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Abstract

We present a computational analysis of a 2×2 hyperbolic system of balance laws whose solu-
tions exhibit complex nonlinear behavior. Traveling-wave solutions of the system are shown to
undergo a series of bifurcations as a parameter in the model is varied. Linear and nonlinear sta-
bility properties of the traveling waves are computed numerically using accurate shock-fitting
methods. The model may be considered as a minimal hyperbolic system with chaotic solutions
and can also serve as a stringent numerical test problem for systems of hyperbolic balance laws.
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1. Introduction

We investigate a particular hyperbolic system of balance laws in one space dimension:

ut +
(

f (u,λ)
)

x = 0, (1)

λt = ω (u,λ) , t > 0, x ∈R, (2)

where u and λ are the unknown functions, f and ω are given flux and rate function, respec-
tively, and subscripts t and x denote partial derivatives in time and space, respectively. We
demonstrate numerically that the system possesses nontrivial dynamical properties. In partic-
ular, we show that its traveling-wave solutions can become unstable as a system parameter is
varied, and that the instability manifests itself as an Andronov–Hopf bifurcation leading to a
limit-cycle attractor. Further increase of the parameter results in a cascade of period-doubling
bifurcations and the onset of apparently chaotic dynamics.

Much analysis of systems of the type (1-2) is due to Fickett [13, 14, 16, 15], who was the first
to introduce it as an analog (or a toy model) of the reactive Euler equations of gas dynamics with
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the purpose of modeling the dynamics of detonations. A similar model which also included dif-
fusive effects was proposed independently by Majda [32]. The Majda model has received much
attention in the mathematics literature [49, 31, 21, 22, 30] as a prototype to study existence and
stability of traveling waves. It must be pointed out that in the analyses of the Majda model only
stable traveling waves have been found so far, to the best of our knowledge. In contrast, the
model studied in the present work predicts instabilities, as pointed out originally in [11].

The Fickett model [13] has subsequently motivated various extensions and modifications
[34, 43, 25, 10, 12, 9]. The principal aim of all of these works is to identify a minimal model that
is capable of reproducing the rich set of dynamical properties of the full system of the reactive
Euler equations. It is hoped that doing so might help in revealing the key mechanisms of the
observed complex dynamics of the full system. As the recent publications mentioned above
have demonstrated, the Fickett model indeed successfully reproduces most of the features of
the full system. These results have also motivated the development of an asymptotic theory of
gaseous detonations in [11] in which a reduced model is derived that is found to be very similar
to the Fickett ad hoc model (1-2), however with a difference in the second equation – instead
of λt , the asymptotic model has λx (see also the earlier related work [36, 37, 6]). It was stated
in [11] that in either case, the system possesses instabilities as long as the rate function ω is
chosen that has the right properties. Further analysis of the system with λt was not pursued
by the authors of [11]. Here, we carry out a complete numerical investigation of such a system
using the particular rate function ω from the asymptotic model of [11] as an example.

We also propose that (1-2) can serve as a numerical benchmark problem for systems of hy-
perbolic balance laws. Despite its simplicity, the system exhibits rather complex and sensitive
dynamics of solutions. As such, it can be used as a stringent test problem for numerical algo-
rithms that are to accurately reproduce stability properties in problems with complex dynam-
ical features. As examples of such problems we mention detonations, shallow water flows over
topographies, shock waves in the presence of body forces (e.g., gravitational or electromag-
netic fields). A good numerical method must correctly reproduce neutral stability boundaries
and development of instability as the boundary is crossed. For such problems, our model and
the results reported here can be used as a relatively simple benchmark case.

The remainder of the paper is structured as follows. The model system and its main math-
ematical properties are introduced in Section 2. The traveling-wave solutions of the model
are found in Section 3. The numerical algorithms used to calculate both linear and nonlin-
ear dynamics of the system require the so-called shock-evolution equation, which is derived in
Section 4. The linear stability of traveling waves and nonlinear dynamics are presented in Sec-
tions 5 and 6, respectively, while code verification results are given in Section 7. Conclusions
are presented in Section 8.

2. The model system

In the original paper [13], Fickett proposed a simple ad hoc system of hyperbolic equations
to qualitatively model the dynamics of detonation waves. To remind the reader, a detonation is
a self-sustained shock wave propagating in a reactive medium such that the shock compression
and heating triggers exothermic chemical reactions, and the thermal energy released in these
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reactions serves to support the motion of the shock [17]. Usually, detonations are modeled by
the reactive Euler equations of gas dynamics which consist of conservation laws of mass, mo-
mentum and energy, and at least one equation that describes chemical heat release. Thus, in
one spatial dimension, this is a hyperbolic system of at least four quasilinear equations. Anal-
ysis of detonations by means of the reactive Euler equations has received much attention and
continues actively at present. See, for example, recent reviews [1, 2, 42, 7, 49, 5]. One of the
key properties of gaseous detonations is their manifestly time-dependent and spatially com-
plex dynamics. Thus arises the problem of understanding the physical mechanisms of such
behavior and of the mathematical properties of the governing equations that are responsible
for the observed complex dynamics.

Fickett’s model system can be written as follows:

ut + 1

2

(
u2 +qλ

)
x = 0, (3)

λt =ω (u,λ) . (4)

Here, the first equation is to play the role of the combined momentum–energy equation while
the second is the rate equation for the chemical energy release, q is the heat release parameter.
The first equation of the model is a conservation law with a flux function f (u,λ) in which the
second variable λ satisfies the ordinary differential equation (ODE) (4). The variable λ mea-
sures the reaction progress, varying from λ = 0 in the unburnt (ambient) state ahead of the
shock to λ= 1 in the burnt state far downstream of the shock.

We assume that the shock moves from left to right in the positive x direction. Thus, if
x = xs (t ) denotes the shock position at time t , the upstream unburnt state is at x > xs (t ), the
reaction zone is at x < xs (t ), and the burnt state is reached asymptotically at x →−∞.

We choose the reaction rate following [11] as

ω(u,λ) =
{

k(1−λ)exp
(
θ

(p
qu +qλ

))
, x < xs (t ) ,

0, x > xs (t ) ,
(5)

where k is the rate constant, θ is the activation energy, and q is the same heat release parameter
as in (3). This form of the rate function was derived from the reactive Euler equations in a
particular asymptotic limit of weakly nonlinear waves in [11]. It must be emphasized however
that our use of the function is outside the asymptotic theory and must be considered only as a
particular case of Fickett’s analog system.

In vector form, system (3–4) can be written as

zt +
(

f (z)
)

x = s (z) , (6)

where

z =
[

u
λ

]
, f =

[ 1
2 u2 +σλ
0

]
, s =

[
0
ω

]
,
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and σ= q/2 will also be used along with q . The Jacobian of f ,

A =
[

u σ

0 0

]
, (7)

has eigenvalues µ1 = u and µ2 = 0 with corresponding right eigenvectors r1 = [1,0]T and r2 =
[1,−u/σ]T. Clearly, the second characteristic field is linearly degenerate while the first is gen-
uinely nonlinear as ∇µ1 · r1 = 1 6= 0.

