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Abstract

We propose a general framework for computer-assisted verification of the presence of symme-
try breaking, period-tupling and touch-and-go bifurcations of symmetric periodic orbits for re-
versible maps. The framework is then adopted to Poincaré maps in reversible autonomous Hamil-
tonian systems.

In order to justify the applicability of the method, we study bifurcations of halo orbits in the
Circular Restricted Three Body Problem. We give a computer-assisted proof of the existence
of wide branches of halo orbits bifurcating from L1,2,3-Lyapunov families and for wide range of
mass parameter. For two physically relevant mass parameters we prove, that halo orbits undergo
multiple period doubling, quadrupling and third-order touch-and-go bifurcations.
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1. Introduction

In the past 40 years there were proposed very efficient methods for numerical continuation
of periodic orbits for general ODEs, or periodic orbits satisfying certain symmetries with special
focus on applications to Hamiltonian systems [19, 37, 22]. They are implemented in very efficient
packages, such as AUTO [18], MATCONT [17] and CONTENT [27].

Most of the methods are similar in the spirit. The family of periodic orbits satisfies certain
finite-dimensional implicit equations, which is solved by a Newton-like scheme. The equations
usually involve period (return time) of the orbit, space variables and/or value of the Hamiltonian.
The Newton-like iteration requires computation of monodromy matrix, which is not an issue
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nowadays, where many efficient tools for integration of ODEs along with variational equations
are available [4, 23, 10].

Bifurcations of periodic orbits can be detected by looking at changes of determinant of mon-
odromy matrix [54], inspecting so-called stability parameter in low dimensional systems [21, 22],
analysis of normal form after Lyapunov–Schmidt reduction [16] or solving an equation specific
for the type of bifurcation [38]. Literature on the topic is really wide, and the list of methods and
references mentioned above is clearly incomplete.

The present paper is complementary to the above results and methods. We focus on reversible
maps and reversible Hamiltonian systems. The primary result of the paper is a general framework
for rigorous computer-assisted verification, that a branch of symmetric periodic orbits undergoes
period-tupling and/or touch-and-go bifurcation. Finding an approximate numerical candidate for
bifurcation point is just a preliminary step of the validation algorithm and for this purpose we can
use any of the methods mentioned above [16, 22, 21, 38, 54]. Then, checking several inequali-
ties on the (Poincaré) map under consideration and its derivatives on an explicit neighbourhood
(input to the algorithm) of the approximate bifurcation point we can prove, that it contains a bi-
furcation point and we can conclude about type of bifurcation. As an output of the algorithm
we obtain guaranteed bounds on both the bifurcation point and the parameter of the system, at
which bifurcation occurs.

In order to justify applicability of the framework we apply it to the Circular Restricted
Three Body Problem (CR3BP) [44]. We give a computer-assisted proof of the existence of
wide branches of so-called halo orbits bifurcating from the families of planar Lyapunov orbits
around L1,2,3 libration points. We also prove, that for some physically relevant mass parameters
of the system, these branches undergo period-tupling and touch-and-go bifurcations. These rig-
orous results are justification of some numerical observations from previous articles, in particular
[21, 19]. We also would like to emphasize, that we have found a new phenomenon regarding bi-
furcations of halo orbits near L3 libration point, when the mass parameter of the system tends to
zero. We have observed, that the energy at the symmetry breaking bifurcation, which creates halo
orbit, as a function of the mass parameter is not monotone, when the relative mass tends to zero
— see Remark 19. Although not validated, this observation has been made using nonrigorous
numerics with very high accuracy.

Rigorous numerical investigation of periodic orbits to ODEs became quite standard [2, 9,
11, 24, 25, 41, 45, 48, 49, 50]. To the best of our knowledge, there are very few results re-
garding computer-assisted verification of bifurcations of periodic orbits of ODEs, and the field
remains widely open. Validation, that a family of periodic orbits undergoes a bifurcation usually
involves computation of rigorous bounds on higher order derivatives of the trajectories with re-
spect to initial condition (except some special cases when the system admits additional structure).
The algorithm capable to do that appeared just in 2011 [53] (implemented as a part of publicly
available CAPD library [10]) and to the best of our knowledge there are no other publicly avail-
able algorithms for rigorous integration of higher order variational equations. The Cr-Lohner
algorithm from [53] has been already applied to study period-dubling bifurcations of periodic or-
bits [51] in the Rössler system [43], homoclinic tangencies of periodic orbits in a time-periodic
forced-damped pendulum equation [52] and non-local cocoon bifurcations [28] in the Michelson
system [32]. Very recently [6], another approach to compute periodic orbits for ODEs without
integration of the system has been proposed. Periodic solutions are approximated via piecewise
Chebyshev polynomials and then their existence is validated by analysis of certain nonlinear op-
erator on a Banach space of Chebyshev coefficients. The efficiency of the method is illustrated on
the example of Equilateral Circular Restricted Four Body Problem. Similar approach has been
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successfully applied for validated computation of bifurcations of equilibria for ODEs and steady
states for PDEs — see for example [8, 30, 31]. A different, geometric method for validation of
bifurcations of steady states in the Kuramoto-Sivashinsky PDE is also proposed in [55].

