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tent differential systems through the existence of an inverse integrating factor, Communications in
Nonlinear Science and Numerical Simulation (2018), doi: https://doi.org/10.1016/j.cnsns.2018.09.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cnsns.2018.09.018
https://doi.org/10.1016/j.cnsns.2018.09.018


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• We characterize the analytic integrability of nilpotent singular points.

• Our characterization uses the existence of an inverse integrating factor.

• The results are applied to some nilpotent families of systems.
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Abstract

In this work is characterized the analytic integrability problem around a nilpotent
singularity for differential systems in the plane under generic conditions. The analytic
integrability problem is characterized via the existence of a formal inverse integrating
factor. The relation between the analytic integrability and the existence of an algebraic
inverse integrating factor is also given.

1 Introduction and statement of the main result

In this paper we are interested on the study of the analytic integrability for differential
systems in the plane i.e., for differential systems of the form

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

where P and Q are analytic in a neighborhood of the origin and coprime. For such
differential systems (1.1) with non-null linear part we have the following cases in
function of their eigenvalues: if λ1λ2 6= 0 we have either a saddle, a node, a focus, or
a center type singular point. If λ1 = 0 and λ2 6= 0 we have a saddle-node. Finally if
λ1 = λ2 = 0 we have a nilpotent singular point. The nodes, focus and saddle-nodes
are not analytically integrable. If λ1 and λ2 are pure imaginary eigenvalues we say
that we have a linear part of center type and the system is analytically integrable if,
and only if, it is a center and if, and only if, it is orbitally linearizable, see [3, 23, 26].
For a saddle singular point, i.e., λ1 < 0 < λ2 if λ1/λ2 6∈ Q then system (1.1), although
it is linearizable, is not analytically integrable around the singular point. If λ1/λ2 =
−p/q ∈ Q then we have a resonant saddle. A resonant saddle has an analytic first
integral around the singular point if, and only if, it is orbitally linearizable, see for
instance [17, 22, 28] and references therein.

The analytic integrability problem for a nilpotent singularity has been recently
theoretically characterized in [11, Theorem 1.2], see also below. In this case the
system is analytically integrable, if and only if, it is formally orbitally equivalent to
the first quasi-homogeneous component under the generic condition that the origin of
this first component is an isolated singularity.
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During the last decades the inverse integrating factor has been used to characterize
integrability. The relationship of the inverse integrating factor and the center problem
has been also studied by several authors, see [5, 8, 9, 10, 13, 20, 25]. For instance a
system with a linear part of center type is analytically integrable if, and only if, there
exists an inverse integrating factor of the form V = V0 + · · · with V0 is a constant
different form zero and where the dots indicate higher order terms, see [27].

The aim of this paper is to characterize the integrability of a nilpotent differential
system in terms of the existence of a formal inverse integrating factor. We recall that
a non-null C1 class function V is an inverse integrating factor of F on U if satisfies the
linear partial differential equation∇V ·F = div (F)V , being div (F) := ∂P/∂x+∂Q/∂y
the divergence of F. We say that V is a formal inverse integrating factor of F if V ∈
C[[x, y]] where C[[x, y]] is the algebra of the power series in x and y with coefficients
in C, convergent or not.

In order to present the results first we need some notation. A scalar polynomial f is
quasi-homogeneous of type t = (t1, t2) ∈ N2 and degree k if f(εt1x, εt2y) = εkf(x, y).
The vector space of quasi-homogeneous scalar polynomials of type t and degree k is
denoted by Pt

k. A polynomial vector field F = (P,Q)T is quasi-homogeneous of type
t and degree k if P ∈ Pt

k+t1
and Q ∈ Pt

k+t2
. The vector space of polynomial quasi-

homogeneous vector fields of type t and degree k is denoted by Qt
k. Given an analytic

vector field F, we can write it as a quasi-homogeneous expansion corresponding to a
fixed type t:

F(x) = Fr(x) + Fr+1(x) + · · · =
∑

j≥r
Fj , (1.2)

where x ∈ R2, r ∈ Z and Fj ∈ Qt
j i.e., each term Fj is a quasi-homogeneous vector

field of type t and degree j. Any Fj ∈ Qt
j can be uniquely written as

Fj = Xhj
+ µjD0, (1.3)

where µj = 1
r+|t| div (Fj) ∈ Pt

j , hj = 1
r+|t|D0 ∧ Fj ∈ Pt

j+|t|, D0 = (t1x, t2y)T , and

Xhj
= (−∂hj/∂y, ∂hj/∂x)

T
is the Hamiltonian vector field with Hamiltonian function

hj (see [2, Prop.2.7]).

Notice that the condition of polynomial integrability of the first quasi-homogeneous
component is a necessary condition in order that F is analytically integrable, as the
following lemma establishes.

Lemma 1.1 Let F =
∑
j≥r Fj be a vector field, Fj ∈ Qt

j. If F is analytically inte-
grable then Fr is polynomially integrable.

Hence without loss of generality we can take from now on that the first quasi-
homogeneous component of the vector field is polynomially integrable. A necessary
and sufficient condition on the polynomial integrability of a quasi-homogeneous vector
field is given in [1]. The main result of [11] for nilpotent singular points is the following.

Theorem 1.2 ([11]) Let F =
∑
j≥r Fj, Fj ∈ Qt

j be a nilpotent vector field such
that the origin of ẋ = Fr(x) is isolated and Fr is polynomially integrable, then F is
analytically integrable if, and only if, it is formally orbitally equivalent to Fr.

The following result is the main result of this work and provides the relationship
between the analytic integrability of a nilpotent singular point such that the origin
of the first quasi-homogeneous component is an isolated singularity and the existence
of a formal inverse integrating factor defined in a neighborhood of the origin. Note
that the first quasi-homogeneous component of the vector field we are studying has
a non-null dissipative part and therefore the techniques used in the Reeb’s theorem
are not applicable, see [27]. Specifically the first quasi-homogeneous component is not
equivalent to an exact differential form dH with first integral H having simple factors.

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Theorem 1.3 Let F =
∑
j≥r Fj, Fj ∈ Qt

j be a vector field with non-null linear part
such that Fr = Xh + µrD0 is polynomially integrable and the origin of ẋ = Fr(x) is
an isolated singular point. Then F is analytically integrable if, and only if, there exists
V = h+ · · · a formal inverse integrating factor of F.

The proof of Theorem 1.3 is given in Section 2.

