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Abstract: Many theoretical and experimental results show that solute transport in 

heterogeneous porous media exhibits multi-scaling behaviors. To describe such 

non-Fickian diffusions, this work provides a distributed order Hausdorff diffusion 

model to describe the tracer transport in porous media. This model is proved to be 

equivalent with the diffusion equation model with a nonlinear time dependent 

diffusion coefficient. In conjunction with the structural derivative, its mean squared 

displacement (MSD) of the tracer particles is explicitly derived as a dilogarithm 

function when the weight function of the order distribution is a linear function of the 

time derivative order ( )=2p cα α . This model can capture both accelerating and 

decelerating anomalous and ultraslow diffusions by varying the weight parameter c. 

In this study, the tracer transport in water-filled pore spaces of two-dimensional 

Euclidean is demonstrated as a decelerating sub-diffusion, and can well be described 

by the distributed order Hausdorff diffusion model with c = 1.73. While the Hausdorff 

diffusion model with α = 0.97 can accurately fit the sub-diffusion experimental data 

of the tracer transport in the pore-solid prefractal porous media. 
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1. Introduction 

Contaminant transport in porous media is one of the most important topics in 

environmental fluid mechanics [1], such as radionuclide transport through fractured 

rock [2], seawater invasion in karstic [3], coastal aquifers [4] and contaminant 

migrates at waste landfill site on fractured porous media [5]. Understanding the solute 

transport can help to control the contaminant diffusion, remediate polluted water and 

provide ways to sustainably use the natural resources [6]. It is well known that 

diffusion of solute particles in free space is Fickian diffusion and satisfies the popular 

Einstein relationship [7], i.e., 2 ( )x t t< > , where 2 ( )x t< >  is the mean squared 

displacement (MSD). The MSD provides a common denominator to classify the 

diffusion processes in heterogeneous porous media [8]. However, many theoretical, 

experimental and field results show that the Einstein relationship is not valid for 

particles diffusion in heterogeneous porous media. The MSD becomes a nonlinear 

function, such as power law form used to describe the anomalous diffusion [9], the 

logarithmic form [10] and the inverse Mittag-Leffler form used to characterize the 

ultraslow diffusion [11], i.e., superslow diffusion [12] and more complicated cases 

with more than one exponent to describe multi-scaling behaviors [13-14].  

To describe such non-Fickian diffusions in complex media, several mathematical 

and physical models were successively proposed from the perspective of non-integral 

derivative order, such as the fractional and Hausdorff derivative diffusion models 

[15-16], the variable order fractional and Hausdorff derivative diffusion models [14, 

17], the distributed fractional derivative diffusion model [18-19] and the structural 
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derivative diffusion model [11, 20]. The fractional and the Hausdorff derivative 

diffusion models describe the anomalous diffusion with mono-scaling behavior by 

connecting the derivative orders with structure changes in the media. The variable 

order fractional and Hausdorff derivative diffusion models, respectively generalized 

the fractional and the Hausdorff derivative diffusion models, can well capture the 

Non-Fickian dynamics with multi-scaling behavior. In both of the models, the 

derivative orders are time and space dependent ones, which reflect the isotropic 

feature of the heterogeneous media. The distributed order fractional derivative 

diffusion model is also a kind of popular models to depict multi-scale non-Fickian 

transport dynamics, and its order is a time or space derivative order independent 

function [19]. The structural derivative diffusion model is proposed to explore the 

physical mechanism of the ultraslow diffusion, which diffuses even more slowly than 

the sub-diffusion [11]. The structural function used in the definition of the structural 

derivative diffusion equation determines the ultraslow dynamics evolution. 

Importantly, the variable order and distributed order models mentioned above can 

describe the multi-scaling behaviors. However, the distributed order Hausdorff 

derivative diffusion model has not been reported, and its physical mechanism and 

ability to capture the multi-scaling behaviors needs to be verified. 