Our algorithm for proving the existence of period-tupling and touch-and-go bifurcation is
similar in the spirit to that proposed in [51, 55], but exploits the presence of a reversing symmetry
of the system. After fixing an appropriate coordinate system in a neighbourhood of an apparent
bifurcation points, we perform validated Lyapunov-Schmidt reduction. In this way, the analysis
of bifurcation is transformed to zero-finding problem of a bivariate scalar-valued function, called
bifurcation function. Then, checking some inequalities on derivatives of the bifurcation function
we can prove, that its set of zeroes is the union of two smooth curves which intersect at an unique
point — the bifurcation point. Finally, some non-degeneracy conditions (inequalities on higher
order derivatives of the bifurcation function) let us to conclude about the type of bifurcation. In
this paper we restrict to symmetry breaking, period-tupling and touch-and-go bifurcations.

The article is organized as follows. In Section 2 we introduce notation and main definitions
used in the paper. Theoretical results, which constitute a basis of the computational framework
for general reversible (Poincaré) maps are presented in Section 3 and then adopted to autonomous
reversible Hamiltonian systems in Section 4. Finally, in Section 6 we give formal statements of
theorems regarding continuation and bifurcations of halo orbits in the CR3BP.

In the Appendix we present two auxiliary yet new results, which are included mainly for
self-consistency of the paper. Frequently we have to show, that a solution to an implicit equation
is defined over an explicit domain. This step appears for example in continuation of periodic
orbits or in validated Lyaunov-Schmidt reduction. Although there are available methods for this
purpose (see for example [7, 20, 53, 9]), in Appendix A we provide an improvement, which
takes advantage from higher order derivatives and flattening the implicit function by a smooth,
well chosen substitution. In Appendix B we propose own and short algorithm for finding an
approximate bifurcation point. It takes advantage from the Lyapunov–Schmidt reduction and
computation of higher order derivatives of the (Poincaré) map under consideration. Using it, we
could easily localize approximate bifurcation points in the CR3BP with the accuracy 10−60.

2. Preliminaries

2.1. Notation and basic definitions
For a map f : D ⊂ X → X, a predicate C : X → {true, false} and a set U ⊂ D we introduce

the following notation

Fix( f ,U,C) = {x ∈ U : ( f (x) = x) ∧ C(x)}.

Thus, Fix( f ,U,C) is the set of fixed points of f in U satisfying constraint C. Although there
is a natural correspondence between subsets of X and univariate predicates defined on X, we
will separate U and C to emphasize rather rare property C in a larger (usually open) set U. We
will also write Fix( f ,U) if C(x) ≡ true. For a set M ⊂ R × X and ν ∈ R, we define its slice by
Mν = {x ∈ X : (ν, x) ∈ M}. For a map f : M ⊂ R×X → X and fixed ν ∈ R we define fν : Mν → X
by fν(x) = f (ν, x).

Definition 1. A homeomorphism R : X → X is called a reversing symmetry for f : M ⊂ X → X
if (R ◦ f )(M) ⊂ M and for x ∈ M there holds

(R−1 ◦ f ◦ R ◦ f )(x) = x.
3



It is easy to see that any reversing symmetry R for f is also a reversing symmetry for all iterations
f n defined on their proper domains.

Definition 2. A homeomorphism S : X → X is called a symmetry for f : M ⊂ X → X if S (M) ⊂
M and for x ∈ M there holds

S ( f (x)) = f (S (x)).

For a map S : X → X we define a predicate CS : X → {true, false} by

CS (x) = (x ∈ Fix(S , X)) . (1)

We will use this notation to select points satisfying certain symmetries.

2.2. Geometric definitions of two types of bifurcations

Our primary object of interest is a C3-smooth function f : M → X defined on an open set
M ⊂ R × X, where X is a smooth manifold. In this article we make the following standing
assumption:

C1: for ν ∈ R, if Mν , ∅ then the function fν : Mν → X is a diffeomorphism onto image.

The above assumption fits the applications we have in mind, i.e. fν will be a one-parameter
family of Poincaré maps. Thus, the domain of each map fν may vary with the parameter ν.

