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Reconstructing noisy nonlinear networks from time series of output variables is a challenging
problem, which turns to be very difficult when nonlinearity of dynamics, strong noise impacts
and low measurement frequencies jointly affect. In this paper, we propose a general method that
introduces a number of nonlinear terms of the measurable variables as artificial and new variables,
and uses the expanded variables to linearize nonlinear differential equations. Moreover, we use
two-time correlations to decompose effects of system dynamics and noise impacts. With these
transformations, reconstructing nonlinear dynamics of original networks is approximately equivalent
to solving linear dynamics of the expanded system at the least squares approximations. We can
well reconstruct nonlinear networks, including all dynamic nonlinearities, network links, and noise
statistical characteristics, as sampling frequency is rather low. Numerical results fully justify the
validity of theoretical derivations.

I. INTRODUCTION

Networks are investigated in many branches of science.
During the last few decades, researchers have shown
quickly increasing interest in exploring network structure
from available output data, i.e., the so-called network re-
construction problem. They mainly focus on two types
of approaches: statistical methods and dynamical meth-
ods. The statistical methods rely on simple linear cor-
relations, information entropy and statistical inferences,
such as Pearson’s correlation coefficients [1–3], mutual
information [4–7], and Bayesian network network infer-
ences [8, 9]. Recently, various methods revealing net-
work structures from dynamic data have been also pro-
posed, which are based on various levels of pre-knowledge
about systems. Yu et al proposed a method of updating
a network copy continuously until the copy system ex-
hibits a dynamics identical to the original system [10].
Timme proposed a driving-response approach to infer
network topology [11]. Calculating derivatives of state
variables, Shandilya and Timme transformed differential
equations of systems into algebraic equations [12]. They
infered link strengths by solving the over-determined al-
gebraic equations through minimal 2-norm. Wang et al
depicted sparse network structure by using compress sen-
sors, which needed only small amount of data for the net-
work construction [13]. Levnajic and Pikovsky untangled
links via derivative-variable correlations [14], and so on.

In many cases, there exist noises in systems. Bayesian
inference has first opened the door to the analysis of
noisy systems [15–17]. Correlation and high-order corre-
lation are used to treat noisy systems [18–24]. Consider-
ing derivative-variable correlation, Zhang et al proposed
an approach inferring both network links and strengths
of noises [20], and Chen et al developed this method by
using suitable bases to reconstruct all dynamic nonlin-

earities, topological interaction links and noise statistical
structure [22], but this method very much requires high
sampling frequency for computing derivatives of vari-
ables. Emily and Tam presented a method to recon-
struct network links with a low measurement frequency
by using variable-variable correlation and variable-time-
lagged-variable correlation. This method is fairly accu-
rate when the dynamics of each node are around fixed
points [23]. Lai extended this method to discrete-time
dynamics [24]. Recently, Stankovski et al reviewed five
theoretical methods for the reconstruction of coupling
functions and their applications in chemistry, biology,
physiology, neuroscience, social sciences, mechanics and
secure communications [25].
There are various difficulties encountered in network

reconstruction: complexity of network structures; non-
linearity of network dynamics; disturbances of noises;
low data quality such as low sampling frequency, and so
on. Here, we present an approach to reconstruct nonlin-
ear networks subject to fast-varying noises from dynamic
data only, including inferring all nonlinearities and statis-
tical noise structure. This method is based on expanded
variables and the least squares approximation. Recon-
structing nonlinear networks by computing expanded lin-
ear networks is the novel feature of our approach, and its
good accuracy of inferring noisy nonlinear networks by
using low sampling frequencies is remarkable.

II. THEROY

Let us consider a general nonlinear dynamics subject
to fast-varying noises

ẋ(t) = f(x(t)) + η(t), (1)

where x and η are the state vector x(t) =
(x1(t), x2(t), ..., xm(t))T and the noise η(t) =

http://arxiv.org/abs/1706.04076v3


2

(η1(t), η2(t), ..., ηm(t))T , where superscript T denotes
a transpose. Dynamic field reads f = (f1, f2, ..., fm)T .
Here we assume white noise ηi with zero mean and the
following statistics

〈ηi(t)〉 = 0, 〈ηi(t)ηj(t
′)〉 = Dijδ(t− t′) (2)

with i, j = 1, 2, ...,m. Dij = σ2
i δij . Our task is to depict

nonlinearities f and noise statistics D from measurable
data set x(t1),x(t2), ...,x(tN ), ti+1 − ti = τ .
First we assume fis can be generally expanded by a

basis set as

fi(x) ≈

n
∑

j=1

AijLj(x) (3)

