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Highlights
e We characterize the analytic integrability of nilpotent singular points.
e Our characterization uses the existence of an inverse integrating factor.

e The results are applied to some nilpotent families of systems.
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Abstract

In this work is characterized the analytic integrability problem around a nilpotent
singularity for differential systems in the plane under'generic conditions. The analytic
integrability problem is characterized via the existence of a formal inverse integrating
factor. The relation between the analytic integrability and the existence of an algebraic
inverse integrating factor is also givern.

1 Introduction and statement of the main result

In this paper we are interested/on the study of the analytic integrability for differential
systems in the plane i.e.,"for differential systems of the form

m’zP(w,y), y:Q(xvy)v (1'1)

where P andAQ are analytic in a neighborhood of the origin and coprime. For such
differential<gystéms (1.1) with non-null linear part we have the following cases in
function-of-their eigenvalues: if A\; Ao # 0 we have either a saddle, a node, a focus, or
a centeér type singular point. If A\; = 0 and Ay # 0 we have a saddle-node. Finally if
AL =MXg»= 0_ve have a nilpotent singular point. The nodes, focus and saddle-nodes
are not analytically integrable. If A\; and A\s are pure imaginary eigenvalues we say
that we/have a linear part of center type and the system is analytically integrable if,
and only if, it is a center and if, and only if, it is orbitally linearizable, see [3, 23, 26].
For a saddle singular point, i.e., \y < 0 < A2 if A;/A2 € Q then system (1.1), although
it is linearizable, is not analytically integrable around the singular point. If A; /Ay =
—p/q € Q then we have a resonant saddle. A resonant saddle has an analytic first
integral around the singular point if, and only if, it is orbitally linearizable, see for
instance [17, 22, 28] and references therein.

The analytic integrability problem for a nilpotent singularity has been recently
theoretically characterized in [11, Theorem 1.2], see also below. In this case the
system is analytically integrable, if and only if, it is formally orbitally equivalent to
the first quasi-homogeneous component under the generic condition that the origin of
this first component is an isolated singularity.



During the last decades the inverse integrating factor has been used to characterize
integrability. The relationship of the inverse integrating factor and the center problem
has been also studied by several authors, see [5, 8, 9, 10, 13, 20, 25]. For instance a
system with a linear part of center type is analytically integrable if, and only if, there
exists an inverse integrating factor of the form V = Vj + --- with Vj is a constant
different form zero and where the dots indicate higher order terms, see [27].

The aim of this paper is to characterize the integrability of a nilpotent differential
system in terms of the existence of a formal inverse integrating factor. We recall that
a non-null C! class function V is an inverse integrating factor of F on U if satisfies the
linear partial differential equation VV-F = div (F) V, being div (F) := 0P/0z+0Q /0y
the divergence of F. We say that V is a formal inverse integrating factor of F ifd/ ¢
C[[x,y]] where C|[x,y]] is the algebra of the power series in = and y with coefficients
in C, convergent or not.

In order to present the results first we need some notation. A scalar polynomial fis
quasi-homogeneous of type t = (t1,t2) € N? and degree k if f(e'1x, et2y) =& f(x,y).
The vector space of quasi-homogeneous scalar polynomials of type t and degree k is
denoted by Pt. A polynomial vector field F = (P, Q)7 is quasi-hemogeneots of type
t and degree k if P € P}, and Q € P}, . The vector spacé,ofspolynomial quasi-
homogeneous vector fields of type t and degree k is denoted by, Q%. Given an analytic
vector field F, we can write it as a quasi-homogeneous expansion corresponding to a
fixed type t:

F(x) = Fr (%) + Fri (%) + spumedFs: (1:2)
j=r
where x € R?, r € Z and F; € Q; i.e., each tenm"F; is a quasi-homogeneous vector
field of type t and degree j. Any F; € Q; ¢an be(uniquely written as
F, =X, + /1jPo, (1.3)
where i = ﬁdlv (FJ) € fP;, h]' = ﬁDO A Fj S :P;+|t|7 Dy = (tldl,to)T, and
Xy, = (—0h;/0y,0h;/ dz)" is the Hamiltonian vector field with Hamiltonian function
h; (see [2, Prop.2.7]).

Notice that the condition of polynomial integrability of the first quasi-homogeneous
component is a necessary condition in order that F is analytically integrable, as the
following lemma establishes.

Lemma 1.1 Let'F = ijr F; be a vector field, F; ¢ Q;. If F is analytically inte-
grable then F.. is polynomially integrable.

Henge without/loss of generality we can take from now on that the first quasi-
homogeneous component of the vector field is polynomially integrable. A necessary
and‘sufficient/condition on the polynomial integrability of a quasi-homogeneous vector
field is given in [1]. The main result of [11] for nilpotent singular points is the following.

Theorem 1.2 ([11]) Let F = 3 . F;, F; € Q; be a milpotent vector field such
that the origin of x = F,.(x) is isolated and F,. is polynomially integrable, then F is
analytically integrable if, and only if, it is formally orbitally equivalent to F.,..

The following result is the main result of this work and provides the relationship
between the analytic integrability of a nilpotent singular point such that the origin
of the first quasi-homogeneous component is an isolated singularity and the existence
of a formal inverse integrating factor defined in a neighborhood of the origin. Note
that the first quasi-homogeneous component of the vector field we are studying has
a non-null dissipative part and therefore the techniques used in the Reeb’s theorem
are not applicable, see [27]. Specifically the first quasi-homogeneous component is not
equivalent to an exact differential form dH with first integral H having simple factors.



