Kinks scattering at v
(1)
cr < vin < v

(2)
cr .

velocities, see Fig. 6(a). In this figure we also give n — the number of small oscillations of the

field at x = 0 between two collisions of kinks. Near each two-bounce window, we observed

a series of three-bounce windows. In Fig. 6(b) we show a series of three-bounce windows in

the range 0.146063 < vin < 0.146090. Near the three-bounce windows, we found series of

four-bounce windows, and so on. We emphasize that we do not concentrate our efforts to

find all existing escape windows. Our goal is to discover the phenomena qualitatively, and

provide its partial quantitative investigation in order to reveal the mechanism.

As we have already mentioned, within the ansatz (17) the kink and the antikink of

the ϕ8 model repel each other. At the same time, at the initial velocities in the range

v
(1)
cr < vin < v

(2)
cr we observe the capture of the kinks with the formation of a bion, and a

complicated pattern of escape windows. These phenomena are possible only if the incident

kinks attract each other. Thus we can assume that the kink-antikink interaction has at least

10



50 100 150 200 250
t

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

φ(0,t)

(a) Bion formation at vin = 0.14500

50 100 150 200 250 300
t

-1.2
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-0.6

-0.4

-0.2

φ(0,t)

(b) Two-bounce window, vin = 0.14641

50 100 150 200 250 300
t

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

φ(0,t)

(c) Three-bounce window, vin = 0.14608

100 200 300 400
t

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

φ(0,t)

(d) Four-bounce window, vin = 0.14726

FIG. 5: Time dependencies of the field at x = 0, which correspond to the processes presented in

Fig. 4.

two regimes: at large separation the kinks repel, while being brought into contact they can

become trapped. A detailed study of the kink-antikink forces within this and some other

ansatzes can be a subject of another publication.

Summarizing, in the case of the kinks (−1, 0) and (0,−1) of the ϕ8 model within the

ansatz (17) the repulsion leads to the appearance of the lower critical velocity v
(1)
cr , so that

at vin < v
(1)
cr the kinks do not collide. At vin > v

(1)
cr the ϕ8 kinks behavior is rather similar to

the observed previously in, e.g., the ϕ4 [18–20] or the ϕ6 [28, 56, 57] models. Moreover, as

we show below, the situation is similar to the case of the ϕ6 kinks scattering [28]. The point

is that the ϕ8 kink do not possess an internal vibrational mode, but our simulations reveal

a rich structure of resonance phenomena. Apparently, this is a consequence of existence of

the collective vibrational modes of the composite kink+antikink configuration [26, 28].
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(a) Some of the two-bounce windows observed in the range 0.1446 < vin < v
(2)
cr . We give n — the number

of small oscillations of the field at x = 0 between two collisions of kinks

 

(b) Three-bounce windows observed in the range 0.146063 < vin < 0.146090

FIG. 6: Two-bounce windows (a), and one of many series of three-bounce windows (b).

IV. EXCITATION SPECTRA OF THE ϕ8 KINKS AND THEIR CONNECTION

WITH THE ESCAPE WINDOWS

This section attempts to find an explanation of the observed pattern of the escape win-

dows. We start from a hypothesis that the resonance energy exchange between translational

and vibrational modes takes place: at the initial impact a part of the kinetic energy is trans-

ferred into the vibrational energy, therefore the kink and antikink can not escape anymore,

and they return and collide again. In the second collision some of the vibrational energy

can be returned to the kinetic energy, allowing the kinks to escape to infinities. This is

what happens within a two-bounce window. Below we analyze the excitation spectrum of

an individual kink and that of a kink+antikink configuration in order to find vibrational

modes that can store energy.

As we show below in this section, the ϕ8 kink (antikink) does not possess an internal

vibrational mode. Therefore the excitations of an individual kink can not store and return

energy. At the same time, the excitation spectrum of the composite kink+antikink con-
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figuration depending on the distance between the kink and antikink, can have vibrational

modes, which can accumulate energy.