The Hausdorff derivative, i.e., fractal derivative, does not contain convolution and 

is a local one compared with the fractional derivative [15, 21]. The Hausdorff 

derivative is defined based on the Hausdorff fractal metrics in the Hausdorff fractal 

space [22], which has clear geometrical feature. The time derivative order in the 
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Hausdorff derivative diffusion model quantifies the Hausdorff fractal dimension of the 

diffusion trajectory [23]. The fundamental solution of the Hausdorff derivative 

diffusion model is a stretched Gaussian distribution [22]. It should be pointed out that 

the Hausdorff derivative is a special case of the local structural derivative, when the 

structural function is a power law function [11]. In this study, the distributed order 

Hausdorff derivative model is proposed to describe the tracer transport in porous 

media. For a specific function of the order distribution, i.e., weight function, the MSD 

of the solute particles controlled by the distributed order of Hausdorff diffusion model 

is derived in conjunction with the local structural derivative. The corresponding 

structural function has specific relationship with the weight function. The proposed 

model is tested to investigate the solute diffusion in water-filled pore spaces of 

two-dimensional Euclidean and pore-solid prefractal porous media [24]. 

This paper is organized as follows. In Section 2, the methodologies used to derive 

the distributed order time Hausdorff diffusion equation are introduced. In Section 3, 

evolution patterns in the distributed order Hausdorff diffusion equation are detected 

and the distributed-order Hausdorff diffusion model is tested by two simple cases. 

The results are discussed in Section 4. Finally, in Section 5 we draw some 

conclusions. 

 

2. Methodologies 

2.1 Distributed order time fractional diffusion equation 

The time fractional diffusion equation for the propagator u(x,t) [9], i.e., the 
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probability of finding the solute particle at position x at time t, 

2

2

( , ) ( , ) , ( ,0) ( )u x t u x tD u x x
t x

β

β δ∂ ∂
= =

∂ ∂
,              (1) 

where D is the diffusion coefficient, a positive constant, (0,1]β ∈  the time fractional 

derivative order. In Eq. (1), the definition of the fractional derivative in the Caputo 

sense is used [25]. 

0

( , ) 1 ( , )( )
(1 )

tu x t u x td t
t t

β
β

β τ τ
β

−∂ ∂
= −

∂ Γ − ∂∫ .              (2) 

In this scenario, the MSD is a power law function of time 2 ( ) =2x t Dt β< > . This 

model describes the time-dependent diffusion process. 

The distributed order time fractional diffusion equation is constructed based on 

Eqs. (1) and (2) [26]. 

1 2

2
0

( , ) ( , )( ) , ( ,0) ( )u x t u x td p D u x x
t x

β

ββ β δ∂ ∂
= =

∂ ∂∫ ,           (3) 

where the weight function p(β) is non-negative function of the time derivative order, 

and satisfies the following relationship [26] 

1

0

( ) 0p d cβ β = >∫ .                       (4) 

p(β) is considered the probability density of the derivative order when the positive 

constant c is 1. The form of the weight function in Eq. (3) differentiates different 

types of solute transport.  

Here we just show two cases of weight function [27], p(β) = δ(β-β0), 0 < β0 ≤ 1, 

a Dirac delta function, and p(β) = 1, i.e., uniformly distributed order. When p(β) = 

δ(β-β0), 0 < β0 ≤ 1, the MSD is derived as [27] 
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02

0

2( )
(1 )

x t Dt β

β
< >=

Γ +
,                     (5) 

which can depict the Brownian motion when β0 = 1, and when β0

2
1( ) 2 (ln ( ))tx t D t e E tγ< >= + +

 < 1, it is a 

sub-diffusion process. 

When p(β) = 1, the explicit form of the MSD is [27] 

,                   (6) 

where the Euler constant γ = 0.5772, and the exponential integral E1

1( )
t

z

eE z dt
t

−∞
= ∫

(t) is defined as 

.                         (7) 

The asymptotic expressions at small and large times can be easily obtained based on 

the properties of the above exponential integral in Eq. (7), 

2 2 ln(1 / ), 0
( ) ~

2 ln( ),
Dt t t

x t
D t t

→
< >  → ∞

.                    (8) 

It is a slightly super-diffusion at small times, but at lager times it is an ultraslow 

diffusion. Thus, the distributed order time fractional diffusion equation is capable to 

model multi-scale diffusion process by using specific weight function. More details 

can be found in Ref. [27]. 