In nonconservative form, the system (3–4) becomes

ut +uux +σλx = 0, (8)

λt =ω, (9)

from which the characteristic form of the system readily follows by adding (9) multiplied by σ
to (8) multiplied by u ((9) is already in the characteristic form):

ṗ =σω on ẋ = u, (10)

λ̇=ω on ẋ = 0, (11)

where p = u2/2+σλ, and the dots are used here and from now on to denote total time deriva-
tives, e. g., ṗ = d p/d t .

For the numerical solution of (3–4), it is advantageous to move to a reference frame attached
to the lead shock by using new coordinates ξ= x −xs (t ) and τ= t . In this new reference frame,
the shock is always at the same position, ξ = 0, which serves as the right-end boundary of the
reaction zone. Because no finite-differencing is made across the shock, the usual numerical
shock smearing is removed in this formulation, which is its key advantage. Reusing the notation
x and t in place of ξ and τ and denoting the shock velocity as D = ẋs, the governing equations
in the shock-attached frame become:

ut + 1

2

(
(u −2D)u +qλ

)
x = 0, (12)

λt −Dλx =ω. (13)

Equations (12–13) must be supplemented with the Rankine–Hugoniot conditions for u and
λ at the shock (see e.g., [28]). We denote the state variables right ahead of the shock (at position
x+

s ) by subscript “a” (for “ambient”), and the state variables right behind the shock (at position
x−

s ) by subscript “s” (for “shock”). We also assume for simplicity that the ambient (upstream)
conditions ahead of the shock are ua = 0 and λa = 0. The Rankine–Hugoniot condition for λ is
[λ] = 0, where brackets denote the jump across the shock ([z] = z+−z−), because no reaction is
assumed to take place inside the shock. As a result, we obtain

λs = 0. (14)

The jump in u in (12) satisfies
[(u −2D)u]+q [λ] = 0, (15)

which yields
us = 2D. (16)
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3. The traveling shock-wave solution

Next, we calculate the traveling-wave solutions of (12–13) (called ZND solutions after Zel’dovich
[48], von Neumann [47], Döring [8]). Substituting u = ū

(
x − D̄t

)
, λ= λ̄(

x − D̄t
)

into the system,
with overbar denoting the steady state and D̄ = const, we obtain

d

d x

(
ū2

2
− D̄ū + q

2
λ̄

)
= 0, (17)

d λ̄

d x
=− ω̄

D̄
. (18)

From (17), we find the algebraic relation

ū2 −2D̄ū +qλ̄= const = ū2
s −2D̄ūs +qλ̄s = 0 (with ūs = 2D̄).

The root of this equation satisfying condition (16) is

ū = D̄ +
√

D̄2 −qλ̄. (19)

Then, the spatial structure of the traveling-wave solution is found by substituting (19) into (18)
and integrating the resultant ODE

d λ̄

d x
=−ω̄

(
ū

(
λ̄
)

, λ̄
)

D̄
, (20)

from x = 0 to x < 0 using λ̄ (0) = 0.
Importantly, so far D̄ remains unknown. As in the classical detonation theory [17], the

steady detonation velocity is found using a special condition at a sonic point, where the flow
speed relative to the shock becomes equal to the local sound speed. Equivalently, this sonic
condition follows from the requirement that the solution remains regular everywhere in the
post-shock region. For our particular case, this means that ū (x) must remain sufficiently smooth
everywhere at x < 0. From (19) and (20), we find that

dū

d x
= 1

2

−q√
D̄2 −qλ̄

d λ̄

d x
= 1

2

qω̄

D̄
√

D̄2 −qλ̄
. (21)

Therefore, this derivative can blow up if D̄2 −qλ̄= 0 at any point where ω̄ 6= 0. With our choice
of the reaction rate, ω̄ vanishes only at λ̄ = 1. Hence, to avoid any singularity in ū, we require
that D̄2 − qλ̄ = 0 whenever λ̄ = 1. This condition yields a unique value for the traveling-wave
speed (called the Chapman–Jouguet, or CJ speed in detonation theory [17]),

D̄ =p
q . (22)

The pre-exponential factor, k, in (5) is a property of chemical reactions, related to the fre-
quency of molecular collisions. It is customary in detonation theory to eliminate this param-
eter by rescaling the spatial coordinate such that a characteristic length scale is the so-called
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Figure 1: ZND profiles for q = 4: a) velocity ū, b) reaction progress variable λ̄, as θ is varied: θ = 0.5 (solid line),
θ = 1 (dashed line), θ = 2 (dashed-dotted line), θ = 5 (dotted line). With increase of θ ZND profiles become steeper
and approach “square-wave” structure, in which reaction effectively occurs in a narrow region near the lead shock
at x = 0.

half-reaction length of the steady reaction zone, that is, the distance between the shock and the
point where half of the chemical energy is released, i. e., λ̄ = 1/2. Then, we find from (20) that
with

k =
ˆ 1/2

0

D̄(
1− λ̄)

exp
(
θ

(p
qū +qλ̄

)) d λ̄, (23)

x =−1 where λ̄= 1/2.
Figure 1 shows computed spatial profiles of ū and λ̄ at q = 4 and varying activation energy

θ ∈ {0.5,1,2,5}. The plot demonstrates that as the value of the activation energy increases, the
profile of λ̄ develops a steeper slope near x =−1, implying an increased stiffness of the problem
at large θ.

4. Shock-evolution equation

The detonation speed, D , which is generally unknown for time-dependent solutions, ap-
pears explicitly in (12-13) in the shock-attached frame. Therefore, a method is needed to com-
pute D when solving the system numerically. As in the related previous work [20, 26, 44], in
this subsection, we derive a shock-evolution equation (also called the “shock-change equa-
tion” [4, 15]) that is used subsequently to determine D as part of the numerical algorithms that
follow.

The evolution equation is derived by computing the rate of change of u on the shock path
by two different means. On the one hand, using the laboratory-frame equations (3-4), we find
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that
u̇|s = (ut +Dux) |s, (24)

and eliminating ut from here using (3), it follows that

u̇|s = ((D −u)ux −σλx) |s. (25)

On the other hand, u̇|s = dus/d t = 2Ḋ by the Rankine–Hugoniot condition (16), and therefore
we find that the shock acceleration is given by

Ḋ = 1

2

(
(D −u)ux + σ

D
ω

)∣∣∣
s

. (26)

Here, we used the fact that no chemical reaction occurs in the shock, i.e., λs = 0 at all times, and
therefore 0 = λ̇|s = (λt +Dλx) |s = (ω+Dλx) |s, and hence

λx |s =−ωs/D. (27)

Using (26), the detonation velocity, D (t ), can be evolved in time provided the right-hand
side quantities are known. Among these quantities, all are known exactly in terms of D through
the Rankine–Hugoniot conditions, with the exception of ux |s. The latter is approximated using
one-sided finite differences for solutions with smooth profiles of u near the shock. When the
solution loses smoothness due to secondary shocks that can arise behind the lead shock and
can catch up with it, ux |s blows up and hence (26) cannot be applied. The detonation velocity
should be computed differently in that case, which we explain in Subsection 6.3.