Remark. The above result can be applied to differential systems with a nilpotent
singular point, with a linear type center singular point or with a resonant saddle
singular point. In this sense it is a generalization of the well-known Reeb’s theorem,
see [19, 27].

The equivalence between analytic integrability and the existence of a formal inverse
integrating factor is not true if V does not begin with h. For instance, the system

ẋ = y + x2(x4 − 2y2), ẏ = x3 + 2xy(x4 − 2y2),

is not analytically integrable but V = (x4 − 2y2)2 = h2/16 is a polynomial inverse
integrating factor of it, see [8, pag 870].

From Theorem 1.3, we have the following corollary for the resonant saddle case.

Corollary 1.4 System ẋ = −λ1x+ · · ·, ẏ = λ2y + · · · with λ1, λ2 ∈ N is analytically
integrable if, and only if, there exists a formal inverse integrating factor of the form
V = xy + · · ·.

This condition is necessary and sufficient. For instance system ẋ = −x + x2y,
ẏ = y + xy2 has the inverse integrating factor V = h2 = x2y2. However, it is easy to
prove that this system is not analytically integrable.

Now, we are going to provide a sufficient condition to have analytic integrability
for a nilpotent vector field. To state this result we first need a normal form for the
first quasi-homogeneous component of the vector field.

Any planar nilpotent vector field such that the first quasi-homogeneous compo-
nent is polynomially integrable and irreducible, doing a change of variables and a
reparametrization of the time (see [11, Proposition 2.12]), can be written as

F(x) = Fr(x) +
∑

j>r

Fj(x), Fj ∈ Qt
j , (1.4)

where Fr is one of the following quasi-homogeneous vector fields

i) Fr = Xh ∈ Qt
r with h = − 1

2y
2 + 1

2n+1x
2n+1, r = 2n− 1 and t = (2, 2n+ 1).

ii) Fr = Xh ∈ Qt
r with h = − 1

2

(
y2 + σx2(n+1)

)
, σ = ±1, r = n and t = (1, n+ 1).

iii) Fr = Xh + µrD0 ∈ Qt
r with h = − 1

2

(
y2 − x2(n+1)

)
, µr = dxn, d = m1−m2

m1+m2
6= 0,

m1,m2 ∈ N coprimes, r = n, t = (1, n + 1) where a first integral of Fr is
I = (y − xn+1)m1(y + xn+1)m2 .

Next result gives a sufficient condition of analytic integrability of the nilpotent
differential systems with the first quasi-homogeneous component irreducible and with
non-zero divergence, by means of the existence of an algebraic inverse integrating
factor.

Theorem 1.5 Let F be the vector field (1.4) with Fr of type iii). If there exists p
q ∈ Q

with (n+1)(m1+m2)p
q /∈ N such that

W = (y − xn+1 + · · ·)1+
p
qm1(y + xn+1 + · · ·)1+

p
qm2

is an algebraic inverse integrating factor of F then we have that F is analytically
integrable.
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The proof of Theorem 1.5 is given in Section 3.

Remark. The hypothesis (n+1)(m1+m2)p
q /∈ N is necessary. For instance if we consider

the vector field F = F1 + F2 with Fj ∈ Qt
i , t = (1, 2), F1 = (y − 1

3x
2, 2x3 − 2

3xy)T ,
F2 = x2(x, 2y)T we have that in this case n = 1, m1 = 1, m2 = 2, and I6 =
(y − x2)(y + x2)2 ∈ Pt

6 is a first integral of F1, where F1 is irreducible (the origin is
an isolated singularity). Moreover,

W = (y − x2)
1+

p
q (y + x2)

1+
2p
q ,

with p = 1 and q = 6, is an algebraic inverse integrating factor of F. Nevertheless, F
is not formally integrable, see Theorem 4.19 below. In this case the hypothesis that

fails is (n+1)(m1+m2)p
q = 1 ∈ N.

Hence, the existence of an algebraic inverse factor does not guarantee the analytic
integrability. For instance the differential system ẋ = y + 2x2, ẏ = x2 + 3xy is not
formally integrable but it has an algebraic integrating factor of the form W = h7/6,
with h = − 1

6 (3y2 − 2x3), see [6, Theorem 2].

From Theorem 1.5 we have the following corollary for the resonant saddle case.

Corollary 1.6 Consider the system ẋ = −λ1x + · · ·, ẏ = λ2y + · · · with λ1, λ2 ∈ N,
(λ1, λ2) = 1, λ1/λ2 6= 1. If there exist p, q ∈ N such that (λ1 + λ2)p/q 6∈ N and

W = (x+ · · ·)1+
p
q λ2(y + · · ·)1+

p
q λ1

is an algebraic inverse integrating factor of such system then it is analytically inte-
grable.

Remark. The condition (λ1 + λ2)p/q 6∈ N is necessary as the next example shows.
The system ẋ = −x + x3y, ẏ = 2y + x2y2 has the inverse integrating factor W =
x3y2 but it is not analytically integrable. In this case we have p = 1, q = 1 and
(λ1 + λ2)p/q = 3 ∈ N.

2 Proof of the Theorem 1.3

In order to prove Theorem 1.3, we need to recall the following theorem proved in [4]
and there also called Theorem 1.3.

Theorem 2.7 Let F =
∑
j≥r Fj, Fj ∈ Qt

j be an analytic vector field with F(0) = 0.
Then, F and Fr are formally orbital equivalent if and only if there exist a formal
vector field G =

∑
j≥0 Gj, Gj ∈ Qt

j, with G0 = D0 and a formal scalar function f
with f(0) = r verifying [F,G] = fF.

The following result corresponds to Proposition 18 of [8].

Proposition 2.8 Let Φ be a diffeomorphism and η a scalar function on U ⊂ R2 such
that det (Dφ) has no zero on U and η(0) 6= 0. If V ∈ C[[x, y]] is an inverse inte-

grating factor of system ẋ = F(x), then η(y) (det (Dφ(y)))
−1
V (Φ(y)) is an inverse

integrating factor of ẏ = Φ∗ (ηF) (y) := (DΦ)
−1
η(y)F (Φ(y)).

Definition 2.9 f ∈ C[[x, y]] is an invariant curve of (1.2) if there exists K ∈ C[[x, y]]
such that ∇f · F = KF, where K is called the cofactor of f .

Now we provide some technical results and their proofs in order to prove the main
result of the paper.