Theorem 1.3 Let F = ijr F;, F; c Q; be a vector field with non-null linear part
such that ¥, = X, + p-Dy 1s polynomially integrable and the origin of x = F.(x) is
an isolated singular point. Then F is analytically integrable if, and only if, there exists
V =h+--- a formal inverse integrating factor of F.

The proof of Theorem 1.3 is given in Section 2.

Remark. The above result can be applied to differential systems with a nilpotent
singular point, with a linear type center singular point or with a resonant saddle
singular point. In this sense it is a generalization of the well-known Reeb’s theorem,
see [19, 27].

The equivalence between analytic integrability and the existence of a formal inverse
integrating factor is not true if V' does not begin with h. For instance, the system

=y + 2?2t — 2%, § = 2%+ 2zy(z* — 2%),
is not analytically integrable but V = (2% — 2y?)? = h2/16 is a polynomialyinverse
integrating factor of it, see [8, pag 870].
From Theorem 1.3, we have the following corollary for the resonant saddle case.

Corollary 1.4 System & = =Mz + -, § = Aoy + - - - with A\ yd2-€N is analytically
integrable if, and only if, there exists a formal inverse integrating factor of the form
V=xy+---

This condition is necessary and sufficient. For imstance system & = —x + 22y,
9y = y + xy? has the inverse integrating factor Va= h? =22y?. However, it is easy to
prove that this system is not analytically integrable.

Now, we are going to provide a sufficient eondition to have analytic integrability

for a nilpotent vector field. To state thisyresult we first need a normal form for the
first quasi-homogeneous component of the, vector field.

Any planar nilpotent vectorAieldysuch ‘that the first quasi-homogeneous compo-
nent is polynomially integrablesand irreducible, doing a change of variables and a
reparametrization of the time (see’[l1, Proposition 2.12]), can be written as

E(@)=Fa@)+ Y Fi(z), F;eql, (1.4)
g>r
where F, is onedf the following quasi-homogeneous vector fields
i) F, =X, € Qf with h = -3y + 5l52”" " r=2n—land t = (2,2n 4+ 1).
ii) F, =X, € Ot with h = —% (y? + ng(""'l)), o=+, r=nand t=(1,n+1).
ili) Fr= X, #'1,Dg € QF with h = —1 (y2 — 220"V, 1, = da, d = 2122 £ ),

. . my+m2 .
miyma’€ N coprimes, r = n, t = (1,n + 1) where a first integral of F, is

I = (y _ In+1)m1 (y + anrl)mg_

Next result gives a sufficient condition of analytic integrability of the nilpotent
differential systems with the first quasi-homogeneous component irreducible and with
non-zero divergence, by means of the existence of an algebraic inverse integrating
factor.

Theorem 1.5 Let F be the vector field (1.4) with F,. of type iii). If there exists g €eQ
with w ¢ N such that

W= (y— "t .)1+§m1 (y+ P .)1+§m2

is an algebraic inverse integrating factor of F then we have that F is analytically
integrable.



The proof of Theorem 1.5 is given in Section 3.

Remark. The hypothesis M ¢ N is necessary. For instance if we consider
the vector field F = Fy + Fy with F; € QF, t = (1,2), Fy = (y — §2%,22° — 2ay)7,
Fy = 2%(2,2y)7 we have that in this case n = 1, m; = 1, mp = 2, and Is =
(y — 2%)(y + x2)? € P§ is a first integral of Fy, where F; is irreducible (the origin is
an isolated singularity). Moreover,

2p

P
W=(y—a*)Tay+a*)"a,

with p =1 and ¢ = 6, is an algebraic inverse integrating factor of F. Neverthelegs, F
is not formally integrable, see Theorem 4.19 below. In this case the hypothesis that

fails is leel\l.

Hence, the existence of an algebraic inverse factor does not guaranteedthe analytic
integrability. For instance the differential system & = y + 22, § = a2+ 3xy is not
formally integrable but it has an algebraic integrating factor of the/form W= h7/6
with h = —%(3y* — 22%), see [6, Theorem 2].

From Theorem 1.5 we have the following corollary for thé\resonant saddle case.

Corollary 1.6 Consider the system © = =Xz + -+, y = Aoy +--- with Ay, A2 € N,
(A, A2) =1, Ay /Ag # 1. If there exist p,q € N such that(A ¥ A2)p/q € N and

b p
1+ I+
+q 2 +q 1

W:(I+...) (y+)

is an algebraic inverse integrating factor of such{system then it is analytically inte-
grable.

Remark. The condition (A; + A2)p/q &N is necessary as the next example shows.
The system & = —z + 23y, § ="2U+ 22y® has the inverse integrating factor W =
23y? but it is not analyticallyintegrable. In this case we have p = 1, ¢ = 1 and
(A1 +A2)p/g=3 €N.

2 Proof of the. Theorem 1.3

In order to preve Theorem 1.3, we need to recall the following theorem proved in [4]
and there also called Theorem 1.3.