Bifurcations are usually defined by their normal forms [13]. The following

f k
ν (x) = x(ν − x2), (2)

f k
ν (x) = x(ν − x) (3)

describe period-tupling and transcritical bifurcations, respectively. When an eigenvalue of the
derivative of a reversible planar map at a symmetric fixed point crosses 1 : k resonance, k ≥ 2,
generically period-tupling or touch-and-go bifurcation occurs (notation following [5]) — two
types of generic bifurcations for strong resonances are illustrated on Figure 1. The branches
of symmetric periodic points near bifurcation point look similarly to those for pitchfork and
transcritical bifurcations, respectively. This observation lead us to the alternative definitions, in
which these two types of bifurcations are described by some geometric conditions on the mutual
position of two intersecting curves, that solve equation f k

ν (x) − x = 0 — see Figure 2. These
definitions are motivated by our algorithm for validation of bifurcations (Section 3), which is
geometric in its spirit. Then, in Section 3.4 we will show, that these geometric definitions along
with some non-degeneracy conditions imply standard unfolding (2)–(3) of these bifurcations.

Definition 3. Let C : X → {true, false} be a predicate and let k be a positive integer. We
say that fν : Mν → X has period k–tupling bifurcation at (ν∗, x∗) ∈ M, if there exists V =

[ν1, ν2] × U ⊂ M, such that (ν∗, x∗) ∈ int V and there are continuous and smooth in the interior
of their domains functions

x f p : [ν1, ν2] −→ int U, xb1 , xb2 : [ν∗, ν2] −→ int U,

such that xb1 (ν∗) = xb2 (ν∗) = x f p(ν∗) = x∗ and the following conditions are satisfied.
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Figure 1: Upper row: period quadrupling bifurcation of a reversible planar map. After bifurcation a period-4 orbit is
created, which intersects Fix(R) at exactly two points. Lower row: third-order touch-and-go bifurcation of a reversible
map.
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Figure 2: Geometry of (left) period-tupling and (right) touch-and-go bifurcations.
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1. Periodic points:

Fix( f p
ν ,U,C) = {x f p(ν)}, ν ∈ [ν1, ν

∗], 1 ≤ p ≤ k,
Fix( f p

ν ,U,C) = {x f p(ν)}, ν ∈ [ν∗, ν2], 1 ≤ p < k,
Fix( f k

ν ,U,C) = {x f p(ν), xb1 (ν), xb2 (ν)}, ν ∈ [ν∗, ν2],
#Fix( f k

ν ,U,C) = 3, ν ∈ (ν∗, ν2].

2. If k is even, then for ν ∈ (ν∗, ν2] there holds

f k/2
ν (xb1 (ν)) = xb2 (ν), f k/2

ν (xb2 (ν)) = xb1 (ν).

Definition 4. Let C : X → {true, false} be a predicate and let k be a positive integer. We
say that fν : Mν → X has kth–order touch-and-go bifurcation at (ν∗, x∗) ∈ M, if there exists
V = [ν1, ν2] × U ⊂ M, such that (ν∗, x∗) ∈ int V and there are continuous and smooth in the
interior of their domains functions

x f p, xb : [ν1, ν2] −→ int U,

satisfying the following conditions.
1. Periodic points:

Fix( f p
ν ,U,C) = {x f p(ν)}, ν ∈ [ν1, ν2], 1 ≤ p < k,

Fix( f k
ν ,U,C) = {x f p(ν), xb(ν)}, ν ∈ [ν1, ν2].

2. The curves x f p and xb intersect at exactly one point x∗ = x f p(ν∗) = xb(ν∗).

The above two definitions are slightly more general than the normal forms (2)–(3). Indeed, it is
easy to see that the functions

f k
ν (x) = x(ν − x2)(ν2n + x2m),

f k
ν (x) = x(ν − x)(ν2n + x2m)

also satisfy geometric conditions from Definition 3 and Definition 4 for any n,m ∈ N.

3. Validation of bifurcations of symmetric periodic orbits: reversible maps

Let f : M → X be a family of R–reversible maps satisfying our standing assumption C1. In
this section we propose a general framework for computer-assisted verification that a branch of
R-symmetric period-2 points for fν undergoes symmetry breaking, period-tupling or touch-and-
go bifurcation. Let V ⊂ M be an explicit neighbourhood of an approximate bifurcation point
(both are input to the algorithm). The algorithm is split into two steps.

In the first step we validate, that the set of points (ν, x) ∈ V , such that x ∈ Fix(R) is either
period-2k point or period-2 point for fν is a union of two regular curves intersecting at exactly
one point. This is a common step for period-tupling and touch-and-go bifurcations and it will be
described in Section 3.1. In the case of symmetry breaking bifurcation, we need an additional
constraint, which allows to isolate the primary curve of period-2 points and the branching-off

curve of period-2 points. In Section 3.3 we will show, that such a problem can be solved, if the
system has an additional symmetry, which commutes with R.

The second step is specific for each type of bifurcation. We provide checkable by means of
rigorous numerics conditions, which guarantee, that the two curves intersect in a manner given
by Definition 3 and Definition 4.