In order to analyse the excitation spectrum of an individual kink, we add a small pertur-

bation η(x, t) to the static solution ϕk(x), i.e., we write

ϕ(x, t) = ϕk(x) + η(x, t), |η| � |ϕk|. (19)

Substituting ϕ(x, t) into the equation of motion (2) and linearizing, we obtain:

∂2η

∂t2
− ∂2η

∂x2
+
d2V

dϕ2

∣∣∣∣
ϕk(x)

· η = 0. (20)

Looking for a solution of Eq. (20) in the form

η(x, t) = χ(x) cos ωt, (21)

we come to the Schrödinger-like eigenvalue problem

Ĥχ(x) = ω2χ(x) (22)

with the Hamiltonian

Ĥ = − d2

dx2
+ U(x), (23)

where the potential U(x) is

U(x) =
d2V

dϕ2

∣∣∣∣
ϕk(x)

. (24)

The function χ(x) is a twice continuously differentiable and square-integrable function on

the x-axis.

The excitation spectra of the kink and the antikink are obviously the same. Consider

the kink (−1, 0). The potential (24) is presented in Fig. 7 (left panel). It can easily be

shown that the discrete spectrum always has a zero (translational) mode ω0 = 0: taking the

derivative of Eq. (4) with respect to x, and considering that ϕk(x) is a solution of Eq. (4),

we obtain:

− d2

dx2

dϕk

dx
+
d2V

dϕ2

∣∣∣∣
ϕk(x)

· dϕk

dx
= 0, (25)

or

Ĥ · dϕk

dx
= 0. (26)
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This means that the function
dϕk

dx
is an eigenfunction of the Hamiltonian (23) associated with

the eigenvalue ω0 = 0. Thus a kink always has a zero mode, which simply is a consequence

of the translational invariance of the Lagrangian of the system.

Note that the zero level of the ϕ8 kink’s excitation spectrum is located on the upper

boundary of the discrete spectrum. The zero mode wave function
dϕk

dx
is nodeless and in

the case of the kink (−1, 0) has power-law asymptotics at x→ +∞. The discrete spectrum

has no levels except ω0 = 0.

Moving on to analyze the excitation spectrum of the composite kink+antikink configu-

ration, consider the configuration

ϕ(x, t) = ϕk(x+ ξ) + ϕk̄(x− ξ) + η(x, t), (27)

where η is a small perturbation. We consider the kink (−1, 0) and antikink (0,−1), therefore

ϕk(x + ξ) = ϕ(−1,0)(x + ξ) and ϕk̄(x − ξ) = ϕ(0,−1)(x − ξ). Substituting Eq. (27) into the

equation of motion (2) and linearizing, we obtain:

∂2η

∂t2
− ∂2η

∂x2
+
d2V

dϕ2

∣∣∣∣
ϕk+ϕk̄

· η =
dV

dϕ

∣∣∣∣
ϕk

+
dV

dϕ

∣∣∣∣
ϕk̄

− dV

dϕ

∣∣∣∣
ϕk+ϕk̄

. (28)

Like in the case of an individual kink, substitute η(x, t) in the form (21) into Eq. (28) with

its right-hand side set to zero. We obtain the Schrödinger-like eigenvalue problem:(
− d2

dx2
+ U(x; ξ)

)
χ(x) = ω2χ(x), (29)

where

U(x; ξ) =
d2V

dϕ2

∣∣∣∣
ϕk+ϕk̄

. (30)

The potential U(x; ξ) depends on the parameter ξ, it is plotted in Fig. 7 (right panel) for

ξ = 7. Note that U(x; ξ) → 8 at x → ±∞ for all ξ. The excitation spectrum of the

composite kink+antikink configuration depends on the distance between kink and antikink,

which is equal to 2ξ.