5. Linear stability analysis

The first step in analyzing the dynamics of traveling-wave solutions of (12-13) is to under-
stand their linear stability. In this section, we investigate the linear stability properties of the
model employing the algorithm developed in [24] as well as the traditional method of normal
modes. The neutral stability boundary in the plane of parameters q and θ is determined. Note
that q and θ are the only free parameters of the problem and therefore the neutral boundary
provides a complete stability diagram.

5.1. Algorithm for linear stability computations

Let z = (u,λ)T denote the vector of state variables. Then, expanding z and D about their
steady-state values, z = z̄(x)+z ′(x, t ), D = D̄+ψ′(t ), with primes denoting small perturbations,
we arrive at the linearized equations

z ′
t =−A(z̄)z ′

x −B (z̄)z ′+ d z̄

d x
ψ′, (28)

where

A =
[

ū − D̄ σ

0 −D̄

]
, B =

[ dū
d x 0

−ω̄u −ω̄λ

]
,
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in which the steady quantities are known with the partial derivatives of ω̄ being ω̄u = θ
p

qω̄,
ω̄λ = k exp

(
θ

(p
qū +qλ̄

)) (
θq(1− λ̄)−1

)
, and the perturbations u′, λ′, and ψ′ are to be found.

Linearization of the Rankine–Hugoniot conditions (14–16) gives

λ′
s = 0, u′

s = 2ψ′, (29)

and linearization of the shock-evolution equation (26) gives

dψ′

d t
= 1

2

[
qk exp(2θ

p
qD̄)(θ

p
qD̄ −1)

D̄2
ψ′− D̄u′

x |s
]

. (30)

As mentioned earlier, the shock-evolution equation contains the unknown perturbation gra-
dient, u′

x |s, which must be approximated numerically using the known values of u′ near the
shock.

We now explain the algorithm that is used to integrate the linearized system [24]. Computa-
tions start with the evaluation of the following parameters: the value of self-sustained detona-
tion velocity, D̄ , value of the pre-exponential factor, k, and the numerical reaction-zone length,
L , which is found by integrating (20) up to λ̄= λ̄∗:

L
(
λ̄∗)= dI e with I =

ˆ λ̄∗

0

D̄

ω̄
(
ū, λ̄

) d λ̄, (31)

where d·e is the ceiling function, ū = ū
(
λ̄
)

and ω̄
(
ū, λ̄

)
are given by (19) and (5), and λ̄∗ =

1−τλ with τλ being a prescribed tolerance measuring the deviation of λ̄∗ from the chemical-
equilibrium value λ̄= 1 to avoid the divergence of I (to remind, ω̄∼ 1−λ̄, which leads to a loga-
rithmic divergence of the integral as λ̄∗ → 1). For the following computations, we use τλ = 10−6.

The computational domain is partitioned using a uniform grid of size N with the grid size
∆x = 1/N1/2, where N1/2 is the resolution per half-reaction zone (recall that by (23), the half-
reaction zone is unity), such that N = N1/2L . Figure 2a shows the schematics of the computa-
tional domain and the grid organization for the linear solver while Figure 2b shows the grid for
the nonlinear solver, which is described in Subsection 6.1.

Once the grid partitioning is completed, the steady-state solution profiles are found by
solving an initial-value problem for the ODE (20) with initial conditions at the shock given by
the Rankine–Hugoniot conditions. We use the VODE solver [3] from scipy.integrate pack-
age [23] with a BDF (backward differencing formula) method of fifth order and relative and
absolute tolerances set to 10−15. After the integration, all other steady-state quantities (ū, ω̄,
ω̄u , ω̄λ, dū/d x, and d λ̄/d x) are computed.

Then, the linearized system is integrated by the method of lines:

d z ′

d t
= L̂(z̄ , z ′), for i = 0, N −1, (32)

dψ′

d t
= ŝ

(
z̄ , z ′) , (33)
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Figure 2: The sketches of the numerical grids for: a) linear solver; b) nonlinear solver (see Section 6). The sketched
profile is u as in a traveling-wave solution.

where L̂(z̄ , z ′) and ŝ(z̄ , z ′) are the finite-difference analogs of the right-hand sides of (28) and
(30) in which spatial derivatives z ′

x are approximated using finite-difference formulas given
next.

At points i = 0, . . . , N −3, we compute left- and right-biased approximations of z ′
x using the

fifth-order upwind method:

z ′−
x

∣∣
x=xi

= −2z ′
i−3 +15z ′

i−2 −60z ′
i−1 +20z ′

i +30z ′
i+1 −3z ′

i+2

60∆x
+O

(
∆x5) , (34)

z ′+
x

∣∣
x=xi

= 3z ′
i−2 −30z ′

i−1 −20z ′
i +60z ′

i+1 −15z ′
i+2 +2z ′

i+3

60∆x
+O

(
∆x5) , (35)

To avoid the approximation of the spatial derivatives across the shock, at points i = {N −
2, N −1, N } we use biased stencils for finite-difference approximations [20]:

z ′
x

∣∣
x=xN−2

= −2z ′
N−5 +15z ′

N−4 −60z ′
N−3 +20z ′

N−2 +30z ′
N−1 −3z ′

N

60∆x
+O

(
∆x5) , (36)

z ′
x |x=xN−1 =

−z ′
N−4 +6z ′

N−3 −18z ′
N−2 +10z ′

N−1 +3z ′
N

12∆x
+O

(
∆x4) , (37)

u′
x |N = −12u′

N−5 +75u′
N−4 −200u′

N−3 +300u′
N−2 −300u′

N−1 +137u′
N

60∆x
+O

(
∆x5) . (38)

Note that at x = xN , only an approximation of u′
x is needed. Once the spatial derivatives are

approximated, the right-hand sides in (32–33) are computed using the Lax–Friedrichs flux:

L̂(z̄ , z ′
x) = L

(
z̄ ,

z ′+
x + z ′−

x

2

)
−αz ′+

x − z ′−
x

2
. (39)

After evaluation of the right-hand sides, the system is integrated in time using the adaptive
Runge–Kutta method of order 5(4) due to Dormand and Prince [19]. During the integration,
we record the evolution of the perturbation of detonation velocity,ψ′, by sampling the solution
with constant time step, ∆t = 0.005.
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Initial conditions are computed by specifying the initial amplitude of the perturbation, A0,
using formulas

u′
0(x) = 2A0

ū(x)

ūs
, λ′

0(x) = A0λ̄(x), ψ′
0 = A0, (40)

such that the perturbation is a small multiple of the steady-state solution. Usually, we use A0 =
10−10 in the following computations.

Boundary conditions must be specified for u′ and λ′. At the upstream boundary, the follow-
ing Dirichlet conditions are used

u′
N = 2ψ′, λ′

N = 0, (41)

which are simply the Rankine–Hugoniot conditions (29).
At the downstream boundary, the zeroth-order extrapolation is used

u′
i = u′

0, λ′
i =λ′

0 for i = {−3,−2,−1}. (42)

Strictly speaking, such an extrapolation results in some reflections from the boundary. How-
ever, the forward-going characteristics that transfer information from this boundary to the
shock are almost vertical, and therefore, do not affect the shock evolution over the times of
integration [26].