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Lemma 2.10 Let f ∈ Pt
s be an invariant curve of Xg, with g ∈ Pt

k, then there exists
λ ∈ Pt

k−s such that g = λf .

Proof. As g is a first integral of Xg then all the solutions of the system associated to
Xg are in the level curves of g. If f is an invariant curve of Xg then f = 0 is formed
by solution curves of the system associated to Xg. Thus all the solutions curves that
are in f = 0 are in the same level curve of g, that is, g vanishes in all the points where
f vanishes. Therefore, as g and f are quasi-homogeneous polynomials, there exists
λ ∈ Pt

k−s such that g = λf .

Lemma 2.11 Consider f ∈ Pt
s and F =

∑
j≥r Fj, Fj ∈ Qt

j. The following state-
ments hold.

i) If f is an invariant curve of F then f is an invariant curve of Fj for all j ≥ r.
ii) If f is an inverse integrating factor of F then f is an inverse integrating factor

of Fj for all j ≥ r.

Proof. First, we prove statement i). If f is an invariant curve of F then there exists
K =

∑
j≥rKj , Kj ∈ Pt

j (cofactor) such that ∇f · F = Kf and consequently

0 =
∑

j≥r
∇f · Fj −

∑

j≥r
Kjf =

∑

j≥r
(∇f · Fj −Kjf) .

Thus for all j ≥ r, we have ∇f · Fj −Kjf = 0 and f is an invariant curve of Fj .

Second, we prove statement ii). If f is an inverse integrating factor of F then
∇f · F− fdiv (F) = 0 and consequently

0 =
∑

j≥r
∇f · Fj −

∑

j≥r
fdiv (Fj) =

∑

j≥r
(∇f · Fj − fdiv (Fj)) .

Thereby for all j ≥ r we have ∇f · Fj = fdiv (Fj), hence f is an inverse integrating
factor of Fj .

The following result is proved in [11] there called Lemma 3.17. We adapt the
statement to our purposes.

Lemma 2.12 Let h ∈ Pt
r+|t|, µr ∈ Pt

r be and Fr = Xh +µrD0 ∈ Qt
r. Every Fj ∈ Qt

j

with j > r can be expressed by Fj = Xgj+|t| + ηjD0 + λj−rFr, with λj−r ∈ Pt
j−r,

ηj ∈ Pt
j and gj+|t| ∈ ∆j+|t|, being ∆j+|t| a complementary subspace of hPt

j−r in

Pt
j+|t|, i.e. Pt

j+|t| = ∆j+|t|
⊕
hPt

j−r.

The following result describes the vector fields which have h as an invariant curve.
For similar results inside the inverse problem, see [14, 15].

Proposition 2.13 Consider F =
∑
j≥r Fj with Fj ∈ Qt

j, Fr = Xh + µrD0, h ∈
Pt
r+|t|, µr ∈ Pt

r, D0 = (t1x, t2y)T . If h is an invariant curve of F then F = (1 +

λ)Fr + µD0 with λ =
∑
j>r λj, λj ∈ Pt

j and µ =
∑
j≥r µj, µj ∈ Pt

j

Proof. If h is an invariant curve of F and h is a quasi-homogeneous polynomial then by
Lemma 2.11 statement i) follows that h is an invariant curve of Fj for each j > r with
cofactor Kj . On the other hand, applying Lemma 2.12 Fj = Xgj+|t| +µjD0 +λj−rFr
with gj+|t| ∈ ∆j+|t|, µj ∈ Pt

j and λj ∈ Pt
j−r. Thus we have:

∇h · Fj = ∇h ·
(
Xgj+|t| + µjD0 + λj−rFr

)

= ∇h ·Xgj+|t| + (r + |t|)µjh+ λj−r∇h · (Xh + µrD0)

= ∇h ·Xgj+|t| + (r + |t|) (µj + λj−rµr)h = Kjh.

6
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Consequently ∇h ·Xgj+|t| = (Kj − (r + |t|) (µj + λj−rµr))h. Hence h is an invariant
curve of Xgj+|t| and applying Lemma 2.10 we deduce that gj+|t| is multiple of h and
gj+|t| ∈ ∆j+|t| hence gj+|t| = 0 and this completes the proof.

Next result characterizes the vector fields which have h as inverse integrating factor.

Proposition 2.14 Consider F =
∑
j≥r Fj with Fj ∈ Qt

j, Fr = Xh + µrD0, h ∈
Pt
r+|t|, µr ∈ Pt

r, D0 = (t1x, t2y)T . If h is an inverse integrating factor of F then

F = (1 + λ)Fr − (∇λ̃ · Fr) D0 with λ =
∑
j≥1 λj, λj ∈ Pt

j and λ̃ =
∑
j≥1 λj/j.

Proof. If h is an inverse integrating factor of F as h is a quasi-homogeneous polynomial
then by Lemma 2.11 statement ii) h is an inverse polynomial integrating factor of Fj
for all j ≥ r. For j = r is fulfilled because

∇h · Fr − hdiv (Fr) = ∇h · (Xh + µrD0)− hdiv (µrD0)

= (r + |t|)hµr − (r + |t|)hµr = 0

If for j > r h is an inverse integrating factor of Fj , then h is an invariant curve of Fj
and by Proposition 2.13 we have Fj = λj−rFr +µjD0 with µj ∈ Pt

j and λj−r ∈ Pt
j−r.

Therefore, we get

0 = ∇h · Fj − hdiv (Fj) = ∇h · (λj−rFr + µjD0)− hdiv (λj−rFr + µjD0)

= λj−r∇h · Fr + µj∇h ·D0 − h (∇λj−rFr + λj−rdiv (Fr) + (j + |t|)µj)
= (r + |t|)λj−rµrh+ (r + |t|)µjh− h (∇λj−rFr + (r + |t|)λj−rµr + (j + |t|)µj)
= (r − j)µjh− h∇λj−r · Fr = (r − j)h

(
µj +

∇λj−r·Fr

j−r

)
.

Consequently, µj = −(∇λj−r · Fr)/(j − r) and this completes the proof.

The following result provides an orbital normal form for a vector field with an
inverse integrating factor of the form V = h+ · · ·.

Proposition 2.15 Consider F =
∑
j≥r Fj with Fj ∈ Qt

j, Fr = Xh + µrD0, h ∈
Pt
r+|t|, µr ∈ Pt

r \ {0}, D0 = (t1x, t2y)T . F is formally orbitally equivalent to Fr if,
and only if, V = h+ · · · is a formal inverse integrating factor of F and there exists a
change of variables Φ such that V ◦ Φ = h.