Theorem 2.7 Let F =3, F;, F; € Q} be an analytic vector field with F(0) = 0.
Then, 'F and [F,. are formally orbital equivalent if and only if there exist a formal
vector field-G = ijo Gj, G; € Q;, with Gog = Dg and a formal scalar function f
with f(0) = r verifying [F,G] = fF.

The following result corresponds to Proposition 18 of [§].

Proposition 2.8 Let ® be a diffeomorphism and n a scalar function on U C R? such
that det (D¢) has no zero on U and n(0) # 0. If V € C[[z,y]] is an inverse inte-
grating factor of system x = F(x), then n(y) (det (Dd(y))) " V (®(y)) is an inverse

integrating factor of y = ®, (nF) (y) := (D®) ™" n(y)F (®(y)).

Definition 2.9 f € C[[z,y]] is an invariant curve of (1.2) if there exists K € C[[x, y]]
such that Vf-F = KF, where K is called the cofactor of f.

Now we provide some technical results and their proofs in order to prove the main
result of the paper.



Lemma 2.10 Let f € Pt be an invariant curve of X4, with g € P, then there exists
A€ PE_ such that g = \f.

Proof. As g is a first integral of X, then all the solutions of the system associated to
Xy are in the level curves of g. If f is an invariant curve of X, then f = 0 is formed
by solution curves of the system associated to X,. Thus all the solutions curves that
are in f = 0 are in the same level curve of g, that is, g vanishes in all the points where
f vanishes. Therefore, as g and f are quasi-homogeneous polynomials, there exists
A€ PE__ such that g = \f. |

Lemma 2.11 Consider f € P* and F = Y
ments hold.

> Fi. Fj € Q;. The following state-
i) If f is an invariant curve of F then f is an invariant curve of F; for<all j Sy

it) If f is an inverse integrating factor of F then f is an inverse integrating=factor
of F; forall j >r.

Proof. First, we prove statement i). If f is an invariant curve of'F then there exists
K= Zj>r K;, K; € fP; (cofactor) such that Vf - F = K f and ‘conséquently

0 = Y VFf-F=-> Kif=> (VI E - Kf).
jzr jzr jzr
Thus for all j > 7, we have Vf-F; — K;f =0 and fuis an invariant curve of F;.

Second, we prove statement ii). If f is anjimverse integrating factor of F then
Vf-F — fdiv(F) = 0 and consequently

0 = Y Vf-Fj—> fdiv(F;) 5> (V/f-F; - fdiv(Fy)).

Jjzr jzr jzr

Thereby for all j > r we have V/f - Fj = fdiv (F;), hence f is an inverse integrating
factor of F;. [ |

The following result i§ proved in [11] there called Lemma 3.17. We adapt the
statement to our purpeses.

Lemma 2.12 Leth € fP:JrItI’ tr € Prbe and Fr. = Xj, + p, Do € Q7. Every Fj € QF
with j > r can‘be expressed by F; = X, .+ 1;Do + Nj_,Fp, with X\j_, € P4,
n; € fP; and” gi1 15[V Ajype), being Ay a complementary subspace of hfP;LT m

T;_Htl, i.e T;+|t| = Aj—o—\t\ @h?;'fr'

The following result describes the vector fields which have h as an invariant curve.
For“similar results inside the inverse problem, see [14, 15].

Proposition 2.13 Consider F = ijr F; with F; € Q;, F, = X, + 4Dy, h €
?:Ht\? wr € Pt Do = (tiz,toy)?. If h is an invariant curve of F then F = (1 +
ANF, +uDo with A =370, N, Aj € P and p= 375, pj, p1j € P

Proof. If h is an invariant curve of F and h is a quasi-homogeneous polynomial then by
Lemma 2.11 statement i) follows that h is an invariant curve of F; for each j > r with
cofactor K;. On the other hand, applying Lemma 2.12 F; = X, .+ ;Do + Aj . F,
with g; 1) € Djpye)s H5 € T; and A\; € fP;f,,. Thus we have:

Vh - Fj = Vh- (XQJHtI + MjD() + )‘j—rFr)
Vh- XQJHH =+ (7” + ‘t|)/1/]h + )\j,TVh . (Xh + [j,rDo)
Vh- ngJrM + (7‘ =+ ‘t|) (,UJJ —+ )\j_T-,LL,.) h = th



Consequently Vh - X, = (K; — (r + [t]) (1j + Aj—rpr))h. Hence h is an invariant
curve of X, . and applying Lemma 2.10 we deduce that g; ¢ is multiple of & and
9i+1t| € Ajype) hence g;4 ¢ = 0 and this completes the proof. [ ]

Next result characterizes the vector fields which have h as inverse integrating factor.
Proposition 2.14 Consider F =

g)t
r+|t]’ 0 -
F=01+4+MNF,—(VA-F,)Dg with A = ijl Aj, Ay € i]’;- and A = ijl Ajlg.