We perform a numerical search of levels of the discrete spectrum of the kink+antikink

configuration using a modification of the shooting method. We integrate Eq. (29), using

the asymptotic behavior of its solutions χ(x) ∼ e−
√

8−ω2|x| at x→ ±∞. We start at a large

negative x and obtain the ‘left-hand’ solution, and at a large positive x and obtain the

‘right-hand’ solution. These two solutions are then matched at some point x0 close to the
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FIG. 7: Left panel — the potential (24) for the kink (-1,0); U(x) → 8 at x → −∞, U(x) → 0

at x → +∞; the local minimum and the local maximum are Umin ≈ −1.0985 and Umax ≈ 0.6199,

respectively. Right panel — the potential U(x; ξ) for ξ = 7.

origin x = 0. The specific choice of x0 is not very important, for example, we could take

x0 = 0. Nevertheless, a small offset from the zero value helps to avoid technical issues when

U(x; ξ) is an even function of x, and χ(x) can have a node at the origin. Eigenvalues are

those values of ω2 at which the Wronskian of the ‘left-hand’ and the ‘right-hand’ solutions

at the point x0 turns to zero (changes its sign). Following this method, we obtained the

curves in Fig. 8, which we use in our analysis below.

FIG. 8: Even (solid curves) and odd (dashed curves) bound states of the composite kink-antikink

configuration.

Consider the kinks collision with the initial velocity within a two-bounce window. During
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the first collision of the kinks, a part of their kinetic energy is transferred into the vibrational

mode(s) of the potential (30), so the kinks cannot then escape to infinities, and they collide

again. In the second collision, a part of the energy accumulated in the vibrational mode(s)

can be returned to the kinetic energy, which results in the kinks escape to infinities. Between

the two collisions the kink-antikink distance changes from zero to some maximal value 2ξmax.

However most of the time between the first and the second collisions, the kinks are separated

by distance near 2ξmax. According to this, we can assume that part of the kinetic energy is

stored in a vibrational mode of the potential (30) with ξ ∼ ξmax.

Note that we have retrieved the value of ξmax in each collision by analyzing the space-

time dependence of ϕ(x, t). We also tried to apply another method, used, e.g. in Ref. [97].

Withing this approach position of the kink can be found as

ξ(t) =

∞∫
0

x ε(x, t) dx

∞∫
0

ε(x, t) dx

. (31)

However in the case of kinks with power-law asymptotics this method gives big (and not

constant) uncertainty in the kink position because of long tail of the second kink.

We have estimated the vibrational frequency using its obvious relation with the time T12

between the first and the second collisions of kinks and the number n of small oscillations of

the field at the origin, ωs = 2πn/T12. Then we could estimate ξ0s using the blue solid curve

(the second solid curve from the bottom) in Fig. 8. Using this curve we assume that the

first parity-even mode is excited. We have obtained ωs = 0.66 ± 0.03 and ξ0s = 7.8 ± 0.4.

In the numerical simulation of the kink-antikink collision at vin = 0.14790 we observed the

maximal kink-antikink separation between the bounces of the order of ξmax ∼ 6 − 7. We

have also performed the same analysis for some other two-bounce windows. The results are

collected in Table I.

Our analysis thus confirms the hypothesis that the resonance phenomena, which we

observed in the collisions of the kink (−1, 0) and the antikink (0,−1), could be caused

by the energy exchange between the kinetic energy and a vibrational mode of the composite

kink-antikink configuration.
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TABLE I: Results of the analysis of the kink-antikink collisions within some two-bounce windows.

Here ωs is the vibrational mode frequency obtained by the ‘simple’ analysis; ξ0s stands for the

corresponding values of the parameter ξ.

n vin ωs ξ0s ξmax

9 0.14724 0.77± 0.09 6.4± 1.0 4–5

10 0.14738 0.76± 0.08 6.5± 0.9 4–5

11 0.14750 0.75± 0.05 6.6± 0.8 4–5

12 0.14760 0.74± 0.06 6.8± 0.8 4–5

13 0.14766 0.74± 0.06 6.8± 0.7 5–6

14 0.14772 0.73± 0.05 6.9± 0.7 5–6

15 0.14777 0.71± 0.05 7.2± 0.6 5–6

16 0.14780 0.71± 0.04 7.2± 0.6 5–6

17 0.14783 0.69± 0.04 7.4± 0.6 ∼ 6

18 0.14785 0.69± 0.04 7.5± 0.5 ∼ 6

23 0.14790 0.66± 0.03 7.8± 0.4 6–7

V. OSCILLATIONS ABOUT THE VACUA

Unlike the well-studied ϕ4 and ϕ6 models, the kinks of the ϕ8 model with the potential (8)

have power-law asymptotic behavior. This means that the kink (−1, 0) substantially disturbs

everything on its right, while the kink (0,−1) disturbs everything on its left. In particular,

in the case of the configuration (−1, 0,−1), the vacua −1 and 0 are substantially disturbed.