Proof. If V = h + · · · is an inverse integrating factor of F, taking η = det (DΦ) and
applying Proposition 2.8 we have that h is an inverse integrating factor of F̃ = Φ∗ (ηF).
Applying now Proposition 2.14 we obtain that F̃ = (1 + λ)Fr − (∇λ̃ · Fr) D0 with
λ =

∑
j≥1 λj , λj ∈ Pt

j and λ̃ =
∑
j≥1 λj/j.

Next we claim that 1
1+λD0 is a commutator of F̃. In order to see this we use the

property [µF,G] = (∇µ ·G) F + µ[F,G]. Hence we have

[
F̃, 1

1+λD0

]
=

[
(1 + λ)Fr,

1
1+λD0

]
+
[
−
(
∇λ̃ · Fr

)
D0,

1
1+λD0

]

= ∇(1+λ)·D0

1+λ Fr + (1 + λ)
[
Fr,

1
1+λD0

]

−∇(∇λ̃·Fr)·D0

1+λ D0 −
(
∇λ̃ · Fr

) [
D0,

1
1+λD0

]

= ∇λ·D0

1+λ Fr + ∇λ·Fr

1+λ D0 + [Fr,D0]− ∇(∇λ̃·Fr)·D0

1+λ D0

−
(
∇λ̃ · Fr

)
∇λ·D0

(1+λ)2 D0

7
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Taking into account that

[Fr,D0] = rFr,

∇µk ·D0 = kµk (by the Euler’s theorem for µk ∈ Pt
k)

∇
(
∇λ̃ · Fr

)
·D0 = ∇


∑

j≥1

∇λj ·Fr

j


 ·D0 =

∑

j≥1

∇(∇λj ·Fr)·D0

j =
[
∇λj · Fr ∈ Pt

j+r

]

=
∑

j≥1

j+r
j ∇λj · Fr =

∑

j≥1
∇λj · Fr + r

∑

j≥1
∇λj

j · Fr

= ∇λ · Fr + r∇λ̃ · Fr

It follows that
[
F̃, 1

1+λD0

]
= ∇λ·D0

1+λ Fr + ∇λ·Fr

1+λ D0 + rFr − ∇λ·Fr

1+λ D0 − r∇λ̃·Fr

1+λ D0

−
(
∇λ̃ · Fr

)
∇λ·D0

(1+λ)2 D0

=
(
r + ∇λ·D0

1+λ

)
Fr − ∇λ̃·Fr

1+λ

(
r + ∇λ·D0

1+λ

)
D0

= r(1+λ)+∇λD0

(1+λ)2

(
(1 + λ)Fr −

(
∇λ̃ · Fr

)
D0

)

= r(1+λ)+∇λD0

(1+λ)2 F̃

Applying Theorem 2.7 we obtain that F̃ is formally orbitally equivalent to Fr.

The sufficiency is trivial because h is an inverse integrating factor of Fr and it is
sufficient to apply the Proposition 2.8.

Now, we can give the proof of the main result.

Proof of Theorem 1.3 The necessity is trivial because if F is analytically in-
tegrable by Theorem 1.2 we have that F is formally orbitally equivalent to Fr (the
first quasi-homogeneous component). Taking into account that Fr has the inverse
integrating factor Ṽ = h then by Proposition 2.8 we deduce that F has the inverse
integrating factor of the form V = h+ · · ·.

Let us now the sufficiency. As F has non-null linear part and its first quasi-
homogeneous component is irreducible and polynomially integrable, the unique possi-
bilities are:

a) F = (−y, x)T + · · · (perturbation of a linear center type)

b) F = (−λ1x, λ2y)T + · · ·, λ1, λ2 ∈ N (perturbation of a resonant saddle)

c) F is of the form (1.4) with Fr of type i), ii) or iii).

The case a) is proved in [27]. For the case b) by means of a linear change of variables
an a reparametrization of time we can transform the original system into the vector
field (y, x)T + λ2−λ1

λ1+λ2
(x, y)T + · · · which is a vector field of the form (1.4) with Fr of

type iii) with n = 0. Therefore it is enough to show the sufficient condition for the
case c).

In all the cases i), ii) or iii), the inverse integrating factor of F is V = h+· · ·, where
h(x, y) = y2 + Axm, with m ∈ N, and A 6= 0. It is proved in [12] that there exists a
change of variables near to identity Φ such that V ◦Φ = h. Applying now Proposition
2.15 we have that F is formally orbitally equivalent to Fr and Fr is polynomially
integrable so we deduce that F is formally integrable and by [24, Theorem A] F is
analytically integrable.

8
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3 Proof of the Theorem 1.5

Now we give the following technical result and its proof in order to prove the theorem
1.5. For that we need the following linear operator (Lie derivate of Fr)

`j : Pt
j−r −→ Pt

j

µj−r −→ ∇µj−r · Fr,

Lemma 3.16 Let F̂ = Fr +
∑
j>r µjD0, be the vector field (1.4) with µj ∈ Cor (`j)

(where Cor (`j) is a complementary subspace to Range (`j)). Let V =
Vs1

Ws2
U , Vs1 ∈

Pt
s1 , Ws2 ∈ Pt

s2 and U a formal unity series, i.e., U(0) = 1, such that for some m ∈ N
is verified the equation

∇V · F̂−mV div
(
F̂
)

= 0. (3.5)

If s1 − s2 6= m(r + i+ |t|) for all i ∈ N, then µj = 0 for all j > r

Proof. The equation (3.5) is

0 = ∇
(
Vs1

Ws2
U
)
· F̂−m Vs1

Ws2
Udiv

(
F̂
)

= U∇ Vs1

Ws2
· F̂ +

Vs1

Ws2
∇U · F̂−m Vs1

Ws2
Udiv(F̂).

On the other hand this equation (3.5) for degree r + s1 − s2 is 0 = ∇ Vs1

Ws2
· F̂r −

m
Vs1

Ws2
div
(
F̂r

)
. Moreover, as Vs1 ∈ Pt

s1 , Ws2 ∈ Pt
s2 is fulfilled ∇ Vs1

Ws2
· D0 = (s1 −

s2)
Vs1

Ws2
. Hence

0 = U∇ Vs1

Ws2
· F̂r + (s1 − s2)U

Vs1

Ws2

∑

j>r

µj +
Vs1

Ws2
∇U · F̂−m Vs1

Ws2
Udiv(F̂r)

−m Vs1

Ws2
U
∑

j>r

(j + |t|)µj =
Vs1

Ws2


∇U · F̂− U

∑

j>r

Ajµj


 ,

where Aj = m(j + |t|)− (s1 − s2).