Fj with Fj S Q;, F, = X + pDog, h €
pr € Pt Do = (t1x,t2y)T. If h is an inverse integrating factor of F then

jzr

Proof. 1If h is an inverse integrating factor of F as h is a quasi-homogeneous polynomial
then by Lemma 2.11 statement ii) % is an inverse polynomial integrating factor, of E
for all j > r. For j = r is fulfilled because

Vh - F, — hdiv (F,) = Vh - (Xp + prDo) — hdiv (u,Dy)
— (r+ [t — (o [ty =
If for j > r h is an inverse integrating factor of F;, then h is an invariant ctirve of F;

and by Proposition 2.13 we have Fj = X; . F, + ;D¢ with y; &Phand \;_, € P4_,.
Therefore, we get

= A\ Vh-Fy 4 1,V Do — h (VA Fy + Aeedivi(F,) + (G + [t))12;)
(4 DAtk (4 () sh — b (VA BN+ DA e+ (o [6)71)
= (r—fujh— VA, -F, = (r—j)h (uj + ﬂg%) .

Consequently, p; = —(VA;j_, - F,)/(j =) and this completes the proof. [ |

The following result provides an orbital normal form for a vector field with an
inverse integrating factor of the formnV =h + -- -

Proposition 2.15 Consider-F = >, F; with F; € Q;, F, = X;, + u.Dg, h €
T:Ht‘, pr € PN\ {0}, D= (t12, t2y)T. F is formally orbitally equivalent to F,. if,
and only if, V.= h + -4 is a formal inverse integrating factor of F and there exists a
change of variables @ such that V o ® = h.

Proof. 1f V.=l 5+ is an inverse integrating factor of F, taking n = det (D®) and
applying Proposition 2.8 we have that  is an inverse integrating factor of F = &, (nF).
Applying riew Proposition 2.14 we obtain that F = (1 + A\)F, — (VA - F,.) Do with
A=2510 N€ ‘P; and A =351 Aj/j.

Next.we claim that ﬁDO is a commutator of F. In order to see this we use the
property [pF, G] = (Vi - G) F + u[F, G]. Hence we have

F.1tom)

[(1+MF,, 75Dy | + [= (VA-F,) Do, 15D

V(1+X)-Dg
= YUERPOF, 4 (14 ) [y, D)

V(VXAF,)D ~
. . V(VA-F,)-D
= YADop, 4 VAR, 4 [F,, Dy — Y(YXF) Do M) °Dy
3 vA-D
— (V)\ - Fr) 7(1“)3 Dy



Taking into account that

[F'r‘v DO] - rFTa
Vi Do = kug (by the Euler’s theorem for py, € PE)
N _ VA, F, _ V(V);-F,.) Do _
V(VAF) Dy = V(Y TME).Dy = TENEID [y F, e Pt ]
j=1 i>1
YT, Y, T T,
§>1 jz1 jz1

= VA-F,+rVA-F,

It follows that

o1 _ VADg VA-F _ VAF, VAT,
[Fv 1+/\D0} = T Fr 4 75 Do +rFr — S5 Do — o35 Do

3 VXD
~ (VA-F,) 22BsDy

VA-Dg VAF, VA-Dg
= (T + 55 ) F, — X (T + 95 ) Do
= MR (14 VF, - (VAGF, ) Do)

r(1+2)+VADg £
ez F

Applying Theorem 2.7 we obtain that F is formally orbitally equivalent to F,.

The sufficiency is trivial because h is aw inversé integrating factor of F,. and it is
sufficient to apply the Proposition 2.8. [ ]

Now, we can give the proof of the’mainyresult.

Proof of Theorem 1.3 THe negessity is trivial because if F is analytically in-
tegrable by Theorem 1.2 we have that F is formally orbitally equivalent to F, (the
first quasi-homogeneous component)! Taking into account that F, has the inverse
integrating factor V = K then by Proposition 2.8 we deduce that F has the inverse
integrating factor of the form V/=h+ ---.

Let us now thetsufficiency. As F has non-null linear part and its first quasi-
homogeneous component is irreducible and polynomially integrable, the unique possi-
bilities are:

a) F = (sy,2)7 +" - (perturbation of a linear center type)
b) F = (—\m,A29)T + -+, A1, A2 € N (perturbation of a resonant saddle)
c) Fis ofithe form (1.4) with F,. of type i), ii) or iii).

The case a) is proved in [27]. For the case b) by means of a linear change of variables
an a reparametrization of time we can transform the original system into the vector
field (y, z)T + ﬁ(w,y)T + -+ which is a vector field of the form (1.4) with F, of
type iii) with n = 0. Therefore it is enough to show the sufficient condition for the

case c).

In all the cases i), ii) or iii), the inverse integrating factor of F is V' = h+- - -, where
h(z,y) = y* + Az™, with m € N, and A # 0. It is proved in [12] that there exists a
change of variables near to identity ® such that Vo ® = h. Applying now Proposition
2.15 we have that F is formally orbitally equivalent to F, and F, is polynomially
integrable so we deduce that F is formally integrable and by [24, Theorem A] F is
analytically integrable. ]



3 Proof of the Theorem 1.5

Now we give the following technical result and its proof in order to prove the theorem
1.5. For that we need the following linear operator (Lie derivate of F,.)

o PE— P
iy — Vi By,
Lemma 3.16 Let F = F, + > jsr Do, be the vector field (1.4) with p; € Cor (£;)
Vi,
U, Vs, €

(where Cor (€;) is a complementary subspace to Range (¢;)). Let V =
52
Pt W, € ng and U a formal unity series, i.e., U(0) = 1, such that for some m € N

L

is verified the equation
VV - F — mVdiv (F) =0. (35)
If sy —so #m(r+i+[t]) for alli € N, then p; =0 for all j > r

Proof. The equation (3.5) is

Vi,
Wy

Vs,
W,

s2

O:V(V‘%U)f‘—m Udiv(ﬁ) = UV F 4 g VU B o Udiv(F).