The basis set includes linear bases Lj = xj for j =
1, 2, ...,m, nonlinear bases Lj = hj(x),m < j < n, and
constant basis 1. If measurement frequency is very high
such that ẋ(t) can be computed, Aij can be inferred [22].
Or, if Eq. (1) is approximately linear, Aij can be also
inferred even when measurement frequency is rather low
[23]. In the following we will show how to infer Aij when
both difficulties of nonlinear dynamics and low sampling
frequency are encountered.
The first key ingredient of our approach is that we

transform nonlinear Eq. (1) to expanded linear differen-
tial equations. By taking nonlinear bases as new state
variables and basing on Eqs. (1) and (3), we arrive at

L̇(t) = AL(t) +R(t) + η
′(t) (4)

whereA ∈ R
n×n and R ∈ R

n×1 being the residual vector
due to limited bases. Obviously, the first m rows of A is
equal to the coefficient matrix of Eqs. (1) and (3).
Another key ingredient of our approach is to approxi-

mate R(t) with the given bases L(t), by using the least
squares approximations, thus Eq. (4) is modified to

L̇(t) = BL(t) + e(t) + η
′(t) (5)

where e(t) are the errors of approximation on an interval
T1 ≤ t ≤ T2 and ei = 0 for i = 1, 2, ...,m. e(t) should
satisfy the following formula

1

T2 − T1

∫ T2

T1

e(s)L(s)T ds = 〈

∫ t+τ

t
e(s)L(s)T ds

τ
〉 = 0

(6)
Due to ei = 0 for i = 1, 2, ...,m, the first m rows of B is
equal to the first m rows of A.
Now Eq. (5) becomes linear and its analytic solution

can be given explicitly

L(t+τ) = eBτ
L(t)+

∫ t+τ

t

eB(t+τ−s)(e(s)+η
′(s))ds (7)

Multiplying both sides of Eq. (7) by L(t)T and averaging
all the terms in the equation, we can obtain

〈L(t+ τ)L(t)T 〉 = eBτ 〈L(t)L(t)T 〉+ (8)

〈

∫ t+τ

t

eB(t+τ−s)(e(s) + η
′(s))L(t)T ds〉

where 〈•〉 denotes averages of sampling data. Since

〈

∫ t+τ

t

eB(t+τ−s)
e(s)L(t)T ds〉 ≈ 〈

∫ t+τ

t

e(s)L(s)T ds〉 = 0

(9)
and with time lag τ > 0 noise-variable correlations ap-

proximately vanish 〈
∫ t+τ

t
eB(t+τ−s)

η
′(s)L(t)Tds〉 ≈ 0,

Eq. (8) can be reduced to

〈L(t+ τ)L(t)T 〉 = eB̂τ 〈L(t)L(t)T 〉 (10)

By defining Sτ = 〈L(t+ τ)L(t)T 〉 and S0 = 〈L(t)L(t)T 〉,
which are explicitly computable with the available data,
we rewrite Eq. (10) as

Sτ = eB̂τ
S0 (11)

Matrix B̂ is thus solved as

B̂ =
ln[SτS

−1
0 ]

τ
(12)

and the network reconstruction of the expanded linear
differential equation (5) is completed. With known B̂,
the original system (1) is successfully inferred.

From the above analysis it is clear that our method
typically relies on variables expansion (Eq. (5)), then the
task of inferring nonlinear differential Eq. (1) is trans-
formed into solving linear differential equations. Noise
effects are decorrelated by using time-lagged correlation
and the residuals of linearizing R can be projected on
to the chosen bases by using the least squares approxi-
mations (Eq. (5)). Basing on these transformations, we
can obtain the coefficient matrix by expanded variables
and expanded variable correlation matrices (Eq. (12)).
Thus we name our method VELSA (variable expansion
and least squares approximations)

We can also infer noise statistical matrix of Eq. (2)

from the available data. For L(t + τ) ≈ eB̂τ
L(t) +

∫ t+τ

t
eB̂(t+τ−s)