In this way the equation (3.5) is ∇U · F̂− U∑j>r Ajµj = 0. When developing it
in quasi-homogeneous degrees results

0 =
∑

i≥1
∇Ui ·


F̂r +

∑

j>r

µjD0


−


1 +

∑

i≥1
Ui


∑

j>r

Ajµj

=
∑

i≥1

(
∇Ui · F̂r +

i−1∑

k=1

µr+i−k∇Uk ·D0 −
(
Ai+rµi+r +

i−1∑

k=1

Ar+i−kµr+i−kUk

))

=
∑

i≥1

(
∇Ui · F̂r −Ar+iµr+i +

i−1∑

k=1

(k −Ar+i−k)µr+i−kUk

)
.

We claim that µr+j = 0 for all j ≥ 1 because otherwise we can consider j0 =
min {j ∈ +N : µr+j 6= 0} and equation (3.5) for degree r + j0 is

∇Uj0 · F̂r −Ar+j0µr+j0 +

j0−1∑

k=1

(k −Ar+j0−k)µr+j0−kUk = 0

Taking into account that µr+j0−k = 0 for 1 ≤ k ≤ j0 − 1, we have that ∇Uj0 ·
F̂r = Ar+j0µr+j0 . However Ar+j0 6= 0 because m(r + j0 + |t|) 6= (s1 − s2) therefore

Ar+j0µr+j0 ∈ Cor (`r+j0) \ {0} and ∇Uj0 · F̂r ∈ Range (`r+j0), consequently µr+j0 = 0
which is a contradiction and the claim is proved.
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Proposition 3.17 Let F̂ = Fr +
∑
j>r µjD0, be the vector field (1.4) with Fr of type

iii) and µj ∈ Cor (`j) (where Cor (`j) is a complementary subspace to Range (`j)). The
unique solution curves passing through the origin are y− xn+1 = 0 and y+ xn+1 = 0.

Proof. The curves y − xn+1 = 0 and y + xn+1 = 0 are invariant curves of Fr and
applying Euler’s theorem it is easy to prove that they are also invariant curves of D0.
Consequently they are invariant curves of F̂.

We are going to see that they are the only ones. By applying the blow-up x = u,
y = un+1v to the differential system ẋ = F̂(x) and the scaling of time dT = undt, we
get the differential system

du
dT = u

[
v + d+

∑

j>n

µj(1, v)uj−n
]
,

dv
dT = (n+ 1)

[
1− v2

]
.

The singular points in u = 0 are v = ±1 and the linearization matrix at these equi-
librium points are

D(0, 1) = diag (d+ 1,−2(n+ 1)) = diag
(

2m1

m1+m2
,−2(n+ 1)

)
,

D(0,−1) = diag (d− 1, 2(n+ 1)) = diag
(
− 2m2

m1+m2
, 2(n+ 1)

)
.

So both singular points are hyperbolic saddles and therefore have a unique curve
entering to the origin. From here we deduce that the solution curves are unique.

Proof of Theorem 1.5 Let F be the vector field (1.4) with Fr of type iii), by
[11, Theorems 3.23 and 3.24], F is formally orbitally equivalent, by a near identity

transformation, to F̂ = Fr +
∑
j>r µjD0, with µj ∈ Cor (`j), where Cor (`j) is a

complementary subspace to Range (`j).

If W = (y − xn+1 + · · ·)1+
p
qm1(y + xn+1 + · · ·)1+

p
qm2 with (n+1)(m1+m2)p

q /∈ N,
p
q ∈ Q, is an algebraic inverse integrating factor of F then by Proposicion 2.8 we can

affirm that, W̃ = (y−xn+1+ · · ·)1+
p
qm1(y+xn+1+ · · ·)1+

p
qm2 with (n+1)(m1+m2)p

q /∈ N,

is an algebraic inverse integrating factor of F̂.

On the other hand the factors of W̃ , i.e., y− xn+1 + · · ·, y+ xn+1 · · · are invariant
curves of F̂. Applying Proposition 3.17, we know that there exist unity series U1, U2

such that y − xn+1 + · · · = (y − xn+1)U1 and y + xn+1 + · · · = (y + xn+1)U2. Thus

we have that W̃ = CU with C =
[
(y − xn+1)q+pm1(y + xn+1)q+pm2

]1/q
and where U

is a unity series.
Moreover, C satisfies the equation (3.5) for m = q, s1 − s2 = (n + 1)(q + pm1 +

q + pm2) = 2(n + 1)q + (n + 1)(m1 + m2)p 6= q(r + |t| + i) = q(2(n + 1) + i) with

i ∈ N because (n+1)(m1+m2)p
q 6= i for all i ∈ N. By applying Lemma 3.16 F̂ = Fr is

polynomially integrable, therefore F is formally integrable. From [24, Theorem A], we
deduce that F is analytically integrable.

4 Applications

We consider the integrability problem for the following nilpotent vector field with
non-hamiltonian first quasi-homogeneous component

(
ẋ
ẏ

)
=

(
y − 1

3x
2

2x3 − 2
3xy

)
+

(
a0x

3 + a1xy
b0x

4 + b1x
2y + b2y

2

)
. (4.6)
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The first quasi-homogeneous component of the vector field respect to the type (1, 2)
is

F1 =

(
y − 1

3x
2

2x3 − 2
3xy

)
∈ Q(1,2)

1 ,

being F1 = Xh + µ1D0 where h = − 1
2

(
y2 − x4

)
, µ = − 1

3x and D0 = (x, 2y)T .
Therefore the origin of system (4.6) is not monodromic, see [1, 7]. In fact, the origin
is a saddle with two invariant curves C1 = (y − x2) + · · · and C2 = (y + x2) + · · ·, see
[11]. Moreover F1 has a primitive first integral given by I6 = (y − x2)(y + x2)2. The
following result proved in [11] provides a normal form under orbital equivalence of a
perturbation of F1.