The computed solutions are analyzed using a postprocessing algorithm based on the Dy-
namic Mode Decomposition (DMD) [40]. In this algorithm, the time snapshots of the system
state, xi ∈Rm , i = 1, . . . ,n, are stacked into matrices

X = [x0, x1, . . . , xn−1], Y = [x1, x2, . . . , xn],

and we search for a linear mapping A ∈ Rm×m such that Y = AX . Formally, A = Y X †, where †
denotes the Moore-Penrose pseudoinverse. However, we are not interested in the mapping A
per se, but in its most significant eigenvalues which determine the dynamics of the observed
system. The algorithm consists of the following steps:

1. Compute the reduced singular value decomposition [45] of X : X =UΣV T, where U and
V are matrices with orthonormal columns and Σ= diag(σ1, . . . ,σmin(m,n)).

2. Find Ur , Σr , and Vr by truncating U , Σ, and V to some reasonably small rank r . The
algorithm of determining the rank r is described below.

3. Define an additional matrix Ã =U T
r AUr =U T

r Y VrΣ
−1
r , where Ã ∈Rr×r .

4. Compute the eigenvalues and the eigenvectors of Ã: ÃW =WΛ, whereΛ= diag(λ1, . . . ,λr ),
and W ∈Rr×r is the matrix whose columns are the eigenvectors of Ã.

5. The eigenvalues of Ã are also the eigenvalues of A. The corresponding eigenvectors of A
are found fromΦ= Y VrΣ

−1
r WΛ−1 [46].

The pairs
(
λi ,φi

)
, whereφi is the i -th column ofΦ, constitute the DMD modes. The eigenvalue

λi with |ℜ (λi ) | ≤ 1 implies stability of the i -th mode. We convert these eigenvalues to the
continuous-time eigenvalues αi :

αi = logλi

∆t
, i = 1, . . . ,r, (43)
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where ℜ (αi ) ≤ 0 implies stability of the i -th mode.
Instead of constructing matrices X and Y using m-dimensional system state, we construct

a Hankel matrix Z ∈ RL×(n−L+1) from the one-dimensional time series of the perturbation of
detonation velocity ψ′ with L = 1000. Then X and Y are constructed from Z by excluding the
last and first columns of Z , respectively.

Now we explain the algorithm for determining the rank r . First, we find the largest possible
rank R from the condition σR+1/σ1 < 10−10. Second, we construct the list of the possible ranks
by considering all i = 1, . . . ,R, and if for some i it follows that σi+1/σi ≤ 0.95, then i is added to
the list. The rationale for this is that the sufficient gap between σi and σi+1 signals that they do
not correspond to the conjugate pair of eigenvalues and hence i is a possible rank. Once the
list of the possible ranks is constructed, for each rank in the list we compute the dynamic mode
decomposition by the algorithm described above and then compute the corresponding fit and
residual errors:

efit =
‖ψ̂′−ψ′‖2

‖ψ′‖2
, eresid = ‖Y −ΦΛΦ†X ‖2, (44)

where ψ̂′ is the DMD reconstruction ofψ′. Then we find the decompositions DMD1 and DMD2

with the smallest fit errors efit,1 and efit,2. If 0.5 ≤ efit,1/efit,2 ≤ 1, then the corresponding residual
errors eresid,1 and eresid,2 are also considered. If eresid,1 < eresid,2, then the best decomposition is
DMD1, otherwise – DMD2. Once the best DMD is determined, we sort the DMD eigenvalues by
imaginary and real parts, removing the eigenvalues that have the negative imaginary parts or
the real parts less than −1 (the latter are considered too stable). Stable eigenvaluesαi with −1 ≤
ℜαi ≤ 0 are preserved, which is required for the algorithm of the construction of the neutral
stability curve in Subsection 5.2.4.

5.2. Results of the linear stability computations

5.2.1. Time series of detonation velocity and perturbation profiles
Figure 3 shows the computed time series of the perturbation of detonation velocity, ψ′,

for stable and unstable solutions for q = 4 with θ = 0.92 and θ = 0.95. In Figure 3a, a stable
case is shown in which initial perturbation of the detonation velocity decays, and at long times
D → DCJ. In contrast, Figure 3b shows the unstable case, in which the detonation velocity oscil-
lates around the CJ value with a growing amplitude of the oscillations. Thus, Figure 3 indicates
that an Andronov-Hopf bifurcation occurs in the system. Figure 4 shows the corresponding
perturbation profiles of u′ and λ′ that are sampled at time t = 50. They illustrate the typical
behavior of eigenfunctions, whose dynamics are concentrated in the near-shock region.

5.2.2. Comparison with normal-mode analysis
To check the validity of our computations, we also investigate the system via the normal-

mode analysis [27]. The governing equations are linearized about the ZND solution and normal-
mode expansions are assumed for the unknowns, z(x, t ) = z̄ (x)+ εz ′(x)exp(αt ), D(t ) = D̄ +
εψ(t ), where |ε| ¿ 1, ψ(t ) = exp(αt ) is proportional to the perturbation of the unsteady shock
relative to its steady-state position, x(t ) = D̄t , and α is the complex growth rate which is the
eigenvalue of the problem. A boundary-value problem is then posed for z ′(x) with the Rank-
ine–Hugoniot conditions on the right boundary (on the shock) and a boundedness condition
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Figure 3: Time series of the perturbation of detonation velocity ψ′ for q = 4: a) stable solution with θ = 0.92; b)
unstable solution with θ = 0.95.

Figure 4: Perturbation profiles for q = 4 recorded at time t = 50: a-b) perturbations of velocity u′, c-d) perturba-
tions of reaction progress variable λ′. Subfigures a) and c) are for θ = 0.92 and subfigures b) and d) are for θ = 0.95.
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on the left boundary (at the chemical equilibrium). Substitution of the normal-mode expan-
sions into the governing equations leads to a linearized system for perturbations z ′:

αz ′+ A(z̄)
d z ′

d x
+C (z̄) z ′−αb = 0,

where

A(z̄) =
[

ū − D̄ σ

0 −D̄

]
, C (z̄) =

[ dū
d x 0

−ω̄u −ω̄λ

]
, b =

[
dū
d x
d λ̄
d x

]
with α ∈ C, z ′(x, t ) ∈ C2. We reformulate the problem in terms of the steady-state reaction
progress variable λ̄ instead of x using (18) and arrive at the system

d z ′

d λ̄
=−D̄

ω̄
A−1 [− (αI +C ) z ′+αb

]
(45)

which is subject to the linearized Rankine–Hugoniot conditions at λ̄= 0,

u′ = 2α, λ′ = 0. (46)

The boundedness condition at x →−∞ is required which expresses the fact that eigenfunc-
tions of the problem must remain bounded at the end of the reaction zone. In [41], a strategy
is explained for the derivation of the boundedness condition through the linearization of the
forward characteristic equation. Application of this strategy to our model yields

H(α) =α(
ūu′+σλ′)−σω̄λλ′ = 0, (47)

where H denotes the boundedness function. Thus the problem is reduced to the boundary-
value problem (45–47) which has a bounded solution only for particular values ofα, to be deter-
mined. The strategy of solving the problem is based on the shooting method. Namely, (45–46)
is solved starting at the shock and integrating toward the end of the reaction zone, where condi-
tion (47) must be satisfied. Solving multiple initial-value problems for a range ofα allows to plot
a “carpet” of log(1+ |H |), in which local minima can be identified that correspond to approx-
imate locations of α that satisfy the boundary-value problem (45–47). Figure 5 shows such a
plot for q = 4, θ = 0.95 for the range αre ∈ {0,0.001,0.002, . . . ,0.05}, αim ∈ {0,0.01,0.02, . . . ,1] with
the only local minimum found, which is indicated by a red dot with coordinates (0.029,0.87).