η
′(s)ds, multiplying its both sides by re-

spective transposes and averaging all the terms, we ob-
tain

〈L(t+ τ)L(t+ τ)T 〉 = eB̂τ 〈L(t)L(t)T 〉eB̂
T
τ + 〈

∫ t+τ

t

eB̂(t+τ−s)
η
′(s)ds

∫ t+τ

t

η
′(s′)T eB̂

T
(t+τ−s′)ds′〉 (13)
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Based on Eqs. (2), (5) and (11), Eq. (13) can be reduced
to

S0 − eB̂τ
S0e

B̂
T
τ =

∫ τ

0

eB̂(τ−s)
D

′eB̂
T
(τ−s)ds (14)

where D′
ijδ(s − s′) = 〈η′i(s)η

′

j(s
′)T 〉. We define the left

hand side of Eq. (14) as

F(τ) = S0 − eB̂τ
S0e

B̂
T
τ (15)

Computing the first derivatives of F(τ), F
(1)(τ) =

−eB̂τ (B̂S0+S0B̂
T
)eB̂τ , we integrate the form above and

have

F(τ) − F(0) = −

∫ τ

0

eB̂τ (B̂S0 + S0B̂
T
)eB̂

T
τdτ

Then

S0−eB̂τ
S0e

B̂
T
τ = −

∫ τ

0

eB̂τ (B̂S0+S0B̂
T
)eB̂

T
τdτ (16)

Comparing Eqs. (14) and (16), we obtain an identical
formula

D
′ = −(B̂S0 + S0B̂

T
) (17)

where the noise statistic matrix D of Eq. (1) is a sub-
matrix of D′, D′

ij = Dij for i, j = 1, 2, ...,m.
Errors of the VELSAmethod can be well analyzed (De-

tailed analysis in APPENDIX). Considering the residual
errors of expanded variables, i.e., e(t) in Eq. (5), we
rewrite Eq. (10) as

Sτ = eBτ
S0 + 〈

∫ t+τ

t

eB(t+τ−s)
e(s)L(t)T ds〉 (18)

Further Taylor expanding the integral term and using the
least squares approximations, we finally obtain

B = B̂+ eB̂τ 〈e(t)L(1)(t)T 〉S−1
0

τ

2
+O(τ2) (19)

Considering specific ei(t) and eB̂τ = I + O(B̂τ), we fur-
ther obtain the errors of reconstruction

Bij − B̂ij =

{

O(τ2), if ei(t) = 0

O(τ), otherwise
(20)

On summary, due to Ri = 0 in Eq. (5), i = 1, 2, ...,m,
i.e., ei(t) = 0, the errors of reconstructed coefficients of
Eq. (12) are proportional to τ2 and can be quickly re-
duced by increasing measurement frequency.

III. SIMULATIONS AND RESULTS

A. Lorenz system

For justifying the VELSA method, we first consider
the Lorenz system subject to fast-varying noises

ẋ = σ(y − x) + η1(t),

ẏ = ρx− xz − y + η2(t), (21)

ż = xy − βz + η3(t),

where σ = 10, ρ = 28, β = 2, at which deterministic
dynamics is chaotic. Moreover, all variables are affected
by strong noises, simplified to σ2

i = 100, i = 1, 2, 3.
Figure 1(a) shows a chaotic and random trajectory of

the noisy system. We use Eqs. (12) and (17) to com-

pute D̂
′
and B̂, and specify Â and D̂ from B̂ and D̂

′
,

respectively, (Âij = B̂ij , i = 1, 2, ...,m, j = 1, 2, ..., n,

D̂ij = D̂′
ij , i, j = 1, 2, ...,m). First, we should select

proper bases to expand field functions. Without knowing
any particular information about the field functions, we
generally choose power series as a basis set, by assuming
the following bases (L1, L2, ..., Ln)

T with truncation n,

(x, y, z, x2, xy, xz, y2, yz, z2, x3, ..., 1)T (22)

Calculating Sτ and S0 with available data, we obtain re-
construction results given in Figs. 1(b-f). In Fig. 1(b),

the reconstruction results Âij with truncations of the
first order (n = 4) and the three order (n = 20) are
plotted against those with the second order (n = 10).