Lemma 4.18 There exist a change of variables in the state variables and the time,
x = Φ(y), dT = µ(y)dt, such that system (4.6) is transformed into

(
ẋ
ẏ

)
=

(
y − 1

3x
2

2x3 − 2
3xy

)
+ α

(0)
2 x2D0 + α

(0)
4 hD0 (4.7)

+
∑

l≥1
α
(l)
0 I l6D0 + α

(l)
1 xI l6D0 + α

(l)
2 x2I l6D0 + α

(l)
4 hI l6D0

The conservative-dissipative splitting, (see [2, Prop.2.7]), allows to write system (4.6)
as

(
ẋ
ẏ

)
= X− 1

2 (y
2−x4)

− 1
3xD0 + Xc0x5+c1x3y+c2xy2 +

(
d0x

2 + d1y
)
D0, (4.8)

where

c0 =
b0
5
, c1 =

b1 − 2a0
5

, c2 =
b2 − 2a1

5
, d0 =

3a0 + b1
5

, d1 =
a1 + 2b2

5
.

Next result solves the integrability problem for the previous system.

Theorem 4.19 System (4.8) is analytically integrable if, and only if, it satisfies one
of the following conditions:

i) c1 − c0 + 7d1 = c2 + 7d1 = 7d0 + 3c0 + 14d1 = 0.

ii) c1 + c0 + 8d1 = c2 − 8d1 = 8d0 + 3c0 − 16d1 = 0.

iii) c1 = c0 + c2 = 3d0 + 2c0 + d1 = 0.

iv) 12c0 + 7d1 = 3c1 − 4d1 = 4c2 + 3d1 = 3d0 + d1 = 0.

v) 9c0 − 16d1 = 28d1 − 9c1 = 3c2 − 4d1 = 9d0 + 7d1 = 0.

vi) 115d1 − 189c0 = 63c1 + 38d1 = 7c2 − d1 = 21d0 + 11d1 = 0.

vii) 189c0 − 19d1 = 21c1 + 2d1 = 7c2 − d1 = 3d0 + d1 = 0.

viii) 12c0 + 5d1 = 6c1 + 7d1 = 4c2 + 3d1 = 3d0 + d1 = 0.

ix) 9c0 − 20d1 = 9c1 + 32d1 = 3c2 − 4d1 = 9d0 + 7d1 = 0.

x) 21c0 − 11d1 = 3c1 − 2d1 = 7c2 − d1 = 21d0 + 11d1.

xi) 27c0 + 35d1 = 3c1 + 2d1 = c2 − 3d1 = d0 − d1 = 0.

Proof. The necessity is proved computing successively the coefficients of the dissipa-
tive part of the normal form (4.7) and imposing their vanishing because otherwise by
Theorem 1.2 they prevent integrability. The first coefficient of the dissipative part of
the normal form (4.7) is

α
(0)
2 := 336d0 − 89c2 + 9c1 + 135c0 + 112d1.
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The next coefficients of the dissipative part of the normal form (4.7) are big expressions

that we do not present here. We define the ideal J = 〈α(0)
2 , α

(0)
4 , ...〉 generated by these

coefficients. By the Hilbert Basis theorem we know that is finitely generated which
implies that there exist a set of generators g1, g2, ..., gk such that J = 〈g1, g2, ..., gk〉.
We call λ ∈ R5 the set of parameters of system (4.6). The affine variety V (J) = {λ ∈
R5 | gi(λ) = 0} is the integrable variety of system (4.6). This variety provides a finite
set of necessary and sufficient conditions to have integrability around the origin for
system (4.6). We compute a certain number of coefficients to find a set of generators.
In particular, we have computed six coefficients. We decompose the algebraic set
of the computed coefficients into its irreducible components using a computer algebra
system Singular [21]. In fact, we use the routine minAssGTZ [16] based on the Gianni-
Trager-Zacharias algorithm [18]. The decomposition of the ideal has been possible in
the field of rational numbers, hence we know that the decomposition of the variety
is complete. The obtained decomposition consists of 12 components defined by the
following prime ideals:

(1) 〈c1 − c0 + 7d1, c2 + 7d1, 7d0 + 3c0 + 14d1〉,
(2) 〈c1 + c0 + 8d1, c2 − 8d1, 8d0 + 3c0 − 16d1〉,
(3) 〈c1, c2 + c0, 3d0 + 2c0 + d1〉,
(4) 〈12c0 + 7d1, 3c1 − 4d1, 4c2 + 3d1, 3d0 + d1〉,
(5) 〈9c0 − 16d1, 9c1 − 28d1, 3c2 − 4d1, 9d0 + 7d1〉,
(6) 〈189c0 − 115d1, 63c1 + 38d1, 7c2 − d1, 21d0 + 11d1〉,
(7) 〈189c0 − 19d1, 21c1 + 2d1, 7c2 − d1, 3d0 + d1〉,
(8) 〈12c0 + 5d1, 6c1 + 7d1, 4c2 + 3d1, 3d0 + d1〉,
(9) 〈9c0 − 20d1, 9c1 + 32d1, 3c2 − 4d1, 9d0 + 7d1〉,

(10) 〈21c0 − 11d1, 3c1 − 2d1, 7c2 − d1, 21d0 + 11d1〉,
(11) 〈27c0 + 35d1, 3c1 + 2d1, c2 − 3d1, d0 − d1〉.
(12) 〈21c1 + 315c0 − 179d1, 7c2 − d1, 21d0 + 11d1, 173282571c40 − 429580746c30d1 +

396959976c20d
2
1 − 162133286c0d

3
1 + 24706845d41〉.

However the component (12) is a fake component because does not vanish the
next coefficients of the dissipative part of the normal form (4.7). Hence the first 11
components are the necessary conditions for system (4.6) be integrable and they are
the conditions that appear in Theorem 4.19.