Finally, in Section 3.4 we show that some additional non-degeneracy conditions lead to stan-
dard unfolding of the computed bifurcations to their normal forms (2) and (3).
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3.1. Bifurcation as two intersecting curves
We are mostly interested in studying bifurcations of symmetric periodic orbits of R–reversible

ODEs. In continuous-time R–reversible dynamical systems, a trajectory is R–symmetric, if it is
either an equilibrium belonging to Fix(R) or it intersects twice the set Fix(R) — see [29]. In
order to obtain isolated symmetric periodic orbits we assume, that dim X = 2n and Fix(R) is an
n-dimensional submanifold.

Let us fix k ≥ 1 and assume that (ν̂, x̂) is a good numerical approximation of a bifurcation
point, i.e. one of the eigenvalues of D fν̂(x̂) is close to 1 : k resonance. Since all types of
bifurcations we are studying are local phenomena, we assume, that there is an open interval J
and an open set U ⊂ X, such that (ν̂, x̂) ∈ J × U and for ν ∈ J the function f 2k

ν is defined on U.
We also assume that there are local coordinates in U in which

Fix(R,U) = {(p, q) ∈ U : p, q ∈ Rn, q = 0} .

We will use the same symbols (p, q) as a coordinate system near fν̂(x̂). Solutions to

πq( f k
ν (p, 0)) = 0 (4)

are R–symmetric periodic points of fν with principal period not larger than 2k. The solution set
to (4) near (ν̂, x̂) is expected to be a union of two curves, one of which corresponds to the fixed
points of f 2

ν and the second corresponding to period-2k points of fν.

Remark 5. There are rigorous numerical methods for validation, that a solution set to an im-
plicit equation forms a regular curve over an explicit domain — see for example [9, 7, 51]. In this
paper we propose slightly improved version of the Interval Newton Operator [1, 34, 39]. Since
it is only an auxiliary step of the main algorithm for validation of bifurcations, we postpone this
improvement to Appendix A.

The case k = 1 (symmetry breaking bifurcation) will require additional constraint and will be
discussed in Section 3.3. If k > 1, we may apply the method described in Appendix A to solve
(4) on an explicit range of parameter values ν ∈ J . In what follows we assume, that there is a
smooth curve

J 3 ν→ x f p(ν) = (p1(ν), p2(ν), 0) ∈ R × Rn−1 × Rn, (5)

such that for ν ∈ J and i = 1, . . . , k − 1

Fix( f 2i
ν ,U,CR) = {x f p(ν)}. (6)

In most cases, the function x f p cannot be computed exactly, but using rigorous numerics we can
prove, that it exists and we can find bounds for x f p(ν) and its derivatives. Although it is not
required, it is desirable for further numerical computation to choose the coordinate system in
Fix(R,U) and the decomposition p = (p1, p2) so that p′1(ν̂) ≈ 0.

The idea of computing the second curve of R-symmetric, period-2k points, which solves
(4) goes as in [51]. At first, we perform the Lyapunov-Schmidt reduction [13]. We split q =

(q1, q2) ∈ R×Rn−1 and using the method from Appendix A we solve for a function p2 = p2(ν, p1)
satisfying implicit equation

πq2 ( f k
ν (p1, p2, 0)) = 0. (7)

Assuming that p2 = p2(ν, p1) is locally unique solution to (7) in J × U, we can define so-called
bifurcation function

Gk(ν, p1) = πq1 ( f k
ν (p1, p2(ν, p1), 0)). (8)
7



In this way we reduced the problem of finding zeros of (4) to a problem of finding zeros of a
bivariate scalar-valued function (8). By the construction, the function Gk vanishes at (ν, p1(ν)),
for ν ∈ J — see (5). Therefore, we can factorize it in the following way

Gk(ν, p1) = (p1 − p1(ν))gk(ν, p1), (9)

where

gk(ν, p1) =

∫ 1

0

∂Gk

∂p1
(ν, t(p1 − p1(ν)) + p1(ν))dt. (10)

The function gk is called the reduced bifurcation function. Recall, that in most cases the function
ν → p1(ν) is unknown and we have only a rigorous bound on it and its derivatives. Similarly as
p1, the function gk cannot be computed exactly. However, it possible to bound values and partial
derivatives of gk using integral representation (10).

In the second step, we apply the method from Appendix A to prove, that the set of zeroes of
gk can be parametrized as a smooth curve p1 → ν(p1). To sum up, in addition to C1, we make
the following standing assumptions, which are all checkable be means of rigorous numerical
methods:

C2: P1 is a closed interval and P2 is closed set, such that p1(ν) ∈ int P1 for ν ∈ J and the
solution set to (7) in J × P1 × P2 is a graph of smooth function p2 : J × P1 → int P2;

C3: there exists a smooth function P1 3 p1 → ν(p1) ∈ J , such that

{(ν, p1) ∈ J × P1 : gk(ν, p1) = 0} = {(ν(p1), p1) : p1 ∈ P1} ,

where gk is defined by (10);

C4: there holds

0 <
∂2Gk

∂ν∂p1
(J × P1) +

∂2Gk

∂p2
1

(J × P1)p′1(J).