Vi

On the other hand this equation (3.5) for degree r + 51 sp is 0 = Vypt - F, —
52
Vi,

mydiv (F,). Moreover, as Vi, € Pt,, Wi, € Bk, is ulfilled Vg - Do = (s1 -

S17

Vi
S2) W Hence

0 = UVpt B4 (s1—52)U

s2

V., V., - Ve, 1 g
W, Zﬂj + @VU -F — mW—wUdlv(Fr)

j>r

V" ) — ‘/S . " — . .
—mg U (G + [t uge= Wy VU - F U> A |,
j>r gj>r
where A; = m(j + [t]) — (s —.52)"
In this way the equation(3.5))s VU -F — U ZDT Ajp; = 0. When developing it
in quasi-homogeneoustdegrees résults

0 = D> VUANE +> Do | = (14D Ui | > Ay,

i>1 i>r i>1 J>r
i—1 i—1

= Z <VU1' “F. + Z Hrti—k VU - Do — <A¢+rui+r + Z Ar+z’k,ur+ikUk>>
i>1 k=1 k=1

i—1
= Y (vm Fr— Aty + Y (k- AHM)MHMUIC) :

i>1 k=1
We claim that p,.4; = 0 for all j > 1 because otherwise we can consider jo =
min {j € +N: p,4; # 0} and equation (3.5) for degree r + jo is
) Jjo—1
VUj -F, — Ar+j0ﬂr+j0 + Z (k — A'r+jo—k),u'r+j0—kUk =0
k=1
Taking into account that p,4j,—x = 0 for 1 < k < jo — 1, we have that VU, -
F, = Ay yjoprtj,- However A, i, # 0 because m(r + jo + [t|) # (s1 — s2) therefore

Ay jotirtjo € Cor (£ry o) \ {0} and VU, - ¥, € Range (¢, ,), consequently ji,; j, = 0
which is a contradiction and the claim is proved. [ ]



Proposition 3.17 LetF = F, +Zj>r u; Do, be the vector field (1.4) with F,. of type
iii) and p; € Cor (¢;) (where Cor (¢;) is a complementary subspace to Range (¢;)). The
unique solution curves passing through the origin are y — x" 1 =0 and y + 2" = 0.

Proof. The curves y — 2" = 0 and y + "' = 0 are invariant curves of F, and

applying Euler’s theorem it is easy to prove that they are also invariant curves of Dy.
Consequently they are invariant curves of F.

We are going to see that they are the only ones. By applying the blow-up = = u,
y = u"T1v to the differential system x = F(x) and the scaling of time dT = u"dt, we
get the differential system

% = u[v+d+z,uj(1,v)uj_"]7
i>n
j—% = (n+1)[1—v2].

The singular points in u = 0 are v = £1 and the linearization matrix at these equi-
librium points are

D(0,1) = diag(d+1,—2(n+1)) = diag (mffinz 530 b 1)) ,
D(0,~1) = diag(d—1,2(n+1)) = diag (_"j’jgnz  2n + 1)) .

So both singular points are hyperbolic saddles and“therefore have a unique curve
entering to the origin. From here we deduce that the solution curves are unique. ®

Proof of Theorem 1.5 Let F be the\vector\field (1.4) with F,. of type iii), by

[11, Theorems 3.23 and 3.24], F is formally, orbitally equivalent, by a near identity

transformation, to F = F, + >, p;Dg, with p; € Cor (¢;), where Cor ({;) is a
complementary subspace to Range((;).

W= (y—a"tt + ---)H%ml (y & ="+t + ...)H%"” with (tDlmitme)p g g

q )

g € Q, is an algebraic inverse integrating factor of F then by Proposicion 2.8 we can

4 1 Em 1 Bm .
affirm that, W = (y—27+ +.. ) *q Yyt T4™2 ith M ¢ N,
is an algebraic invere integrating factor of F.

On the otherdhand the factors of W, i.e., y—a™t 4. y+2™tl. .. are invariant
curves of F. Applyihg Proposition 3.17, we know that there exist unity series Uy, Us
such that y&— gL +7.. = (y — 2" ™HU; and y + 2" + - = (y + 2"T1)U;. Thus
we havethat W =/CU with C' = [(y — a"1)atPmi(y 4 gntl)atem:] 9 and where U
is a unity series:

Moreovery/ C' satisfies the equation (3.5) for m = ¢, s1 —s2 = (n+ 1)(q + pm1 +
afr pma) = 2(n+ 1)g + (n + 1)(m1 +ma)p # a(r + [t + ) = q(2(n + 1) +1) with
i &N bécause NWEDMEm2)p £ gor a1 § € N. By applying Lemma 3.16 F = F, is
polynomially integrable, therefore F is formally integrable. From [24, Theorem A], we
deduce that F is analytically integrable. ]

4 Applications

We consider the integrability problem for the following nilpotent vector field with
non-hamiltonian first quasi-homogeneous component

. 1,.2 3
x . Yy — 3T agx” + a1y
( U > N ( 213 — %:cy > + < box* 4 biz2y + boy? ) ' (4.6)



The first quasi-homogeneous component of the vector field respect to the type (1,2)

1S
1,2
]:;\1 — < Yy Sx > c Q§172)7

2% — 2y
being F; = X + u1Dg where h = —% (y?—a*), p = —%x and Dy = (x,2y)7.
Therefore the origin of system (4.6) is not monodromic, see [1, 7]. In fact, the origin
is a saddle with two invariant curves C; = (y — 2?) + -+ and Cy = (y + 22) + - - -, see

[11]. Moreover F; has a primitive first integral given by Is = (y — 2%)(y + 22)2. The
following result proved in [11] provides a normal form under orbital equivalence of a
perturbation of Fy.