The results of Âij(n = 4) deviates considerably from

ones of Âij(n = 10), but satisfactory identity between

Âij(n = 10) and Âij(n = 20) is observed. According
to the self-consistent checking method [22], by increas-
ing the number n of tested unknown variables, the re-
construction parameters with small n remain unchanged
(saturated) and the small n (here n = 10) is concluded
as a sufficient and satisfactory expansion. In Fig. 1(c),

it is clearly shown that all plots of Âij and D̂ij com-
puted at n = 10 are around the diagonal line, justifying
satisfactory reconstruction.
To show the effects of bases, we calculate the root mean

square error

Erms =

√

∑m

i=1

∑n

j=1(Âij −Aij)2

m× n
, (23)

Figure 1(d) presents Erms with noise σ2
i = 0 and σ2

i =
100 (inset). The bases of n = 5 are the actual bases of
Eq. (21), i.e., x, y, z, xy, xz. In Fig. 1(d) we observe
that errors of the noise-free system monotonically de-
crease with n, while due to noise effects the results show
an optimal and minimal error at about n = 10 (small
frame). Figure 1(e) shows the dependence of Erms on τ
with σ2

i = 0, 0.01, 100. We observe that results with
σ2
i = 0 (circles) well coincide with the line of Erms ∝ τ2

for small τ . For finite noises, errors decrease with the de-
crease of τ , however, the decreasing tendencies saturate
at small τ ’s to finite errors depending on noise intensities.
In Fig. 1(f) Error dependences of the sampling number
Ndata with τ = 0.01 (circles) and τ = 0.1 (squares) are
plotted. The results of τ = 0.01 monotonically decrease,
approximately proportional to 1√

Ndata

. However, errors

for τ = 0.1 tend to saturation, which is determined by
low measurement frequency. The Erms behaviors in both
Figs. (e)(f) clearly show the different effects of σi, τ and

Ndata, and the competitive rules of N
− 1

2

data, σi and τ2 for
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FIG. 1. Application of VELSA to Lorenz system. (a) Trajectories of noisy system with σ2

i = 100 and time step for simulation

being 10−4. (b-f) Reconstruction results with n = 10, Ndata = 107 and τ = 0.1. (b) Reconstruction results Âij with n = 4 (the
first order truncation) and n = 20 (the third order truncation) plotted against those with n = 10 (the second order truncation).

(c) Reconstructed results of Âij and D̂ij plotted against the actual coefficients. (d) Dependence of Erms on the basis number
n with noise σ2

i = 0 and σ2

i = 100 (inset). (e) Dependence of Erms on τ with σ2

i = 0, 0.01, 100. (f) Dependence of Erms on
the sampling number Ndata with τ = 0.01 and τ = 0.1. σ2

i = 100.

Erms. For detailed software codes of the method, see
Ref. [26].

For examining the validity of Eq. (12) we compare the
reconstruction trajectories of Eq. (5) by setting e(t) = 0
and the actual ones in Fig. 2. It is shown that without
noise (Fig. 2(a)) the two trajectories are almost identical

when L̇i(t) equations do not contain residual term while
small deviations are observed when residual exists. With
noises (Fig. 2(b)) the above conclusions are still valid,
but reconstruction curves show some fluctuations caused
by noises.

For demonstrating effectiveness of Eq. (12) we plot the
trajectories of reconstruction system in Fig.3(a) and 3(b),
corresponding to noisy and noise-free reconstruction sys-
tems, respectively. Figure 3(c) shows the trajectories of
an original noise-free system. From comparison of Fig.
3(a) and Fig. 1(a), Fig. 3(b) and 3(c), we draw a conclu-
sion that using our VELSA method not only reconstructs
the noisy system, but also predicts the noise-free system.

B. A FHN neural network

We now consider a more complicated nonlinear net-
work, the noisy FHN neural network,

v̇i =
1

ǫ
(vi −

1

3
v3i − ui + I) +

N
∑

j=1

cij(vj − vi) + η1(t),

u̇i = γvi − ui + b+ η2(t), (24)

where we take ǫ = 0.1, I = 0, γ = b = 1.5 and N = 10.
Noise σ2

i = 0.1, i = 1, 2. cij are coupling strengths gen-
erated from the connection coefficients with connection
probability 0.3 and the weighted coefficients uniformly
distributed in [0.4, 4.0]. Here we separately define cou-
pling coefficients as cij , and local dynamic coefficients in
Eq. (3) as fij , v̇i = fiv(v, u), u̇i = fiu(v, u). We can

reconstruct ĉij and f̂ij plotted in Figs. 4(a)(b), and sat-
isfactory identities are observed.
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τ = 0.1. Ndata = 4× 106.