The vacuum 0 between the kink and antikink is shifted down because of both kinks’ tails,

while the vacuum −1 on the left and on the right is shifted down because of power-law tail of

one of the kinks. As a consequence, the initially formed static kink+antikink configuration

of the type (−1, 0,−1) (a simple sum of the kink and antikink, Eq. (17) with vin = 0) is

influenced by the oscillations of the field about the vacua 0 and −1.

In order to analyze the oscillations about the vacuum ϕ
(vac)
i of a model with a polynomial

potential, we add a small perturbation η(x, t) to the vacuum ϕ
(vac)
i , i.e., we write

ϕ(x, t) = ϕ
(vac)
i + η(x, t), |η(x, t)| � 1. (32)
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Substituting ϕ(x, t) into the equation of motion (2) and taking into account that ϕ
(vac)
i is a

zero of order ν of the potential V (ϕ), we obtain:

∂2η

∂t2
− ∂2η

∂x2
+

1

(ν − 1)!

dνV

dϕν

∣∣∣∣
ϕ

(vac)
i

· ην−1 = 0. (33)

Assuming that η does not depend on x, i.e. η = η(t), we come to the ordinary differential

equation

η′′ + α ην−1 = 0, (34)

where α =
1

(ν − 1)!

dνV

dϕν

∣∣∣∣
ϕ

(vac)
i

. Taking the initial conditions in the form η(0) = δ, η′(0) = 0,

we find the period of the oscillations about the vacuum ϕ
(vac)
i :

T
ϕ

(vac)
i

=

√
8

ανδν−2
· Γ(1/ν)Γ(1/2)

Γ(1/ν + 1/2)
, (35)

where Γ(x) is the gamma function.

For the vacuum ϕ
(vac)
1 = −1 of the ϕ8 model with the potential (8) we have ν = 2, α = 8,

and

T−1 =
π√
2
. (36)

It is interesting that the period (and frequency) of the oscillations about the vacuum ϕ
(vac)
1 =

−1 does not depend on the amplitude δ.

The vacuum ϕ
(vac)
2 = 0 is a zero of the fourth order of the potential (8), so we have ν = 4,

α = 4, and

T0 =

√
π Γ(1/4)√
2 Γ(3/4)

1

δ
. (37)

These oscillations about the vacua can contribute to the kink-antikink interaction via

radiation pressure, and affect on the dynamics of the kink-antikink system. The oscillations

in space between the kinks could lead to some radiation, which, in turn, could contribute

to interaction of the kinks. Besides that, the presence of the oscillations between the kinks

before the first impact could lead to the resonant energy transfer from these oscillations into

the kinetic energy in the first collision.

VI. CONCLUSION

We studied the scattering of the kink (−1, 0) and the antikink (0,−1) of the ϕ8 model

with the potential (8). At this particular choice of the potential, each kink of this model has
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one exponential and one power-law tail. We employed the initial configuration of the type

(−1, 0,−1), so that the kink and antikink are turned to each other by the power-law tails.

We used ansatz (17), i.e. simple sum of the kink and antikink.

We found that, unlike in the ϕ4 and ϕ6 models, the ϕ8 kink (−1, 0) and antikink (0,−1)

repel each other, at least at large separations. Indeed, we observed that at the initial

velocities vin < v
(1)
cr the kinks do not collide at all. For the initial separation 2ξ = 30 we

found v
(1)
cr = 0.08067. On the other hand, at the initial velocities vin > v

(2)
cr = 0.14791 the

kinks escape to infinities after a single impact.