We will finish this section by showing, that assumptions C1–C3 imply, that the two curves, which
solve (4) intersect at some point, while C4 implies that this intersection is unique.

Lemma 6. Let s : A → B and t : B → A be continuous, where A is an open interval, B is
a closed interval and s(A) ⊂ int B. Then there exists (a∗, b∗) ∈ int (A × B), such that (a∗, s(a∗)) =

(t(b∗), b∗).

Proof: Since s(A) ⊂ intB, the set (A × B) \ {(a, s(a)) : a ∈ A} has two connected components
containing the points (t(min B),min B) and (t(max B),max B), respectively. Since t is continuous,
there is b∗ ∈ int B such that (t(b∗), b∗) = (a∗, s(a∗)) for some a∗ ∈ A. �

Lemma 7. Under assumptions C1–C4, there is a unique point (ν∗, p∗1) ∈ J × P1, such that
ν∗ = ν(p∗1) and p∗1 = p1(ν∗).

Proof: From C2–C3 and Lemma 6 the curves J 3 ν → p1(ν) ∈ P1 and P1 3 p1 → ν(p1) ∈ J
intersect at some point (ν∗, p∗1). Assume that (ν̂, p1(ν̂)) is another intersection point for some
ν̂ ∈ J . For τ ∈ [0, 1] we define w(τ) = ν∗ + τ(ν̂ − ν∗) and

u(τ) = g(w(τ), p1(w(τ)).
8



From C3 we have u(0) = u(1) = 0 and 0 = u(1) − u(0) = S (ν̂ − ν∗), where

S =

∫ 1

0

∂g
∂ν

(u(τ)) +
∂g
∂p1

(u(τ))p′1(w(τ))dτ. (11)

We will argue, that S ∈ ∂2Gk
∂ν∂p1

(J ×P1) + ∂2Gk

∂p2
1

(J ×P1)p′1(J) and thus by C4 there must be ν̂ = ν∗.
For (ν, p1) ∈ J × P1 we have

∂g
∂p1

(ν, p1) =

∫ 1

0

∂2G
∂p2

1

(ν, t(p1 − p1(ν)) + p1(ν))tdt and

∂g
∂ν

(ν, p1) =

∫ 1

0

∂2G
∂ν∂p1

(ν, t(p1 − p1(ν)) + p1(ν))dt +∫ 1

0

∂2G
∂p2

1

(ν, t(p1 − p1(ν)) + p1(ν))p′1(ν)(1 − t)dt.

In particular, for fixed τ ∈ [0, 1] and (ν, p1) = u(τ), both second partial derivatives of G are
evaluated at a point which does not depend on t. Therefore

∂g
∂p1

(u(τ)) =

∫ 1

0

∂2G
∂p2

1

(u(τ))tdt =
1
2
∂2G
∂p2

1

(u(τ)). (12)

Similarly

∂g
∂ν

(u(τ)) =

∫ 1

0

∂2G
∂ν∂p1

(u(τ)) +
∂2G
∂p2

1

(u(τ))p′1(w(τ))(1 − t)dt =

∂2G
∂ν∂p1

(u(τ)) +
1
2
∂2G
∂p2

1

(u(τ))p′1(w(τ)). (13)

Using (11)–(13) we obtain

S =

∫ 1

0

∂2G
∂ν∂p1

(u(τ)) +
∂2G
∂p2

1

(u(τ))p′1(w(τ))dτ ∈
∂2Gk

∂ν∂p1
(J × P1) +

∂2Gk

∂p2
1

(J × P1)p′1(J).

�

3.2. Validation of period-tupling and touch-and-go bifurcations

Assumptions C1–C4 are easily checkable by means of rigorous numerics. The curve of
R-symmetric period-2k points is defined on an explicit domain P1, which makes it possible for
further continuation of this branch by the standard methods [9, 7, 20, 51] (see also Appendix A).
On the other hand, Lemma 7 guarantees, that there is an unique bifurcation point in the domain
under consideration. The type of bifurcation, however, is unknown.

In what follows, we derive conditions, which along with C1–C4 guarantee, that period tu-
pling or touch-and-go bifurcation occurs in the sense of Definition 3 and Definition 4, respec-
tively.
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Theorem 8. Under assumptions C1–C4, if k > 1 is odd and

0 <
∂2Gk

∂p2
1

(J × P1) (14)

then f 2
ν has kth-order touch-and-go bifurcation at some point (ν∗, x∗) ∈ J × P1 × P2 × {0}.

Proof: From Lemma 7 there is a unique intersection point (ν∗, p∗1) of two curves of zeroes of Gk

in J × P1. From (14) it follows that

∂gk

∂p1
(ν∗, p∗1) =

∫ 1

0

∂2Gk

∂p2
1

(ν∗, p∗1)tdt =
1
2
∂2Gk

∂p2
1

(ν∗, p∗1) , 0. (15)

Differentiating the identity gk(ν(p1), p1) ≡ 0 we obtain

∂gk

∂ν
(ν∗, p∗1)ν′(p∗1) +

∂gk

∂p1
(ν∗, p∗1) = 0.