2.2 Hausdorff derivative and structural derivative diffusion equations 

The basic strategy of the time Hausdorff derivative is not complicated [23]. When 

considered a particle movement under fractal time, its movement distance is 

calculated by 

0( )= ( )s t v t t α− ,                         (9) 

where s denotes the distance, t the current time instance, v the uniform velocity, t0 the 

initial instance, α the fractal dimensionality in time. The Hausdorff integral distance 
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can be derived when the velocity depends on time. 

0
0( )= ( ) ( )

t

t
s t v d t ατ τ −∫ .                     (10) 

Based on Eq. (10), the time Hausdorff derivative is defined as, 

1

1
1

1 0 0 0

( ) ( ) 1lim
( ) ( ) ( )t t

s t s tds ds
dt t t t t t t dtα α α αα −→

−
= =

− − − −
,           (11) 

and when the initial instance t0 

1

1
1

1

( ) ( ) 1lim
t t

s t s tds ds
dt t t t dtα α α αα −→

−
= =

−

= 0, Eq. (11) is reduced to 

.                (12) 

By using the time Hausdorff derivative in Eq. (12), the corresponding diffusion 

equation is constructed, which is an alternative method to describe sub-diffusion 

   2

( , ) ( , ) , ( ,0) ( )u x t u x tD u x x
t xα δ∂ ∂

= =
∂ ∂

             (13) 

where the time Hausdorff derivative order (0,1]α ∈ . The Hausdorff derivative is 

local in time. Eq. (13) can be restated as a traditional diffusion equation by using the 

fractal metric in time t̂ tα= . The solution of Eq. (13) yields a stretched Gaussian 

distribution [15].  

21( , ) exp
44

xu x t
DtDt ααπ

 
= − 

 
.                (14) 

Its MSD is a power law function of time. 

 2 ( ) =2x t Dtα< > .                      (15) 

In more complicated media, the fractal structure cannot well be described by the 

power law fractal metrics. The structural metrics is proposed to generalize the fractal 

metric [28]. In the context of structural metrics, Eqs. (9-10) are respectively extended 

to following forms, 

0( )= ( )s t vk t t− ,                       (16) 
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and 

0
0( )= ( ) ( )

t

t
s t v dk tτ τ −∫ ,                    (17) 

where k is the structural function. The local structural derivative is easily obtained, 

1

1

1 0 0

( ) ( )lim
( ) ( ) ( )t t

s t s tds
d kt k t t k t t→

−
=

− − −
.                 (18) 

The local structural derivative diffusion equation generalizes the Hausdorff 

derivative diffusion equation, which is flexible to classify diffusion processes in 

conjunction with the structural function  

2

2

( , ) ( , )

k

d ux t u x tD
d t x

∂
=

∂
,                     (19) 

where dk ( )k t tα= represents the structural derivative. When , it is the Hausdorff 

derivative with the initial instance t0 

ˆ ( )t k t=

= 0. The solution of Eq. (19) is a rescaled 

Gaussian distribution using the metric transform . 

21( , ) exp
4 ( )4 ( )

xu x t
Dk tDk tπ

 
= − 

 
.                (20) 

When the structural function is an inverse Mittag-Leffler function 1( ) ( )k t E tα
−= ,  0 < 

α ≤ 1, Eq. (20) describes the general ultraslow diffusion. The mean squared 

displacement is derived as 

2 1( ) 2 ( )x t DE tα
−< >= .                    (21) 

It should be pointed out that when α = 1, 1( )E tα
−  degenerates into the logarithmic 

function ln(t), which is correlated with the classical Sinai diffusion [29]. 

2.3 Distributed order time Hausdorff diffusion equation 

Based on the Hausdorff derivative and the distributed order time fractional 

diffusion equation, the distributed order time Hausdorff diffusion equation is 

constructed 
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1 2

2
0

( , ) ( , )( ) , ( ,0) ( )u x t u x td p D u x x
t xαα α δ∂ ∂

= =
∂ ∂∫ ,           (22) 

where (0,1]α ∈
 
is the time Hausdorff derivative order, the weight function p(α) is 

non-negative function of the order,  

1

0

( ) 0p d cα α = >∫ .                       (23) 

The Hausdorff derivative is equivalent with the following form [30]. 