Subsequently, using the approximated value ofα as an initial guess, we employ a root solver
to accurately compute α that satisfies (47). For this, fsolve routine of scipy package is used [23].
The results are shown in Table 1 along with the results found with the method described in
Subsection 5.1. Excellent agreement between the two approaches is seen, as growth rates αre

and frequencies αim match to four and six significant digits, respectively.

5.2.3. Migration of the linear spectrum as activation energy is varied
Figure 6 shows how the linear spectrum changes as the activation energy, θ, increases in the

range [0.90;1.15] with step∆θ = 0.001. Only one mode in the spectrum is found. Its growth rate
increases from −0.081 to 0.493 almost linearly with θ and a bifurcation to instability occurs at
θcrit = 0.937±0.001. The frequency of the mode exhibits slightly more complicated behavior:
it initially increases from 0.864 at θ = 0.90, reaches the maximum value 0.870 at θ = 0.95, then
decreases to 0.738 at θ = 1.15.
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Figure 5: The carpet plot of log(1 + |H |), where H is the boundedness function (47) for q = 4, θ = 0.95. Dot
(0.029,0.87) denotes an approximate local minimum of log(1+|H |).

Approach αre αim

Linear unsteady analysis 0.02909342 0.87041209
Normal-mode analysis 0.02909286 0.87041272

Table 1: Comparison of the growth rates αre and frequencies αim of perturbations obtained via linear unsteady
computations and normal-mode computations for q = 4, θ = 0.95.

Figure 6: Migration of the linear spectrum for q = 4 as activation energy θ is varied: a) growth rate, b) frequency.
Each curve consists of 251 points. Only one mode in the spectrum was found.
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Figure 7: Neutral stability for the Fickett model: a) neutral stability curve in (θ, q) plane; b) frequency of oscillation
αim along the neutral stability curve. Each curve consists of 256 uniformly spaced points for q ∈ [0.81;16].

Table 2: Critical values of activation energy θcrit and the frequency of oscillationαim on the neutral stability bound-
ary for several values of heat release q .

i q θcrit αim

1 0.81 4.625 0.391
2 1.00 3.746 0.435
3 2.00 1.873 0.615
4 4.00 0.937 0.870
5 9.00 0.417 1.305
6 16.00 0.234 1.740

5.2.4. Neutral stability

Now we turn our attention to the determination of the neutral stability boundary for a wide
range of parameters θ and q , that is, the curve in a

(
θ, q

)
plane that separates stable steady-state

solutions from unstable ones. The boundary is determined numerically. For this purpose, we
generate 256 linearly spaced values of q in the range [0.81,16] (corresponds to D̄ in the range
[0.9,4]) and for each q , we find the critical value of θ such that the growth rate of instability
is close to zero with a tolerance 10−3. Finding θcrit is based on the idea of bisection where a
range of θ is recursively divided in subranges unless the above condition on the growth rate is
satisfied. Initial interval of search for θ is taken [0.2;5]. Grid resolution used here is N1/2 = 40.

Figure 7 shows the computed neutral stability curve in the
(
θ, q

)
plane and the frequency

of oscillation αim along the curve. The data demonstrate that when q increases, θcrit decreases
while αim increases. For the lowest q considered here (q = 0.81), θcrit = 4.625 and αim = 0.391,
and for the largest q (q = 16), θcrit ≈ 0.234 and αim = 1.74.

We also provide information about the critical values of activation energy θcrit and the fre-
quency of oscillation αim on the neutral stability boundary for several values of q in Table 2. It
is interesting to note that the (θ, q) neutral curve is nearly a hyperbola, qθ ≈ 3.75.
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6. Nonlinear dynamics

6.1. Description of the numerical algorithm

Having studied the linear stability properties of the traveling-wave solution and having
identified the transition to instability when θq is large enough (larger than approximately 3.75),
we now turn attention to the question of the nonlinear dynamics of solutions as we move away
from the neutral curve into the unstable domain. To solve the nonlinear system numerically, we
use a second-order MUSCL scheme with the minmod flux limiter [29], which we describe below
along with the algorithm for the solution of the Riemann problem required for this method.

The MUSCL scheme is a conservative Godunov-type method for a hyperbolic system:

zt + f (z)x = s(z) (48)

with z ∈Rn being the vector of unknowns, f :Rn →Rn the flux function, and s the source term.
Partitioning a computational domain into cells [xi−1/2, xi+1/2] (the sketch of the grid is shown
in Figure 2b) we obtain a semi-discretized scheme:

d z̄i

d t
=−∆t

∆x

(
fi+1/2 − fi−1/2

)+ s(z̄i ), (49)

where z̄i is the average value of z for the computational cell centered at xi , and the fluxes at the
cell boundaries fi+1/2 are approximated by reconstructing zi+1/2. The reconstruction is done
through the solution of the Riemann problem with initial conditions

zi+1/2 =
{

zL x < xi+1/2,

zR, x > xi+1/2,
(50)

where zL and zR are given immediately on the left and the right of xi+1/2, respectively. For
a second-order scheme, they are found by assuming linear distribution of zi (x) in the cell
[xi−1/2; xi+1/2]:

zi (x) = z̄i +σi (x −xi ), (51)

where σi is the slope of the linear reconstruction, therefore,

zL = z̄i +σi
∆x

2
, (52)

zR = z̄i+1 −σi+1
∆x

2
. (53)

For the second-order MUSCL schemes, σi = σi (z̄i − z̄i−1, z̄i+1 − z̄i ). We compute σi using the
minmod flux limiter [29] given componentwise as:

σi (a,b) =


min(a,b)/∆x, if a > 0,b > 0,

max(a,b)/∆x, if a < 0,b < 0,

0, if ab < 0.

(54)
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For the model under consideration, solution zi+1/2 of the Riemann problem corresponds
to the state (ui+1/2,λi+1/2)T, which is found by the analysis of the waves that can occur in the
Riemann problem and is given in the next subsection. This solution propagates along the line
(xi+1/2, t )T in the (x, t ) plane. As each Riemann problem assumes xi+1/2 = 0 in a local reference
frame, the solution is time-independent.

Once all the local Riemann problems are solved over the whole grid, fluxes fi+1/2 at the
edges xi+1/2 can be computed. On the left part of the domain, we introduce a ghost point
with extrapolation u−1 = u0 such that the left-most flux f−1/2 can be computed. On the right
boundary the flux fN+1/2 is computed by means of the Rankine–Hugoniot conditions uN+1/2 =
2D , λN+1/2 = 0, which leads to the fluxes fN+1/2 = 0 both for u and λ for the chosen ambient
conditions.