Lemma 4.18 There exist a change of variables in the state variables and theytime;
x = ®(y), dT = u(y)dt, such that system (4.6) is transformed into

: 1.2
x Yy — 3T 0 0
< Y > - < 2% j%a;y > + a§”a’Dy + af” hDy (47)

+3 " o IiDo + of 2 Dg + o I{Dd el h I} Dy

1>1

The conservative-dissipative splitting, (see [2, Prop.2.7}), allows o write system (4.6)
as

T
(5) = Xy~ 3D+ Xy ey + (do” +iy) D, (1)
2
where
c:bi() c:b1_2a0 c:b2—2a1 d:3a0+b1 d:a1+2b2
0 5 » C1 5 s 2 5 s QO 5 9 1 5 .

Next result solves the integrability problem for the previous system.
Theorem 4.19 System (4.8)yis analytically integrable if, and only if, it satisfies one
of the following conditions:
i) ¢1 —co+ 7dy = ¢d +%dy =7do + 3¢ + 14dy = 0.
ii) ¢1 + ¢p + 8dy= c3 — 8dy = 8dy + 3¢y — 16d; = 0.
iii) ¢; = ¢o #¢; =8dp + 2¢o + d1 = 0.
iv) 12¢o  Tdy'= 361 — 4dy = 4cg + 3dy = 3dp + di = 0.
v) 9cof— 16d; =28dy — 9¢1 = 3¢y — 4dy = 9dy + 7d; = 0.
vi)#115dy — 189¢cy = 63¢1 + 38dy = Teo — dy = 21dg + 11d; = 0.
vii) 189¢y — 19dy = 21e1 +2dy = Teg — dy = 3dg +di = 0.
viii)®12¢y + 5dy = 6¢1 + 7dy = 4eg + 3dy = 3dp + dy = 0.
ix) 9¢co — 20d; = 91 + 32dy = 3y — 4dy = 9dy + 7dy = 0.
%) 2lco — 11d; = 3¢y — 2dy = Tes — dy = 21dg + 11d;.
xi) 27co + 35d1 = 3c1 +2dy = ¢ —3dy =do —di = 0.
Proof. The necessity is proved computing successively the coefficients of the dissipa-
tive part of the normal form (4.7) and imposing their vanishing because otherwise by

Theorem 1.2 they prevent integrability. The first coefficient of the dissipative part of
the normal form (4.7) is

ol := 336dy — 89cs + 9¢; + 135co + 112d; .

11



The next coefficients of the dissipative part of the normal form (4.7) are big expressions
that we do not present here. We define the ideal J = (ago)7 aé(lo), ...y generated by these
coefficients. By the Hilbert Basis theorem we know that is finitely generated which
implies that there exist a set of generators g1, ga, ..., gx such that J = (g1, g2, ..., gx)-
We call A € R® the set of parameters of system (4.6). The affine variety V(J) = {\ €
R5 | gi(X\) = 0} is the integrable variety of system (4.6). This variety provides a finite
set of necessary and sufficient conditions to have integrability around the origin for
system (4.6). We compute a certain number of coefficients to find a set of generators.
In particular, we have computed six coefficients. We decompose the algebraic set
of the computed coefficients into its irreducible components using a computer algebra
system SINGULAR [21]. In fact, we use the routine minAssGTZ [16] based on the Gianni-
Trager-Zacharias algorithm [18]. The decomposition of the ideal has been posSible in
the field of rational numbers, hence we know that the decomposition of the variety
is complete. The obtained decomposition consists of 12 components defined by the
following prime ideals:

(1) {1 —co+ 7dy,ca+ Tdr,7dy + 3co + 14d4),

(2) (c1 4 o+ 8dy,co — 8dy,8dy + 3co — 16dy),

(3) {e1,c2 + co,3dy + 2¢o + d1),

(4) (12¢o + 7dy, 3¢t — 4dy, deo + 3dy, 3do + ),

(5) (9co — 16dy,9¢1 — 28dy, 3o — 4dy, 9do + 7dy),

(6) (189co — 115dy,63¢1 + 38dy, Teg — dy, 21dy + 11dh),
(7) (189co — 19dy,21ey + 2dy, Tes — du, 3do + dy Ny

(8) (12¢p + 5d1,6¢1 + Tdy,4co + 3dy,3do Fida),

(9) (9co — 20dy, 9¢1 + 32dy, 3¢s — AdseOd + 7dy),
(10) (21e¢p — 11dy,3¢1 — 2dy, Tco — dy, 21dg + 11d4),
(11) (27co + 35dy, 31 + 2dy, co™ 3diydy — dy ).