Now we give the sufficiency for each condition.

i) In this case, the vector field (4.6) is given by

(
ẋ
ẏ

)
=

(
y − 1

3x
2

2x3 − 2
3xy

)
+

(
5
3 (7d1 + 2d0)x3 + 15d1xy

− 35
3 (2d1 + d0)x4 − 5(d0 + 7d1)x2y − 5d1y

2

)

This vector field has two invariant curves Ci with cofactors Ki, respectively,
given by C1 = y − x2 + 5(2d1 + d0)x3 + 15d1xy, K1 = −8x/3 + 10d0x

2 + 10d1y,
C2 = y + x2, K2 = 4x/3 − 5d0x

2 − 5d1y. As div(F) = K1 + K2, then V =
C1C2 = h+ · · · is a inverse integrating factor of system (4.6). Hence by Theorem
1.3 we have that it is analytically integrable. Moreover an analytic first integral
is given by I = C1C

2
2 .

ii) In this case, the vector field (4.6) is given by

(
ẋ
ẏ

)
=

(
y − 1

3x
2

2x3 − 2
3xy

)
+

(
5
3 (8d1 − d0)x3 − 15d1xy

40
3 (2d1 − d0)x4 + 10(d0 − 4d1)x2y + 10d1y

2

)

12
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The vector field has also two invariant curves Ci with cofactors Ki given by
C1 = y−x2, K1 = −8x/3+10d0x

2+10d1y, C2 = y+x2+5(2d1−d0)x3−15d1xy,
K2 = 4x/3− 5d0x

2− 5d1y. As div(F) = K1 +K2, then V = C1C2 = h+ · · · is a
inverse integrating factor of system (4.6). Applying Theorem 1.3 we have that
it is analytically integrable. Moreover an analytic first integral is I = C1C

2
2 .

iii) In this case, the vector field (4.6) is given by

(
ẋ
ẏ

)
=

(
y − 1

3x
2

2x3 − 2
3xy

)
+

(
d0x

3 − 3d0xy
− 5

2 (d1 + 3d0)x4 + 2d0x
2y + 1

2 (5d1 + 3d0)y2

)

This vector field has three invariant curves Ci with cofactors Ki, i = 1, 2, 3 given
by C1 = y− x2, K1 = −8x/3 + (19d0 + 5d1)x2/2 + (5d1 + 3d0)y/2, C2 = y+ x2,
K2 = 4x/3−(11d0+5d1)x2/2+(5d1+3d0)y/2, C3 = 1−3d0x, K3 = d0x

2−3d0y.
As div(F) = K1 +K2 +K3 then V = C1C2C3 = h+ · · · is a inverse integrating
factor of system (4.6). Hence by Theorem 1.3 it is also analytically integrable.
Moreover, it has an analytic first integral of the form I = C1C

2
2C

A
3 , where

A = (5d1 + 3d0)/(2d0) if d0 6= 0 and I = C1C
2
2 exp(− 15

2 d1x) if d0 = 0.

iv) In this case, the vector field (4.6) is given by

(
ẋ
ẏ

)
=

(
y − 1

3x
2

2x3 − 2
3xy

)
+

(
− 5

3d1x
3 + 5

2d1xy
− 35

12d1x
4 + 10

3 d1x
2y + 5

4d1y
2

)

This vector field has three invariant curves Ci with cofactors Ki, i = 1, 2, 3 given
by C1 = y−x2, K1 = − 8

3x− 5
12d1x

2+ 5
4d1y, C2 = y+x2− 5

4d1x
3+ 5

4d1xy+ 15
64d

2
1y

2−
15
32d

2
1x

2y+ 15
64d

2
1x

4, K2 = 4
3x− 5

6d1x
2 + 5

2d1y, C3 = 1 + 5
4d1x− 75

128d
2
1x

2 + 75
128d

2
1y,

K3 = − 5
12d1x

2 + 5
4d1y. As div(F) = K1 +K2 +K3 then V = C1C2C3 = h+ · · ·

is a inverse integrating factor of system (4.6). By Theorem 1.3 we have that it
is analytically integrable. Moreover, it has an analytic first integral of the form
I = C1C

2
2C
−5
3 .

v) In this case, the vector field (4.6) is given by

(
ẋ
ẏ

)
=

(
y − 1

3x
2

2x3 − 2
3xy

)
+

(
− 35

9 d1x
3 − 5

3d1xy
80
9 d1x

4 + 70
9 d1x

2y + 10
3 d1y

2

)

This vector field has three invariant curves Ci with cofactors Ki, for i = 1, 2, 3
given by C1 = y − x2 − 20

3 d1x
3 − 1525

72 d21x
4 − 25

4 d
2
1x

2y + 75
8 d

2
1y

2 − 125
4 d31x

5 −
125
2 d31x

3y − 125
4 d31xy

2 + 625
24 d

4
1x

6 + 625
12 d

4
1x

4y + 625
24 d

4
1x

2y2, K1 = − 8
3x− 50

9 d1x
2 +

10
3 d1y, C2 = y+x2, K2 = 4

3x+ 10
9 d1x

2+ 10
3 d1y, C3 = 1+ 10

3 d1x+ 100
9 d21x

2+ 25
3 d

2
1y,

K3 = − 10
9 d1x

2 + 10
3 d1y. As div(F) = K1 +K2 +K3 then V = C1C2C3 = h+ · · ·

is a inverse integrating factor of system (4.6). By Theorem 1.3 we have that it
is analytically integrable. Moreover, it has an analytic first integral of the form
I = C1C

2
2C
−3
3 .

vi) In this case, the vector field (4.6) is given by

(
ẋ
ẏ

)
=

(
y − 1

3x
2

2x3 − 2
3xy

)
+

(
5
63d1x

3 + 5
7d1xy

575
189d1x

4 − 20
7 d1x

2y + 15
7 d1y

2

)

This vector field has three invariant curves Ci with cofactors Ki, for i = 1, 2, 3
given by C1 = y − x2 − 145

63 d1x
3 + 15

7 d1xy − 225
392d

2
1y

2 + 375
196d

2
1x

2y − 625
392d

2
1x

4,
K1 = − 8

3x− 10
3 d1x

2 + 20
7 d1y, C2 = y+x2 + 80

63d1x
3, K2 = 4

3x+ 5
21d1x

2 + 15
7 d1y,

C3 = 1+ 20
7 d1x+ 425

147d
2
1x

2− 25
49d

2
1y+ 2875

3087d
3
1x

3− 125
343d

3
1xy, K3 = − 20

21d1x
2 + 20

7 d1y.

As div(F) = K1 + K2 − 1
2K3 then V = C1C2C

−1/2
3 = h + · · · is a inverse

integrating factor of system (4.6). By Theorem 1.3 we have that it is analytically
integrable. Moreover, it has an analytic first integral of the form I = C1C

2
2C
−3
3 .