The time integrator is an adaptive-step Runge–Kutta integrator DOPRI5 [19] as used for the
linear unsteady simulations above. It may appear that strong-stability-preserving Runge–Kutta
integrators [18] are more appropriate for the problem at hand as we expect internal shocks
to be generated inside the reaction zone. However, for the reactive flow, error estimation and
consequently adaptive choice of a time step are crucial components of a time integrator. One
cannot rely on the Courant–Friedrichs–Lewy condition [29] in the computations of the time
step due to chemical reactions occurring at much smaller time scales than wave propagation.
The presence of the adaptive-step DOPRI5 integrator in the numerical environment that we use
(scipy library of the scientific Python stack [23]) determined our choice of the time integrator.
Relative and absolute tolerances of the DOPRI5 integrator are set to 10−8 and 10−6, respectively,
for the nonlinear simulations.

6.2. The Riemann problem
Below we provide the solution of the Riemann problem for the model system. To analyze

possible wave configurations, we write the (nonreactive) system in the characteristic form:

ṗ = 0 on ẋ = u −D, (55)

λ̇= 0 on ẋ =−D, (56)

and from the characteristic equations themselves we can see that the first wave is nonlinear as
the characteristic speed depends on u (and correspondingly on λ due to coupling), while the
second wave is linear and, therefore, second wave is always a left-going wave with speed −D .
Now, assuming that u > 0, it is clear that the first wave is always to the right of the second wave
and hence the solution consists of three distinct regions: L-region to the left of the second wave,
M-region between the second and the first wave, and R-region to the right of the first wave. Now
we consider various possible configurations.

Case 1. uL < uR, λL < λR. In this case, from the second characteristic equation it follows
that λ experiences a jump along the line x =−Dt , hence this line is the trajectory of the contact
discontinuity moving to the left. Then, for M-region, which is to the right of the contact, we
have λM = λR. The invariant p is conserved along the curves ẋ = u −D , therefore (due to the
jump in λ) u must jump on the contact:

1

2

(
u2

M +qλM
)= 1

2

(
u2

L +qλL
)

, (57)
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from which it follows that

uM =
√

u2
L +q(λL −λM) =

√
u2

L +q(λL −λR) (58)

and hence uM < uL < uR. Therefore, the first wave is a centered rarefaction wave, with con-
straining characteristics

xHEAD = (uR −D) t , xTAIL = (uM −D) t , (59)

with the solution inside the rarefaction wave being u = x/t +D , which is found from the inte-
gration of ẋ = u −D with initial conditions x = 0, t = 0.

Case 2. uL ≥ uR, λL ≥ λR. In this case λM = λR again and uM is computed using (58) with
uM ≥ uL ≥ uR, that is, the characteristics of the first family from M- and R-regions collide and
form a shock wave that propagates with speed

s = uR +uM

2
−D. (60)

Case 3. uL < uR,λL ≥λR. In this caseλM =λR and uM is found using Eq. (58). Hence, the first
wave is either a centered rarefaction wave (if uM < uR) as in Case 1 or a shock wave (if uM ≥ uR)
as in Case 2 while the second wave is a contact discontinuity.

Case 4. uL ≥ uR, λL < λR. In this case λM = λR and uM is found using formula (58). Then
the first wave is either a centered rarefaction or a shock wave depending on whether uM < uR

or uM ≥ uR, that is, this case is the same as Case 3.
For the Godunov method, we are interested in the solution of the Riemann problem along

the trajectory x = 0 only. Summarizing the cases considered above, we conclude that if uR >
D , then ui+1/2 = uM, λi+1/2 = λM. However, the flow can become supersonic with uR < D ,
particularly near the left boundary, and then not only contact discontinuity moves to the left,
but the rarefaction or shock wave as well. In these cases, the solution of the Riemann problem
is ui+1/2 = uR, λi+1/2 =λR.

To illustrate the complete solutions of the Riemann problem and characteristic trajectories,
we provide two examples. For both problems, we take q = 9, hence D =p

q = 3, λL = 1, λR = 0,
and the final time t = 1. Figure 8a shows the solution of the Riemann problem for uL = 4, uR = 3,
along with the characteristics. As can be seen, the solution consists of three distinct regions: in
the region to the left of the contact discontinuity we have (uL,λL), between the contact and the
shock the state is (uM = 5,λR), and to the right of the shock we have (uR,λR). As uR = D , the
characteristic equations in the rightmost region are vertical. The shock speed in this case is
s = 0.5.

Figure 8b shows the solution of the Riemann problem for uL = 4, uR = 6, along with the
characteristic plane. In this case, the solution consists of four distinct regions: to the left
of the contact discontinuity, x = −Dt , the solution is (uL,λL), between the contact and the
tail of the rarefaction wave, the solution is (uM = 5,λR), inside the rarefaction wave, we have
(u = x/t +D,λR), and to the right of the head of the rarefaction solution, we have (uR,λR).
The head and tail of the rarefaction wave are determined by the lines x = (uR −D) t and x =
(uM −D) t , respectively.
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Figure 8: Solution of the Riemann problem and characteristics trajectories up to the final time t = 1 for q = 9,
D = 3 and two different initial conditions: a) (uL,λL) = (4,1), (uR,λR) = (3,0); b) (uL,λL) = (4,1), (uR,λR) = (6,0).
In both a) and b), bottom plots show the characteristics of the first family, while the characteristics of the second
family are not shown except for the trajectory of the contact discontinuity, x = −Dt , (all other characteristics of
this family are parallel to it).
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6.3. Computation of detonation velocity

Now we require an algorithm to evolve D in time. We use a combination of the shock-
evolution equation (26) for time steps when the flow is sufficiently smooth and the characteristics-
based method from [26] when the flow has steep gradients. Note that in this subsection, sub-
script “s” is used for the staggered grid point index N +1/2 for clarity.

At each time step, we estimate the velocity gradient du/d x using backward finite differ-
ences:

du

d x

∣∣∣∣
xi

= ui −ui−1

∆x
, (61)

and if ‖du/d x‖∞ ≤ 10, then the flow is considered smooth. Otherwise, it is considered not
smooth.

For smooth flow, we integrate the shock-evolution equation (26) in time simultaneously
with (12–13), approximating the velocity gradient appearing in (26) based on the following
second-order approximation on the stencil {xN−1, xN , xs}:

du

d x

∣∣∣∣ j

s
= u j

N−1 −9u j
N +8u j

s

3∆x
(62)

with u j
s = 2D j by the Rankine–Hugoniot conditions. Additionally, we set the CFL number to

0.4.
For non-smooth flow, we use the method from [26] slightly modifying it due to the use of

a staggered grid in the present computations. In this method, D j+1 is computed using the
forward-going characteristic equation and then equations (12–13) are integrated in time; de-
tails of the algorithm are given below. CFL number is set to 0.1 in this case.