(12) (21, + 3160 — 179dsTes dy 21dg + 11d;, 173282571ck — 429580746¢3d; +

396959976¢2d2 — 16213328608 + 24706845d%).

However the compenent (12) is a fake component because does not vanish the
next coefficients of the dissipative part of the normal form (4.7). Hence the first 11
components areshe necessary conditions for system (4.6) be integrable and they are
the conditiong*thatiappear in Theorem 4.19.

Now we give the sufficiency for each condition.

i) In this case, the vector field (4.6) is given by

z _ — §x2 n 5(7d1 + 2do)x3 + 15dyxy

g o 20% — 2ay 35(2dy + do)z* — 5(do + 7dy )2y — 5dyy?
This vector field has two invariant curves C; with cofactors K, respectively,
given by C; = y — 22 + 5(2dy + dp)z3 + 15d12y, Ky = —8x/3 + 10dgz? + 10d, v,
Co = y+ 2%, Ky = 4x/3 — 5doz? — 5dyy. As div(F) = K; + Ky, then V =
C1Cy = h+-- - is a inverse integrating factor of system (4.6). Hence by Theorem

1.3 we have that it is analytically integrable. Moreover an analytic first integral
is given by I = C1C3.

ii) In this case, the vector field (4.6) is given by
z B — %x2 n %(8d1 —do)x® — 15d 2y
Y - 20% — 2ay D (2dy — do)a* + 10(do — 4dy)x*y + 10d1y>

12



The vector field has also two invariant curves C; with cofactors K; given by
Cy =y—22 Ky = —82/3+10doz?+10d1y, Cy = y+2?+5(2d; —do)z> —15d1 7y,
Ky = 4x/3 — 5doz?® — 5dyy. As div(F) = Ky + Ko, then V = C1Cy = h+---is a
inverse integrating factor of system (4.6). Applying Theorem 1.3 we have that
it is analytically integrable. Moreover an analytic first integral is I = C;C2%.

iii) In this case, the vector field (4.6) is given by

T B — %1‘2 n doz® — 3dozy
U o 23 — %xy fg(dl + 3dg)z* + 2dox?y + %(Sdl + 3do)y?

This vector field has three invariant curves C; with cofactors K;, i = 1,2, 3 given
by C1 =y — a2, K1 = —82/3 + (19dg + 5d1)2? /2 + (5d1 + 3dg)y /2, Co =ap+ %,
K2 = 41‘/37(11d0+5d1>$2/2+(5d1 +3d0)y/2, 03 = 173d0$7 Kg = dol‘273d0y.
As div(F) = K7 + Ko + K3 then V = C1C2C3 = h + - - - is a inverseintegrating
factor of system (4.6). Hence by Theorem 1.3 it is also analytically ittegrable.
Moreover, it has an analytic first integral of the form I = (C1C2C3') where
A= (5d1 + 3d0)/(2d0) if do §£ 0and I = 01022 exp(—%dlx) if do =0,

iv) In this case, the vector field (4.6) is given by

T Yy — %12 2 dqx® + 5d1:1:y

. = 3_"2 + e 5

Y 2z° — sy Bt + B Bdia?y + 2dyy?
This vector ﬁeld has three invariant curves C{ with cofactors K;, i = 1,2, 3 given
by Ci = y—2?, K| = 3x——d1x +2 dly, Cy = Y%z —fdlx?’—l—%dlxy—l— 15d2 2_
2 dix? y—|— 64d at, Ky = 3o — 2dya? + Sdvy, Oe="1+ 3dyx — dia? + ly,
K; = dlac +5d1y As div( ) = K1+K2+K3 thenV Ci10C3=h+--
is a 1nverse integrating factor of system (4.6). By Theorem 1.3 we have that it
is analytically integrable. Moreoveryuit,has an analytic first integral of the form

I=C03057°
v) In this case, the vector field’(4.6)'is given by

I _ — %xz N 9 35,23 — fdlxy

y' 2163—*.Z‘y Sodx4+70dxy+10d1y
This vector field has three invariant curves C; with cofactors K o fori =1, 2, 3
given by Cf =y — 2" — Ldya® — 1?35112 - By?y + Dd3y? — Bady
125d3 125d31‘y +625d41‘6—|—625d41‘ y+ 625d41‘2y K —%I—*d 1, +
L dly, 02 = y+x2 Ky = 3x+10d z +10d1y, Cs = 1+10d z+ 10 d2x2+25d2
Kg d $2+10d1y As le( ) K1 +K2+K3 thenV 010203—h+

is'a 1nverse integrating factor of system (4.6). By Theorem 1.3 we have that it
isanalytically integrable. Moreover, it has an analytic first integral of the form

I ="e1C30C;°
vi), In this case, the vector field (4.6) is given by

&\ _ v - —x2 N Sdia® + dlxy

i 223 fxy ?;gd xt — 2Od 22y + 15d 12
This vector field has three invariant curves C; with cofactors KZ, fori =1,2,3
given by C, =y—a?— Bdia® + Ldyay — ggng 2 4+ 3D B2y — % 2 4
K, = —fx 10d T +20d1y, Cg—y—l-x +8 diz?, Ky = fz—i— dlx + 5d1y,
Cs = 1+20d1x+ﬁ‘7’d2 2 Bdiy+ 2 d3a’ —ﬁ;dS 2y, Ky = Fdya? +20d Y.