From the above and (15) we conclude, that ν′(p∗1) , 0. Therefore, there is an interval [ν1, ν2] ⊂
J , such that ν∗ = ν(p∗1) ∈ (ν1, ν2) and the inverse function x̃b = ν−1 is defined on it. Since
p∗1 ∈ int P1, the interval [ν1, ν2] can be chosen so that x̃b([ν1, ν2]) ⊂ int P1.

Define Uε = P1 × P2 × (−ε, ε)n. We assumed, that Fix(R) is a submanifold given locally by
q = 0. Therefore, there exists sufficiently small ε > 0, such that for ν ∈ [ν1, ν2] we have

Fix( f 2k
ν ,Uε,CR) = Fix( f 2k

ν , P1 × P2 × {0},CR) = {x f p(ν), xb(ν)},

where
xb(ν) = (x̃b(ν), p2(ν, x̃b(ν)), 0) ∈ Uε.

From (6) it follows that
Fix( f 2i

ν ,Uε,CR) = {x f p(ν)}

for i = 1, . . . , k − 1. Thus, all requirements from Definition 4 are satisfied on the set [ν1, ν2]×Uε

and for the point x∗ = (p∗1, p2(ν∗, p∗1), 0). �
The next theorem provides a framework for computer-assisted verification of the presence of

period k-tupling bifurcation.

Theorem 9. Assume C1–C4. If k ≥ 2 is even and

∂3Gk

∂p3
1

(J × P1) ·
(
∂2Gk

∂ν∂p1
(J × P1)

)−1

⊂ R−, (16)

then f 2
ν has period k-tupling bifurcation at some point (ν∗, x∗) ∈ J × P1 × P2 × {0}.

Proof: From Lemma 7 we know, that the curves J 3 ν→ p1(ν) ∈ P1 and P1 3 p1 → ν(p1) ∈ J
intersect at exactly one point (ν∗, p∗1). We will prove, that p∗1 is a proper local minimum of
p1 → ν(p1). First we will show, that ν′(p∗1) = 0.

Define x∗ = (p∗1, p2(ν∗, p∗1), 0). Let us choose a sequence {pn
1}n∈N, such that pn

1 , p∗1 and
limn→∞ pn

1 = p∗1. Define νn = ν(pn
1) and xn = (pn

1, p2(νn, pn
1), 0). Since pn

1 , p∗1 and the inter-
section point is unique it follows, that xn is period-2k point. Since p∗1 ∈ int P1, k is even and

10



x∗ is a fixed point for f 2
ν∗ we conclude, that for n large enough the point yn = f k

νn (xn) satisfies
πp1 yn ∈ int P1 and

ν(πp1 (yn)) = νn,

lim
n→∞

πp1 (yn) = πp1 (x∗) = p∗1.

The point yn is an R-symmetric, 2k-periodic point for fνn , so it solves (4). Therefore yn ∈ P1×P2×

{0}. Since xn , yn, assumption C2 implies, that also pn
1 , πp1 yn. By the Rolle’s Theorem there is

a point in the interval joining pn
1 and πp1 yn at which ν′ vanishes. In consequence, arbitrary close

to p∗1 there is a point at which ν′ is zero, which by the smoothness of ν′(p1) implies ν′(p∗1) = 0.
We will show that ν′′(p∗1) > 0. Differentiating gk(ν(p1), p1) ≡ 0 we obtain

∂gk

∂p1
(ν∗, p∗1) = −

∂gk

∂ν
(ν∗, p∗1)ν′(p∗1) = 0.

On the other hand

0 =
∂gk

∂p1
(ν∗, p∗1) =

∫ 1

0

∂2Gk

∂p2
1

(ν∗, p∗1)tdt =
1
2
∂2Gk

∂p2
1

(ν∗, p∗1).

Therefore

∂gk

∂ν
(ν∗, p∗1) =

∫ 1

0

∂2Gk

∂p1∂ν

(
ν∗, p∗1

)
+
∂2Gk

∂p2
1

(
ν∗, p∗1

)
(1 − t)p′1(ν∗)dt =

∂2Gk

∂p1∂ν

(
ν∗, p∗1

)
. (17)

We also have
∂2gk

∂p2
1

(ν∗, p∗1) =

∫ 1

0

∂3Gk

∂p3
1

(
ν∗, p∗1

)
t2dt =

1
3
∂3Gk

∂p3
1

(ν∗, p∗1). (18)

Differentiating twice gk(ν(p1), p1) ≡ 0 with respect to p1, we obtain

∂gk

∂ν
(ν∗, p∗1)ν′′(p∗1) +

∂2gk

∂ν2 (ν∗, p∗1)
(
ν′(p∗1)

)2
+ 2

∂2gk

∂p1∂ν
(ν∗, p∗1)ν′(p∗1) +

∂2gk

∂p2
1

(ν∗, p∗1) ≡ 0. (19)

Using ν′(p∗1) = 0 and (16)–(19) we conclude, that

ν′′(p∗1) = −
∂2gk

∂p2
1

(ν∗, p∗1)
(
∂gk

∂ν
(ν∗, p∗1)

)−1

> 0.