13
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vii) In this case, the vector field (4.6) is given by

(
ẋ
ẏ

)
=

(
y − 1

3x
2

2x3 − 2
3xy

)
+

(
− 5

21d1x
3 + 5

7d1xy
95
189d1x

4 − 20
21d1x

2y + 15
7 d1y

2

)

This vector field has three invariant curves Ci with cofactors Ki, for i = 1, 2, 3
given by C1 = y−x2− 10

63d1x
3, K1 = − 8

3x− 5
7d1x

2+ 15
7 d1y, C2 = y+x2+ 20

63d1x
3,

K2 = 4
3x− 5

7d1x
2 + 15

7 d1y, C3 = 1 + 5
7d1x, K3 = − 5

21d1x
2 + 5

7d1y. As div(F) =

K1 + K2 − K3 then V = C1C2C
−1
3 = h + · · · is a inverse integrating factor

of system (4.6). By Theorem 1.3 we have that it is analytically integrable.
Moreover, it has an analytic first integral of the form I = C1C

2
2C
−12
3 .

viii) In this case, the vector field (4.6) is given by

(
ẋ
ẏ

)
=

(
y − 1

3x
2

2x3 − 2
3xy

)
+

(
5
6d1x

3 + 5
2d1xy

− 25
12d1x

4 − 25
6 d1x

2y + 5
4d1y

2

)

This vector field has three invariant curves Ci with cofactors Ki, for i = 1, 2, 3
given by C1 = y − x2 + 5

4d1x
3 + 5

4d1xy − 75
256d

2
1y

2 − 75
128d

2
1x

2y − 75
256d

2
1x

4, K1 =
− 8

3x − 5
6d1x

2 + 5
2d1y, C2 = y + x2, K2 = 4

3x − 5
12d1x

2 + 5
4d1y, C3 = 1 +

5
4d1x − 75

64d
2
1x

2 − 75
64d

2
1y, K3 = − 5

12d1x
2 + 5

4d1y. As div(F) = K1 + K2 + K3

then V = C1C2C3 = h + · · · is a inverse integrating factor of system (4.6).
By Theorem 1.3 we have that it is analytically integrable. Moreover, it has an
analytic first integral of the form I = C1C

2
2C
−4
3 .

ix) In this case, the vector field (4.6) is given by

(
ẋ
ẏ

)
=

(
y − 1

3x
2

2x3 − 2
3xy

)
+

(
25
9 d1x

3 − 5
3d1xy

100
9 d1x

4 − 110
9 d1x

2y + 10
3 d1y

2

)

For this vector field we have been able to find two invariant curves Ci with
cofactors Ki, for i = 1, 2 given by C1 = y − x2, K1 = − 8

3x − 50
9 d1x

2 + 10
3 d1y,

C2 = 1+ 10
3 d1x+ 125

18 d
2
1x

2− 25
6 d

2
1y, K2 = − 10

9 d1x
2+ 10

3 d1y. As div(F) = 1
2K1+K2

then W = C
1/2
1 C2 = (y−x2 + · · ·)1/2 is an algebraic inverse integrating factor of

system (4.6), i.e., W = (y − x2 + · · ·)1+
p
q (y + x2 + · · ·)1+

p
q 2 with p = −1, q = 2.

In this case (n+1)(m1+m2)p
q = −2 /∈ N for m1 = 1, m2 = 2, and by Theorem 1.5

we have that it is analytically integrable.

Anyway, in this case using this inverse integrating factor W we can compute a
first integral given by

H =
4(5d1x−3)

√
y−x2

25d21
+ 12

√
6

125d31
arctanh

(
5
√
6d1
√
y−x2

2(5d1x+3)

)
.

This first integral H is not analytic at the origin, however taking into account
that arctanh(z) =

∑
j≥0

1
2j+1z

2j+1 = z(1 +
∑
j≥1

1
2j+1z

2j) and defining z =

5
√
6d1
√
y−x2

2(5d1x+3) we have that

H =
√
y − x2


 4(5d1x−3)

25d21
+ 12

√
6

125d31

5
√
6d1

2(5d1x+3) (1 +
∑

j≥1

1
2j+1z

2j)




=
√
y − x2( 2

3 (y + x2) + · · ·).

Consequently H2 is an analytic first integral at the origin. Moreover V = WH =
2
3h+ · · · is an analytic inverse integrating factor and we can also apply Theorem
1.3 for deducing that the above vector field is analytically integrable.
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x) In this case, the vector field (4.6) is given by

(
ẋ
ẏ

)
=

(
y − 1

3x
2

2x3 − 2
3xy

)
+

(
− 25

21d1x
3 + 5

7d1xy
55
21d1x

4 + 20
21d1x

2y + 15
7 d1y

2

)

This vector field has three invariant curves Ci with cofactors Ki, for i = 1, 2, 3
given by C1 = y − x2 + 5

7d1x(−5x2 + 3y) + 25
392d

2
1(9y + 17x2)(3y − 5x2) −

1000
343 d

3
1x

3(x2 + y), K1 = − 8
3x − 10

3 d1x
2 + 30

7 d1y, C2 = y + x2, K2 = 4
3x +

5
21d1x

2 + 15
7 d1y, C3 = 1 + 20

7 d1x + 25
7 d

2
1x

2 + 75
49d

2
1y + 375

343d
3
1x

3 + 375
343d

3
1xy, K3 =

− 20
21d1x

2 + 20
7 d1y. As div(F) = K1 +K2 − 1

2K3 then V = C1C2C
−1/2
3 = h+ · · ·

is a inverse integrating factor of system (4.6). By Theorem 1.3 we have that it
is analytically integrable. Moreover, it has an analytic first integral of the form
I = C1C

2
2C
−3
3 .

xi) In this last case, the vector field (4.6) is given by

(
ẋ
ẏ

)
=

(
y − 1

3x
2

2x3 − 2
3xy

)
+

(
5
3d1x

3 − 5d1xy
− 175

27 d1x
4 + 5d1y

2

)

This vector field has three invariant curves Ci with cofactors Ki, for i = 1, 2, 3
given by C1 = y − x2 + 35

9 d1x
3 − 5d1xy, K1 = − 8

3x + 40
3 d1x

2, C2 = y + x2 −
25
9 d1x

3 − 5d1xy, K2 = 4
3x − 20

3 d1x
2, C3 = 1 − 5d1x, K3 = 5

3d1x
2 − 5d1y. As

div(F) = K1 + K2 −K3 then V = C1C2C
−1
3 = h + · · · is a inverse integrating

factor of system (4.6). By Theorem 1.3 we have that it is analytically integrable.
Moreover, it has an analytic first integral of the form I = C1C

2
2 .
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