1( , ) ( , )u x t t u x t
t t

α

α α

−∂ ∂
=

∂ ∂
.                    (24) 

Thus, Eq. (22) can be transformed into 

1 1 2

2
0

( , ) ( , )( ) , ( ,0) ( )t u x t u x td p D u x x
t x

α

α α δ
α

− ∂ ∂
= =

∂ ∂∫ .           (25) 

Here we show one case ( )=2p cα α , then Eq. (25) is simplified as 

1 2
1

2
0

( , ) ( , )2 , ( ,0) ( )u x t u x tct d D u x x
t x

α α δ− ∂ ∂
= =

∂ ∂∫ .            (26) 

By using the identity,  

1
1

0

1=
ln( )
tt d

t
α α− −

∫ ,                         (27) 

Eq. (26) is rewritten as 

2

2

( , ) ( , ) , ( ,0) ( )
ln( ) / (2 2 )

u x t u x tD u x x
t ct c t x

δ∂ ∂
= =

− ∂ ∂
.           (28) 

By using the identity,  

ln( ) / ( 1) = dilog( )t t dt t− −∫ ,                  (29) 

and the structural derivative in Eq. (18) with the initial instance t0 

2

2

( , ) ( , ) , ( ,0) ( )
(-di log( ) / 2 )

u x t u x tD u x x
t c x

δ∂ ∂
= =

∂ ∂

= 0, Eq. (28) is 

considered a structural diffusion equation . 

,            (30) 
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where dilog(t) is the dilogarithm function [31], 

 
1

ln( )dilog( )=
1

x tt dt
t−∫ .                       (31) 

The corresponding mean squared displacement is  

2 ( ) - dilog( ) /x t D t c< >= .                    (32) 

In this case, the weight function determines the type of the underlying diffusion 

process. 

 

3. Results 

3.1 The evolution patterns in the distributed-order Hausdorff diffusion equation 

To check the diffusion type of the distributed-order Hausdorff derivative model 

with varying values of c, Fig. 1 shows the mean squared displacements for the 

Fickian diffusion, the sub-diffusion with α = 0.8, the logarithmic ultraslow diffusion 

with the structural function k(t) = ln(t) and the distributed-order Hausdorff derivative 

models with three different cases c = 0.1, 1.0 and 10. It can be observed from Fig. 1 

that with the increasing time, the distributed-order Hausdorff derivative model can 

depict the super-diffusion when c is 10, which diffuses a little faster than the Fickian 

diffusion. When c is 1.0, the corresponding MSD grows faster than the logarithmic 

ultraslow diffusion, but slower than the classical sub-diffusion with power law t0.8. In 

this case, the distributed-order Hausdorff derivative model characterizes the 

decelerating sub-diffusion process. Interestingly, it belongs to an ultraslow diffusion 

when c is 0.1, where the MSD increases much slower than the logarithmic ultraslow 

diffusion. Thus, the distributed-order Hausdorff derivative model is flexible to 
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describe the anomalous diffusion, i.e., both the super- and sub- diffusions, and the 

ultraslow diffusion.  

 

 

Fig. 1. Plots of the mean squared displacement for the Fickian diffusion, the 

sub-diffusion (t0.8

Fig. 2 illustrates the evolution patterns of the propagators for the traditional 

diffusion equation, Hausdorff derivative diffusion equation with α = 0.8, the 

distributed-order Hausdorff derivative diffusion equation with c = 1.0 and the 

structural derivative diffusion equation with the kernel function k(t) = ln(t), where 

D

), the logarithmic ultraslow diffusion (k(t) = ln(t)) and the 

distributed-order Hausdorff derivative models (c = 0.1, 1.0 and 10). 

 

 = 1 and x = 1. As expected, in this case, the propagator of the decelerating 

sub-diffusion controlled by the distributed-order Hausdorff derivative diffusion 
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equation decays more slowly than the sub-diffusion characterized by the time 

Hausdorff derivative diffusion equation, but decreases faster than the ultraslow 

diffusion controlled by the structural diffusion equation. The decay pattern in the 

decelerating sub-diffusion should be between the power law function in the 

sub-diffusion and the logarithmic function in the ultraslow diffusion for larger time. 