The most interesting behavior was observed in the range of the initial velocities between

the two critical values, v
(1)
cr < vin < v

(2)
cr . In this regime, the colliding kinks capture each

other and form a bion. Moreover, we observed a fractal structure of the escape windows —

a well-known scenario, e.g., in the scattering of the ϕ4 kinks. It should be noted that we

have not attempted to find all the existing escape windows.

The accepted explanation of the escape windows is the resonance energy exchange be-

tween the translational and the vibrational modes of the colliding kinks. Unfortunately,

the excitation spectrum of an individual ϕ8 kink does not possess vibrational modes. An-

other way of looking at this question is to consider the resonance energy exchange between

the kinetic energy and the collective excitations of the composite kink-antikink configura-

tion. An important point is that the excitation spectrum now depends on the kink-antikink

half-distance ξ.

To support this hypothesis, we analyzed the frequencies of small oscillations of the field

at the origin between the first and the second kinks collisions in several two-bounce win-

dows. On the other hand, we found the discrete spectrum of the composite kink-antikink

configuration, depending on ξ. Comparing the results has shown that one of the vibrational

modes is excited during the collision.

It should be noted that, on the one hand, the formation of a bion, as well as the appear-

ance of the escape windows, indicates that the kink and the antikink attract each other. On

the other hand, the presence of the first critical velocity v
(1)
cr and the accelerated motion of

the kinks at large separations is an evidence of the kinks repulsion. How do the ϕ8 kinks

(−1, 0) and (0,−1) interact? This study could not answer this question. It could be a

subject of another detailed investigation with the use of various qualitative and quantita-

tive methods, as well as different ansatzes. In our opinion, the kink-antikink interaction is
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complex, with many factors being potentially important, e.g., the power-law tails of kinks,

the field oscillations about the vacuum values, etc. Notice that in Ref. [113] it was demon-

strated that in a two-component non-linear system the following situation is possible: the

full interaction potential yields repulsion and attraction forces with different spatial scales.

In the case of ansatz (17) we probably have a situation of that kind.

It is important to note that the long-range interaction between the kink and antikink

results in a dependence of the total energy of the configuration on the initial separation, i.e.,

we can not assume that within the ansatz (17) the kinks do not interact initially, at least at

those initial separations which are suitable for numerical simulations. In all our numerical

experiments we used the initial separation 2ξ = 30. It is evident that the change of the

initial kink-antikink separation causes changes of the critical velocities v
(1)
cr and v

(2)
cr , as well

as alters the pattern of the escape windows. This is not the case for kinks with exponential

asymptotic behavior — for such kinks the initial separation 2ξ = 30 can be considered as

infinite.

Finally, we would like to mention several issues that, in our opinion, could be a subject

of future research.

• First, as it has already been noted, finding the force acting between the ϕ8 kinks

(−1, 0) and (0,−1) is a challenge that we are faced with. The formation of a bion

seems to be a kind of a threshold process. To the best of our knowledge, this is quite

a new feature of the kink-antikink scattering.

Two methods could be applied in order to the estimate this force. The first one is

the collective coordinate approximation with one or more degrees of freedom. The

second one is Manton’s method, mentioned in the Introduction. We plan to study

the applicability of Manton’s method in systems with kinks with power-law tails in a

separate publication.

• Second, it would be unfair not to mention that the potential (24) has a non-trivial

shape with a local maximum with Umax ≈ 0.6199, see Fig. 7 (left panel). This could

lead to the appearance of quasi-bound long-living states (quasi-normal modes, see,

e.g., [99]) with energies somewhere in the range 0 < ω2 < Umax. Note that, e.g., for

the two-bounce window at vin = 0.14790 with n = 23 we have the value ω2
s ≈ 0.44,

which belongs to this range. Some resonance could present also above Umax. A detailed
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study of the spectrum of the Schrödinger-like eigenvalue problem with the potential

(24) could also become an interesting part of future work.

• Third, the numerical simulation of the evolution of the initial configuration (0,−1, 0),

in which the kink and antikink are swapped compared to (17), has not been included

in this paper. Nevertheless, the study of such processes could also be interesting.
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