As div(F) = K1 + Ky — %Kg then V = C1C,C5 Y2 _ 4 .. s a inverse
integrating factor of system (4.6). By Theorem 1.3 we have that it is analytically
integrable. Moreover, it has an analytic first integral of the form I = C1C3C5 3
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vii) In this case, the vector field (4.6) is given by

viii)

T B Yy — %xQ n —ar dlx + 5d1xy

Y - 20% — 2oy osdiat — Ddyaty + L2dyy?
This vector field has three invariant curves C; vvith cofactors K;, for i =1,2,3
given by Cr=y—a%— d1x3 K, = 5d 2+ 5d1y, Cy =y+a? %dlx?’,
Ko = 395 — fdlx +1 dly, C3=1 + dlx K3 dlx + 5d1y As div(F) =
K, + Ko — K3 then V = 01020 = h + --- is a inverse integrating factor
of system (4.6). By Theorem 1.3 we have that it is analytically integrable:
Moreover, it has an analytic first integral of the form I = C1C2C; 12,

In this case, the vector field (4.6) is given by

T B Yy — %12 n %dlx?’ + %dﬂ:y

¥ - 23 — %xy —2dya?t — %dlﬁy + Sy y?
This vector field has three invariant curves C; with cofactors K;, fori=1,2,3
given by C; —y—x +5d :c3+5d1xy— 256d2 2 - dlx y— 256d 22t K| =
——x — @dlx + dly, 02 Yy + EL' Kg = 3.%’ — *dll' -+ dly, 03 1 +
5d1x — d dly7 K; = 12d1x + Zdly. As div(F)="K; + K2 + K3

then V = 01026’3 = h + --- is a inverse integrating factor of system (4.6).
By Theorem 1.3 we have that it is analytically integrable?” Moreover, it has an
analytic first integral of the form I = C,CZC5

ix) In this case, the vector field (4.6) is given by

& B Y — f:cQ S %5(11353 — %dlxy
i 223 — 2y 100t — Hodya?y + Ldyy?

For this vector field we have beensable to ﬁnd two invariant curves C; with
cofactors K;, for i = 1,2 given by C’1 = y — 22, K, = 751: 50d 2?2+ W S d1y,
Cy = 1+10d x+125d2 24 dly, Ky = d T +10d1y As dlv( ) = 7K1+K2

then W = C} 1/ 202 = (=27 % )1/ 2is an algebralc inverse integrating factor of
P P
system (4.6), i.e., W ={y —x? +-- -)1+q (y+ 22+ ~)1+‘12 with p=—1, ¢ = 2.

In this case Mﬂjﬁ'&)ﬂ = —2¢ N for m; = 1, mg = 2, and by Theorem 1.5
we have that«it is analytically integrable.

Anyway, inthis case using this inverse integrating factor W we can compute a
first integral given by

2 G G ) VA 1 12V6 arctanh (5\/@1 v yxZ) )

= 25d2 125d3 2(5d1x+3)

This first integral H is not analytic at the origin, however taking into account
that arctanh(z) = 35,5 577271 = 2(1 + X5, g5072>) and defining 2z =

—r2
% we have that

) 4(5d1$73) 12\/6 5\/€d1 Z 27
y—z BZ T 1250 2(5d1w+3)(1+ 2]+1Z )

= VPG ),

Consequently H? is an analytic first integral at the origin. Moreover V = WH =
%h + - -+ is an analytic inverse integrating factor and we can also apply Theorem
1.3 for deducing that the above vector field is analytically integrable.

H
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x) In this case, the vector field (4.6) is given by

T B yf%acQ 2 254, 28 +5d1acy

. = 3 2 + 477 20 15

U 2z 3TY dlx + 57 dlx Y+ = 15,92
This vector field has three invariant curves C; with cofactors KZ, fori=1,2,3
given by C; = y — 2? + 2dyz(-52? + 3y) + 25d3(9y + 1722 )(3y — bz?) —

1000 3,3(32 1 y), Ky = _0%36_ Ddya? + Ldry, Cp = y—i—x Ky = %2+
d11‘ + 15d1y7 O3 =1+ 2 wdi1x + 25d2$2 + 75d2 glgd gzgd:fl’y’ Ks =

—ﬁdlﬁ +204,y. As d1v(F) =Ky + Kz — K3 then V = C1C2Cy /% = h 4 .
is a inverse integrating factor of system (4. 6) By Theorem 1.3 we have that it
is analytically integrable. Moreover, it has an analytic first integral of thé form

I=C,0305"

xi) In this last case, the vector field (4.6) is given by

(a:) _ ( —%xZ >+< %dlx — bdy 2y )

Y 223 :cy dlx + 5d1y?

This vector field has three invariant curves C; with cofactors K3, for i =1,2,3
given by C; = y — 22 + 35d1x — 5d1xy, K, = ffx + 4Od1x Cy =y+ 22—
25d11‘ - 5d1{L‘y, K2 = *CC - d1$ Cg =1- 5d1$ K3 ¥ SdlfL‘ - 5d1y As
div(F) = K1 + Ko — Kg then V C1C2Cy 1 = h -+ 18 a inverse integrating

factor of system (4.6). By Theorem 1.3 we have.that it'is analytically integrable.
Moreover, it has an analytic first integral of the form I = C;C3.
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