The results shown in Fig. 2 are consistent with those given in Fig. 1 in modeling the 

four types of diffusion processes. 

 

 

Fig. 2. The propagators of the traditional, Hausdorff (α = 0.8), distributed-order 

Hausdorff (c = 1.0) and structural diffusion (k(t) = ln(t)) equations from bottom to top 

versus t for D 

The solute diffusions in water-filled pore spaces of two-dimensional Euclidean 

= 1, x = 1. 

3.2 Application cases to valid the distributed-order Hausdorff diffusion model 
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and pore-solid prefractal porous media are investigated. The Euclidean and pore-solid 

prefractal porous media were respectively generated by the random allocation of pore 

cells with a solid initiator and the homogeneous algorithm with a pore-solid initiator 

[24]. The lattice sizes were set at 1000 by 1000 cells. Fig. 3 shows the relationship 

between the porosity φ and the lacunarity L, which is a quantitative measure of the 

spatial distribution of pores within the media. It satisfies a linear law in the Euclidean 

media L ∼ φ, but a power law function in the pore-solid prefractal media L ∼ φ−0.89. 

The pore size distribution in the Euclidean porous media is uniform, and the 

pore-solid prefractal porous media contained both pore and particle cell size 

distributions. Solute diffusions in the above mentioned media was simulated with 100 

particles using a stochastic cellular automaton with the myopic ant algorithm [24]. 

The diffusion time was set at 1000 incremental steps. More details on the simulated 

experiment can be found in [24].  
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Fig. 3. The relationships between the lacunarity and the porosity for the Euclidean 

porous media (L ∼ φ) and the pore-solid prefractal porous media (L ∼ φ−0.89) (based on 

data from [24]). 

 

 

Fig. 4. The mean squared displacements of the tracer transport in the Euclidean and 

pore-solid prefractal porous media are respectively fitted by the distributed-order 

Hausdorff derivative model with c = 1.73 and the Hausdorff derivative model with α 

= 0.57 (based on data from [24]). 

 

Fig. 4 shows the mean squared displacement of the diffusive particles in both of 

the Euclidean and pore-solid prefractal porous media for a given porosity (φ = 0.5). It 

is observed from Fig. 4 that the tracers in the pore-solid prefractal porous media 

diffuse faster than that in the Euclidean porous media, and both of the diffusion 
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processes are not Fickian diffusion. From the viewpoint of geometrical feature, more 

large pores exist in the pore-solid prefractal porous media, and the Euclidean porous 

media has lager pore cluster size. However, the pores in the pore-solid prefractal 

porous media have more significant influence on the inside diffusion process 

compared with the pore cluster size. To differentiate the diffusion processes in both of 

the porous media and explain the corresponding physical mechanism, the distributed 

order Hausdorff derivative model and the Hausdorff derivative model with a constant 

order are used to describe the mean squared displacement, as illustrated in Fig. 4. 

The MSD of the diffusion in the pore-solid prefractal porous media is almost a 

straight line on the double logarithmic axis, and can well be fitted by the Hausdorff 

derivative model with 0.97α = . Thus, the tracer transport is a sub-diffusion in this 

pore-solid prefractal porous media. While it is a curve for the case of the Euclidean 

porous media, where the Hausdorff derivative model with 0.57α =  only applies to 

the diffusion scenario at long time. It indicates that the MSD for the Euclidean porous 

media does not present mono-scaling. It is also noted that the tracers diffusive fast at 

short time, but become much slower at long time, which indicates that the motion is a 

decelerating sub-diffusion in the Euclidean porous media. We can observe from Fig. 4 

that the distributed order Hausdorff derivative model with c = 1.73 is capable to 

capture all the features both at the short and long times. This distributed order 

Hausdorff derivative model generalizes the Hausdorff derive model and provides a 

more flexible tool to detect the tracer transport in porous media. 
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4. Discussion 