This proves, that the function p1 → ν(p1) has a proper local minimum at p∗1.
Now, we will construct the functions xb1 , xb2 as required by Definition 3. Since ν′′(p∗1) > 0,

we can shrink P1 in such a way, that p∗1 ∈ int P1, ν(min P1) = ν(max P1) and ν is strictly convex
on P1. Given that p1(ν) is smooth (so it has bounded slope near ν∗) and ν′(p∗1) = 0 we conclude,
that for ν ∈ [ν∗, ν(min P1)] there holds p1(ν) ∈ int P1. Shrinking J from below, if necessary, we
may also assume that p1(ν) ∈ int P1 for ν < ν∗ and ν ∈ J .

Let us fix ν2 ∈ (ν∗, ν(min P1)). The function ν(p1) is monotone on [min P1, p∗1] and [p∗1,max P1].
Therefore, for ν̃ ∈ [ν∗, ν2]

{p1 : ν(p1) = ν̃} = {x̃b1 (̃ν), x̃b2 (̃ν)}

11



and the functions x̃bi can be chosen to be continuous and smooth in (ν∗, ν2). Define Uε = P1 ×

P2 × (−ε, ε)n. For some sufficiently small ε > 0 the functions

xb1 , xb2 : [ν∗, ν2]→ intUε

given by
xbi (ν) =

(
x̃bi (ν), p2(ν, x̃bi (ν)), 0

)
.

satisfy conditions from Definition 3. From (6) it follows that

Fix( f 2i
ν ,Uε,CR) = {x f p(ν)}

for i = 1, . . . , k − 1, which completes the proof. �

3.3. Symmetry breaking bifurcations
A special type of bifurcation covered by Definition 3 is when k = 1. In the case of reversible

maps, we are looking for the set of fixed points of f 2
ν , which near the bifurcation point is expected

to be a union of two intersecting curves. Thus, the principal branch of fixed points of f 2
ν cannot be

isolated by applying Interval Newton Operator (Appendix A) to (4). Therefore, we need an extra
constraint in order to isolate two curves that intersect at the bifurcation point. A possible scenario
for this kind of bifurcation is breaking some symmetry S , which provides desired additional
constraint CS , as defined by (1).

Let f : M ⊂ J × X → X be a family of R–reversible and S –symmetric maps. As in Sec-
tion 3.1, we focus on computation of the set of R–symmetric fixed points for f 2

ν .
Let (ν̂, x̂) ∈ M be an apparent bifurcation point and let U ⊂ X be an open set, such that x̂ ∈ U

and J × U ⊂ M. We assume, that there are local coordinates in U, such that

Fix(R,U) = {(p, q) ∈ U : p, q ∈ Rn, q = 0} .

We impose that Fix(R,U) and Fix(S ,U) intersect transversally. In the above settings, we expect
that for ν ∈ J the set of double-symmetric fixed points of f 2

ν in U is a single point

Fix( f 2
ν ,U,CR ∧ CS ) = {x f p(ν)}.

Thus, using the method described in Appendix A, it is possible to isolate the curve

J 3 ν→ x f p(ν) = (p1(ν), p2(ν), 0) ∈ R × Rn−1 × Rn (20)

from the branching-off curves xb1,2 (ν) ∈ Fix(R,U), which intersect x f p(ν) at exactly one point
located in Fix(R,U) ∩ Fix(S ,U).

The remaining steps in validation of the existence of a symmetry breaking bifurcation go as
described in Section 3.1 and Section 3.2. We perform the Lyapunov-Schmidt reduction (7) and
we define the bifurcation functions G1 and g1 by (8) and (10), respectively.

In Theorem 9 we assumed that the period of branching-off orbits is even. This lead us to
a conclusion, that after half of iterations, the points sufficiently close to the bifurcation point
come back to its vicinity. This allowed us to prove, that the reduced bifurcation function gk has
a local minimum at the bifurcation point, which was the crucial step in the proof of the presence
of period-tupling bifurcation.

In the case of the symmetry breaking bifurcation we cannot use this argument, because k = 1
is odd. The next theorem says, that commutativity of R and S yields to the same conclusion.

12



Theorem 10. Let S and R be a symmetry and a reversing symmetry for fν, respectively. Assume
that C1–C4 are satisfied for k = 1 and with x f p given by (20). If the symmetries R and S
commute and (16) is satisfied, then f 2

ν has symmetry breaking bifurcation at some point (ν∗, x∗) ∈
J × P1 × P2 × {0}.