The forward-going characteristic equation is

uu̇ +σλ̇−σω(u,λ) = 0 (63)

satisfied along the trajectory
ẋ = u −D. (64)

At the time step j+1 we are given u j
i ,λ j

i , and D j for i = 0, . . . , N and aim to find D j+1. We assume
that during time step∆t from t j to t j+1, characteristics are straight lines and then approximate

the trajectory of the characteristic that starts at location x j
∗ at time t j and arrives to the shock

xs = 0 at time t j+1 using the forward Euler method:

xs −x j
∗ =

(
u j
∗−D j

)
∆t , (65)

where u j
∗ = u(x j

∗, t j ) and xs = 0 for any time step. To find u j
∗, we interpolate linearly using the

value at the shock and the given average of u j
N in the rightmost computational cell:

u j
s −u j

N

xs −xN
= u j

∗−u j
N

x∗−xN
. (66)
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Using relations xs −xN =∆x/2 and xN =−∆x/2, we arrive at the following formula for u j
∗:

u j
∗ = u j

s +
2
(
u j

s −u j
N

)
∆x

x∗, (67)

with u j
s = 2D j . Similarly, we obtain the formula for λ j

∗:

λ
j
∗ =λ j

s +
2
(
λ

j
s −λ j

N

)
∆x

x∗ (68)

with λ j
s = 0.

Now, by substituting expression for u j
∗ into (65), we find that x j

∗ can be computed explicitly:

x j
∗ =

D j∆t

−1− 2
(
u

j
s−u

j
N

)
∆x

. (69)

After computing x j
∗, u j

∗, and λ j
∗, the updated detonation velocity, D j+1, is found by solving

a nonlinear equation arising from the discretization of (63):

u j
∗

u j+1
s −u j

∗
∆t

+σλ
j+1
s −λ j

∗
∆t

−σω
(
u j+1

s ,λ j+1
s

)
= 0, where u j+1

s = 2D j+1, λ
j+1
s = 0, (70)

which is done using the Newton method with the termination condition that the relative error
in D j+1 between two subsequent iterations is less than 10−8.

6.4. Bifurcation diagram

Now we turn our attention to various solutions of the model when the activation energy θ
is increased while other parameters are kept fixed. For some values of θ, the solution is found
to undergo bifurcations from one nonlinear regime to another. To visualize these bifurcations,
we run simulations for θ ∈ [0.90;1.15] with step 0.001 up to time Tfinal = 1000 and in each simu-
lation we extract local minima of the time series of detonation velocity, D(t ), for time window
t ∈ [900;1000]; subsequently, the minima are plotted against θ on a bifurcation diagram. Each
simulation is conducted using q = 4, tolλ = 10−6, and N1/2 = 1280 with an initial condition be-
ing the corresponding ZND solution. Then, necessary perturbation of the initial condition is
supplied by the truncation error of the numerical scheme.

Figure 9 shows the resultant bifurcation diagram. Note its resemblance of the well-known
diagram for the logistic map in the sense that, as θ increases, solution undergoes a series of
period-doubling bifurcations until eventually chaotic-looking regimes appear. Similar diagrams
have also been found previously in various models of detonation [33, 20, 35, 25, 11].

In Figure 9 at θ ∈ [0.9;0.936], the solution is asymptotically stable as the initial perturbation
decays with D → DCJ as t →∞; at θ = 0.937 a bifurcation takes place from a stable steady-state
solution to a period-1 stable limit cycle, and then the solution stays qualitatively the same for
θ ∈ [0.937,1.001] with the local minima decreasing below DCJ value; at θ = 1.002 the second
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Figure 9: Bifurcation diagram for q = 4, θ ∈ [0.95;1.15] with step ∆θ = 0.001.

bifurcation occurs to a period-2 limit cycle, and then the cycle is preserved for θ ∈ [1.002;1.056]
with the top minima increasing and bottom minima decreasing; at θ = 1.074 the solution bifur-
cates to a period-4 limit cycle. For larger θ (θ' 1.077), the solution is appearing to be chaotic
as a large number of minima are found. However, for θ ∈ {1.089,1.09} period-6 limit cycle is
obtained.

It must be mentioned that at θ ' 1.077, it becomes quite challenging to compute the so-
lutions sufficiently accurately due to internal shocks appearing and hitting the lead shock, ef-
fectively making the reaction zone unresolved even for resolution N1/2 = 1280 that is used for
these computations. We also run the simulations with twice and four times coarser grids to
verify the convergence of the bifurcation diagram for stable limit cycles for θ/ 1.077.

6.5. Stable limit cycles

Now we consider time series for several different values of θ that correspond to qualita-
tively different nonlinear dynamics as evident from the bifurcation diagram 9. We also plot
phase portraits in Ḋ −D plane to better understand the dynamics. The shock acceleration Ḋ is
approximated by central finite differences:

Ḋ = Di+1 −Di−1

ti+1 − ti−1
for i = 1,2, . . . , (71)

and initial acceleration is taken to be zero, Ḋ (0) = 0. As time series contain numerical noise, to
regularize numerical differentiation, the D (t ) series are first smoothed using the simple moving
average algorithm with window size 11, and after obtaining Ḋ using (71), it is also smoothed
using the same algorithm with window size 5.

Figures 10a,b show the nonlinear dynamics for θ = 0.95 and θ = 1, which is a stable limit
cycle in these two cases. Figures 10c,d demonstrate period-2 limit cycles for θ = 1.004 and
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θ = 1.055, respectively. From these figures we can see that as θ increases, distance between top
and bottom minima increases as well: for θ = 1.004, the ratio of relative minima is ≈ 1.11, while
for θ = 1.055, this ratio is ≈ 1.84. Figures 10e,f show period-4 nonlinear oscillations for θ = 1.065
and period-6 nonlinear oscillations for θ = 1.089. It can be also noticed that as θ increases, the
range of detonation acceleration Ḋ increases dramatically: for weakly unstable cases Ḋ is in the
order of unity, while for strongly unstable cases, it is in the order of 1000 as can be seen from
Figures 10d-f.

7. Code verification

In this section, we assess the correctness of our linear and nonlinear solvers. It is widely
accepted [39, 38] that the most stringent test case is the comparison of the observable order
of accuracy with theoretical order of accuracy of the numerical methods used to discretize the
governing equations. For all convergence studies below, we compute the observed order of
accuracy by the following procedure. Let the convergence study to be performed with N grid
resolutions. Then the order of accuracy is

ri = log(Ei /Ei−1)

log(∆xi /∆xi−1)
, i = 3, . . . , N , (72)

where Ei is an error for the i -th resolution and ∆xi is a spatial step for the i -th grid resolution.

7.1. Convergence study

We test the linear solver as follows. Simulations are run for q = 4 and θ = 1 with several grid
resolutions, and relative errors are computed as

Ei =
‖ψ′

i −ψ′
i−1‖

‖ψ′
i‖

, i = 2, . . . , N , (73)

where ψ′
i is the time series of the perturbation of detonation velocity obtained with i -th grid

resolution, N is the total number of resolutions, and norms are L1, L2, and L∞. If the observed
order of accuracy (72) matches the theoretical fifth order, then one concludes that the imple-
mentation of the solver is correct.