   This work provides a distributed order Hausdorff diffusion model to describe the 

tracer transport in porous media. The distribution of derivative order ( )p α  

determines the type of the underlying diffusion process. In this study, the mean 

squared displacement of the tracer particles is derived in conjunction with the 

structural derivative when the order distribution ( )=2p cα α , which can capture both 

accelerating and decelerating anomalous and ultraslow diffusions. The distributed 

order Hausdorff diffusion model is tested and effective to describe the tracer transport 

in water-filled pore spaces of two-dimensional Euclidean. It is demonstrated as a 

decelerating sub-diffusion, and can well be described by the Hausdorff diffusion 

model with a constant time derivative order. It should be pointed out that the tracer 

transport in the pore-solid prefractal porous media has only one scaling exponent, and 

is well fitted by the Hausdorff diffusion model with α = 0.97. Compared with the time 

Hausdorff diffusion model, the distributed order Hausdorff diffusion model is more 

flexible to characterize the non-Fickian diffusion process in porous media. 

 It is noted that both of the distributed order time Hausdorff diffusion model and 

the time Hausdorff diffusion model have one variable parameter, which are 

respectively the parameter c in the time order distribution and the time derivative 

order α. The time derivative order α has clear physical meaning and is correlated with 

the diffusion coefficient of the porous media. The time Hausdorff diffusion model is 

equivalent with a diffusion equation with a nonlinear time dependent diffusion 

coefficient Dαtα-1. In the distributed order time Hausdorff diffusion model, the 



 18 

diffusion coefficient of the time derivative order can also be considered a function of 

the weight function 
1

-1 1

0

/ ( )D p t dαα α α−∫ . For the special case ( )=2p cα α  used in this 

study, the diffusion coefficient is simplified as ln( ) / (2 2 )D t ct c− , and is independent 

with the derivative order. The heterogeneity in the porous media is respectively 

quantified and reflected by the derivative order α in the Hausdorff diffusion model 

and the parameter c in the distributed order Hausdorff diffusion model. The porous 

media we considered here are not real natural materials, thus some more field 

experiments of tracer transport in porous media are necessary to confirm the 

applicability of the model, including the concentration evolution in the porous media. 

 From the perspective of model selection, it is known that several models are 

successively provided to detect the diffusion processes in porous media with 

multi-scaling exponents, such as the distributed order fractional diffusion model, the 

variable orders Hausdorff and fractional diffusion models, and the tempered fractional 

diffusion model [32]. To select a reasonable model from the existing models for a 

specific scenario of tracer transport is an open issue. The physical mechanism and the 

application scope of each model are further needed to be summarized and explored. 

On the other hand, the parameters used to characterize the structure of the porous 

media, such as porosity, lacunarity and tortuosity, affect the solute transport process. 

Thus, the control equation of the tracer transport in the mentioned models should be 

improved by containing the mentioned parameters, and the quantitative relationships 

between the model parameters and the structural features of the porous media should 

be discussed in the further study. 
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5. Conclusions 

This study introduces the distributed order Hausdorff derivative into the diffusion 

equation to detect the physical mechanism in multi-scaling non-Fickian diffusion, 

which is applied to investigate the tracer transport in heterogeneous porous media. 

Based on the foregoing results and discussion, the following conclusions are drawn: 

1. In the distributed order time Hausdorff derivative diffusion model, when the weight 

function of distribution order is a linear function of the time derivative order 

( )=2p cα α , the MSD can be explicitly derived as a dilogarithm function in 

conjunction with the local structural derivative.  

2. The distributed order time Hausdorff derivative diffusion model is equivalent with 

the diffusion equation with a nonlinear time dependent diffusion coefficient, which 

can capture both accelerating and decelerating anomalous and ultraslow diffusions 

by varying the values of parameter c in the weight function. 

3. The tracer transport in water-filled pore spaces of two-dimensional Euclidean 

porous media is demonstrated as a decelerating sub-diffusion, and can well be 

described by the distributed order Hausdorff diffusion model with c = 1.73, while 

the Hausdorff diffusion model with α = 0.97 can fit the sub-diffusion of the tracer 

transport in the pore-solid prefractal porous media. 
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