IV. COMPARISON AND DISCUSSION

After all the above demonstration of network recon-
structions, a detailed comparisons between the VELSA

method and the two previous methods are in order. Here
the main problem in the present study is the joint difficul-
ties of (i) Nonlinearity; (ii) Noise; (iii) Low measurement
frequency. In [22], authors considered (i) and (ii) together
with very fast data measurement such that velocities of
x(t) can be accurately computed. In [23] authors con-
sidered (ii) and (iii) together by considering trajectories
around a fixed point where network dynamics can be di-
rectly treated with linear approximations. Both methods
fail if all difficulties of (i), (ii) and (iii) appear together.In
Fig. 5(a), we compare the results of reconstruction of Eq.
(21). While VELSA shows low Erms for rather wide τ
range, the method HOCC in [22] produces large errors.
In Fig. 5(b) we compare the results of reconstruction of
Eq. (24), and it is clearly shown that while VELSA sat-
isfactorily infers all the network links, the method in [23]
fails to do so.
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FIG. 5. Comparison of three methods. (a) Dependence of
Erms on τ for HOCC [22] and VELSA. (b) Calculated results
ĉij plotted against the actual coefficients cij for the method
in [23] and VELSA.

For treating reconstruction problem of nonlinear and
noisy network Eq. (1), the VELSA method (i) Transfers
nonlinear terms of network Eq. (1) to expanded variables
of equivalent linear network Eq. (4) while it is not closed;
(ii) Uses the least squares approximations Eq. (6) to
close the expanded linear network Eq. (4), i.e., to derive
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Eq.(5); (iii) Analytically solves Eq. (5) through two-time
correlations by decomposing effects of system dynamics
and noise impacts. Numerical computations fully justify
the least squares approximations (Fig. 2), and the ef-
ficiency of reconstruction computation Eq. (12) (Figs.
1(b)(c), Fig.3 and Fig. 4).
With the above method we can achieve the following:

(i) Though the reconstruction is applied for purely linear
network Eq. (5), it fully includes strongly nonlinear ef-
fects (see Figs. 2, 3 and 4) due to that all nonlinear terms
are taken into account in different expanded variables of
Eq.(5) (in variables of n ≥ m), and this is essentially dif-
ferent from linearization in conventional sense (e.g., see
the comparison in Fig. 5(b)); (ii) Due to the utilization
of analytical solution of linearized network Eq. (12), this
method can obtain much better results when the mea-
surement frequency is relatively low (see the analysis of
Eq. (A10) and the comparison in Fig. 5(a)); (iii) The
VELSA method can infer with measurable data not only
the network structure in Eq. (12), but also noise statis-
tical matrix D in Eq. (17). Then with the reconstructed
network we can predict the behaviors of the original net-
work without subjecting noises (see Figs. 3(b)(c)), and
reproduce the behaviors of the actual network under the
impacts of realistic noises (compare Figs.1(a) and 3(a)).
The proposed method can be applied in real systems

to infer network structures under certain conditions. At
the present stage the VELSA method has its own limita-
tions restricting the practical applications of the method.
First, we consider white noise approximations for treat-
ing fast-varying noises. Extensions to slow-varying noises
or even to noises with wide spectra should be further in-
vestigated. Second, this method usually includes large
number of unknown parameters to be reconstructed, and
thus need large data sets in computations, and small data
sets can cause large errors (see circles in Fig. 1(f)). How
to improve reconstruction precision when data sets are
relatively small is still an important and unsolved prob-
lem. Third, the VELSA method can well treat data col-
lected with much lower measurement frequency, in com-
parison with all the methods where time-derivatives from
data are needed for reconstructions (Fig. 5(a)). However,
this capability is limited either. By decreasing measure-
ment frequency 1

τ
, the reconstruction errors increase and

the method completely fail at very large τ (see triangles
in Fig. 1(f)). Finally, in this paper we consider avail-
able data of all nodes in the dynamical network under
investigation. The extension of the VELSA method to
the cases with some nodes hidden is another subject of
practical importance.

V. CONCLUSION

In conclusion, we have proposed a method to recon-
struct noisy nonlinear networks with fairly low measure-
ment frequency, including all dynamic nonlinearities, net-
work links, and noise statistical characteristics. Our
method linearizes the original nonlinear equations by us-
ing expanded variables and solving nonlinear dynamics

becomes equivalent to solving linear dynamics at the least
squares approximations. Numerical results fully verify
the validity of theoretical derivations and error analysis.