Table 3 shows the obtained errors and orders of accuracy for the linear solvers where errors
were computed with different norms. It can be seen that the observed order of accuracy is
five, hence, the implementation of the linear solver is correct. The sudden drop of the order of
accuracy for the resolution N1/2 = 1280 is due to the domination of the rounding errors of the
floating-point arithmetic over the truncation errors of the numerical schemes at this resolution.

For the nonlinear solver, we compute the solution on several different grids for q = 4, θ =
0.92. For these parameters, the solution is stable, hence, D → DCJ at large times. Here we take
Tfinal = 300. We do not specify any perturbation in this case, so that the perturbation of the
initial traveling-wave solution is only due to the truncation error of the scheme. The global
error is then defined by

Ei = ‖Di (t )−DCJ‖2 for i = 1, . . . , N ,
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Figure 10: The time series and phase portraits of nonlinear solutions for q = 4 and various θ: (a) θ = 0.95, (b) θ = 1,
(c) θ = 1.004, (d) θ = 1.055, (e) θ = 1.065, (f) θ = 1.089. Plots in the odd rows show time series D versus t , while plots
in the even rows show corresponding phase portraits Ḋ versus D . Insets in the bottom row have limits (1.8,2.5) on
the x-axis and (−1,1) on the y-axis.
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Table 3: Convergence study for the linear solver for q = 4, θ = 1. N1/2 is the resolution per half-reaction zone, E1,
E2, E∞ are relative errors computed by (73) in L1, L2, and L∞ norms, respectively; r1, r2, r∞ are corresponding
observed orders of accuracy. Negative values for orders of accuracy are due to the domination of the round-off
error of floating-point arithmetic over truncation error of numerical methods used.

N1/2 E1 r1 E2 r2 E∞ r∞

20 N/A N/A N/A N/A N/A N/A
40 9×10−5 N/A 9×10−5 N/A 1×10−4 N/A
80 3×10−6 5.20 3×10−6 5.20 3×10−6 5.19

160 8×10−8 5.10 8×10−8 5.10 8×10−8 5.10
320 2×10−9 5.06 2×10−9 5.06 3×10−9 5.06
640 6×10−11 5.42 7×10−11 5.25 3×10−10 3.13

1280 6×10−11 -0.10 7×10−11 -0.05 4×10−10 -0.49

Table 4: Convergence study for the nonlinear solver using parameters q = 4, θ = 0.92, Tfinal = 300.

N1/2 E r

20 2×10−4 N/A
40 5×10−5 2.11
80 1×10−5 2.05

160 3×10−6 2.01
320 8×10−7 1.99

where Di (t ) is the time series of detonation velocity for the i -th grid resolution, and the norm
is L2-norm. Then the observed order of accuracy is computed using (72). Table 4 shows the
obtained errors and the orders of accuracy. It can be seen that the order of accuracy matches
the theoretical second order which confirms that the nonlinear solver described in Subsection
6.2 is implemented correctly and is second-order accurate at least for the stable flows.

Additionally, we run a convergence study for the nonlinear solver for the case when the so-
lution is a stable limit cycle with small amplitude of oscillations so that the solver uses only
second-order approximations. We run simulations for q = 4 and θ = 0.95 with several grid res-
olutions and extract local minima from the time series of detonation velocity for t ∈ [900;1000].
For each grid resolution, the average of the local minima Davg min,i is computed. Then the errors
are computed by comparing the obtained average to the next average:

Ei = |Davg min,i −Davg min,i+1|, i = 1, . . . N −1, (74)

where N is the number of grid resolutions. Then the order of accuracy is computed using (72).
Table 5 displays the obtained errors and orders of accuracy. It can be seen that the observed or-
der of accuracy is two as expected, hence the implementation of the nonlinear solver is correct
not only for stable solutions, but also for weakly unstable solutions.
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Table 5: Convergence study for the nonlinear solver with parameters q = 4, θ = 0.95.

N1/2 E r

20 N/A N/A
40 2×10−3 N/A
80 5×10−4 2.13

160 1×10−4 2.07
320 3×10−5 2.04
640 7×10−6 2.03

1280 2×10−6 2.09

7.2. Comparison of linear and nonlinear solutions

In this subsection, we compare the solutions of the linear and nonlinear problems for fur-
ther verification. If parameters of the problem are such that the ZND solution is unstable and
the initial amplitude of the perturbation of the solution is small relative to the ZND solution
itself, then for early times both linear and nonlinear solutions should agree with each other.

Figure 11 shows detonation velocity as a function of time obtained both from linear and
nonlinear solvers for heat release q = 4 and activation energy θ = 0.95, with resolutions N1/2 =
40 and N1/2 = 320 for linear and nonlinear solvers, respectively, and initial perturbation ampli-
tude A0 = 10−4. This choice of resolutions and initial amplitude is dictated by the difference in
the order of accuracy of the solvers (fifth for linear and second for nonlinear). In Figure 11a, the
detonation velocity is shown at early times, when the amplitude of the perturbation is small.
As we can see, the solutions of the linear and nonlinear problems are indistinguishable from
each other: they both exhibit exponential growth with the same frequency of oscillations. In
Figure 11b, the detonation velocity is shown at later times when the amplitude of the perturba-
tion becomes comparable with DCJ. It can be seen that the linear solution continues to grow
exponentially while the nonlinear solution saturates on a limit cycle. The agreement of the
two solutions at early times additionally verifies the correctness of both linear and nonlinear
solvers.

8. Conclusions

In this work, we carried out a comprehensive numerical investigation of the linear and non-
linear dynamics of solutions of a relatively simple 2×2 system of hyperbolic balance laws that
possesses nontrivial dynamical properties. It is demonstrated that traveling-wave solutions of
the system can become unstable as a system parameter is varied. As a result of the instabil-
ity, the solutions tend asymptotically in time to a limit cycle attractor of varying complexity.
Stable periodic limit cycles as well as what appears to be a chaotic attractor are found in the
simulations.

The numerical predictions are verified extensively by convergence studies and comparisons
of results obtained by different numerical algorithms. The linear stability of traveling shock-
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Figure 11: Comparison of solutions of linearized (solid line) and nonlinear (dashed line) problems: a) at early
times when the amplitude of perturbation is small comparing to DCJ = 2 and two solutions are indistinguishable;
b) at later times when the amplitude of perturbation is large and two solutions diverge: linear solution continues
to grow exponentially while the nonlinear solution exhibits a limit cycle.

wave solutions is computed by a shock-fitting method which is fifth-order in space and time us-
ing the direct method of [24]. These results are compared with those computed by the method
of normal modes, and complete agreement is found. The nonlinear simulations are performed
using the second-order Godunov method implemented also in a shock-fitting approach. Con-
vergence tests and comparisons with linear predictions when appropriate verify the accuracy
of the computed results and confirm the presence of limit cycles, period-doubling bifurcations,
and possible chaos in this simple hyperbolic system.

Extensions of the present work that are of theoretical interest include problems involving
additional factors, such as diffusive effects, and understanding their role in the nature of the
periodic and chaotic solutions of the system.

Supplementary Materials

The datasets and the scripts reproducing the figures and tables in this work are available at
https://doi.org/10.5281/zenodo.1297175.
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