Appendix: ERROR DERIVATION

Preliminaries. The exponential of a matrix A is de-
fined by

eA =

∞
∑

k=0

1

k!
A

k. (A.1)

The logarithm of a matrix A is defined by

ln(I−A) =

∞
∑

k=1

(−1)k

k
A

k. (A2)

where I is an identity matrix and the eigenvalues of A
satisy the form |λ| < 1.
Taylor expansion for an integration is defined by

∫ t+τ

t

F (s)L(s)ds = F (t)L(t)τ + F (1)(t)L(t)
τ2

2

+F (t)L(1) τ
2

2
+O(τ3)

(A3)

where F (1)(t) and L(1)(t) are the first derivatives of F (t)
and L(t) against t, respectively.
Error derivation. Considering the residual errors of

expanded variables, i.e., e(t), we have

Sτ = eBτ
S0 + 〈

∫ t+τ

t

eB(t+τ−s)
e(s)L(t)T ds〉

With right multiplying S
−1
0 , the above formulas yields

SτS
−1
0 = eBτ + 〈

∫ t+τ

t

eB(t+τ−s)
e(s)L(t)T ds〉S−1

0 (A4)

Define

C = 〈

∫ t+τ

t

eB(t+τ−s)
e(s)L(t)T ds〉S−1

0 , (A5)

then SτS
−1
0 = eBτ +C. We transform it into

Bτ = ln(SτS
−1
0 −C). (A6)

First we compute the integration term in C,
∫ t+τ

t
eB(t+τ−s)

e(s)ds. By using Eq. (A3), Taylor ex-
pansion yields

∫ t+τ

t

eB(t+τ−s)
e(s)ds = eBτ

e(t)τ −BeBτ
e(t)

1

2
τ2

+eBτ
e
(1)(t)

1

2
τ2 +O(τ3)

and Eq. (A5) becomes
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C = eBτ [〈e(t)L(t)T 〉τ −B〈e(t)L(t)T 〉
τ2

2
+ 〈e(1)(t)L(t)T 〉

τ2

2
+O(τ2)] (A7)

By using Eq. (A3), we further arrive at

〈

∫ t+τ

t

e(s)L(s)T ds〉 = 〈e(t)L(t)T 〉τ + 〈e(1)(t)L(t)T 〉
τ2

2
+ 〈e(t)L(1)(t)T 〉

τ2

2
+O(τ3)

Due to the least squares approximations

1

T2 − T1

∫ T2

T1

e(s)L(s)T ds = 〈

∫ t+τ

t
e(s)L(s)Tds

τ
〉 = 0,

we have

〈e(t)L(t)T 〉τ + 〈e(1)(t)L(t)T 〉
τ2

2

= −〈e(t)L(1)(t)T 〉
τ2

2
+O(τ3)

and

〈e(t)L(t)T 〉 = O(τ)

Basing on the above two transformations, we rewrite C

as

C = −eBτ 〈e(t)L(1)(t)T 〉
τ2

2
S
−1
0 +O(τ3) (A8)

Further transforming Eq. (A6) into Bτ = ln(I − (I −
SτS

−1
0 + C)), considering small τ , we have SτS

−1
0 ≈ I.

Together with Eq. (A2), we can derive

ln(I− (I− SτS
−1
0 +C)) =

∞
∑

n=1

(−1)n

n
(I− SτS

−1
0 +C)n

=

∞
∑

n=1

(−1)n

n
(I− SτS

−1
0 )n −C+

1

2
(I− SτS

−1
0 )C+

1

2
C(I− SτS

−1
0 ) +O(C2)

= lnSτS
−1
0 −C+

1

2
(I− SτS

−1
0 )C+

1

2
C(I− SτS

−1
0 ) +O(C2)

Since C = O(τ2) (Eq. (A8)) and (I − SτS
−1
0 ) = O(τ)

(Eq. (A4)), we have

Bτ = lnSτS
−1
0 −C+O(τ3) (A9)

Substituting Eq. (A8) into Eq. (A9), we finally obtain
the error of reconstruction

B− B̂ = eBτ 〈e(t)L(1)(t)T 〉S−1
0

τ

2
+O(τ2). (A10)

where reconstructed matrix B̂ =
ln(SτS

−1

0
)

τ
.
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