Proof: From Lemma 7 there is an unique (ν∗, p∗1) ∈ intJ × P1, such that p1(ν∗) = p∗1 and
ν(p∗1) = ν∗. Let us set x∗ := (p1(ν∗), p2(ν∗), 0) ∈ Fix(S ) ∩ Fix(R).

We will show, that ν′(p∗1) = 0. Take a sequence
{
pn

1

}
n∈N

of points from P1, which converges
to p∗1 and such that pn

1 , p∗1 for n ∈ N. Let us define νn = ν(pn
1), xn = (pn

1, p2(νn, pn
1), 0) ∈ Fix(R)

and yn = S (xn). By the commutativity of R and S we have

R(yn) = R(S (xn)) = S (R(xn)) = S (xn) = yn,

hence yn ∈ Fix(R). Similarly fνn (yn) ∈ Fix(R), because

R( fνn (yn)) = R( fνn (S (xn))) = R(S ( fνn (xn))) = S (R( fνn (xn))) = S ( fνn (xn)) = fνn (yn).

This shows, that yn solves (4) with ν = νn and ν(πp1 (yn)) = νn. Since

lim
n→∞

πp1 (yn) = πp1 (S (x∗)) = p∗1 (21)

we conclude, that yn ∈ P1 × P2 × {0} for n large enough.
Since pn

1 , p∗1 and the intersection point is unique, it follows that xn < Fix(S ), so xn , yn.
This and C2 imply that also pn

1 , πp1 yn. By the Rolle’s Theorem there is a point in the interval
joining pn

1 and πp1 yn at which ν′ vanishes. Given that both pn
1 and πp1 (yn) (see (21)) converge to

p∗1 we conclude, that arbitrarily close to p∗1 there is a point at which ν′ is zero and thus ν′(p∗1) = 0.
The remaining part of the proof goes as in Theorem 9. Condition (16) implies, that ν′′(p∗1) >

0, which proves that p∗1 is a proper minimum of ν(p1). This makes it possible to define two
branches xb1 and xb2 , as required in Definition 3. �

3.4. General unfolding of period-tupling and touch-and-go bifurcations
Theorem 8 and Theorem 9 provide frameworks for computer-assisted verification, that the

two types of bifurcations occurs in the sense of geometric conditions given by Definition 4 and
Definition 3, respectively. In this section we will show, that the same geometric assumptions lead
to standard unfolding of these bifurcations.

Theorem 11. Under assumptions of Theorem 9 (C1–C4 and (16)), there is a smooth ν-dependent
substitution p1 = p1(ν,w), which brings the bifurcation function (8) to the normal form

Gk(ν,w) = αw(ν − βw2) + O(|w|4), (22)

where α = α(ν) does not vanish at ν = 0 and β = β(ν) is positive at ν = 0.

Proof: Let ν∗ be the parameter value at which bifurcation occurs. Without loosing generality we
may assume, that ν∗ = 0. From the proof of Theorem 9 we have that ν′(p∗1) = 0. Differentiation
of the identity gk(ν(p1), p1) ≡ 0 gives

∂gk

∂p1
(ν∗, p∗1) = −

∂gk

∂ν
(ν∗, p∗1)ν′(p∗1) = 0. (23)
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First, a ν-dependent substitution p1 = z + p1(ν) brings Gk to the form

Gk(ν, z) = zgk(ν, z) = zgk(ν, z + p1(ν)). (24)

Put z∗ = 0. Differentiation of the product Gk(ν, z) = zgk(ν, z) gives
∂Gk
∂z (ν∗, z∗) = gk(ν∗, z∗) + z∗ ∂gk

∂z (ν∗, z∗) = 0,
∂2Gk
∂z2 (ν∗, z∗) = 2 ∂gk

∂z (ν∗, z∗) + z∗ ∂
2gk
∂z2 (ν∗, z∗) = 0,

(25)

because gk(ν∗, z∗) = 0 and from (23) also ∂gk
∂z (ν∗, z∗) =

∂gk
∂p1

(ν∗, p∗1) = 0. The non-degeneracy
condition (16) and C4 imply that

∂3Gk
∂z3 (ν∗, z∗) = ∂3Gk

∂p3
1

(ν∗, p∗1) , 0,
∂2Gk
∂z∂ν (ν∗, z∗) = ∂2Gk

∂p1∂ν
(ν∗, p∗1) + ∂2Gk

∂p2
1

(ν∗, p∗1)p′1(ν∗) , 0.
(26)

Using (24)–(26) we can write Gk in the form

Gk(ν, z) = c1νz + c2νz2 + c3z3 + O(|z|4),

where ci, i = 1, 2, 3 are ν-dependent coefficients with c1(0) , 0 and c3(0) , 0. Consider a ν-
dependent substitution of the form

z = w − h(ν)w2.

Then
Gk(ν,w) = c1νw + (−c1h + c2) νw2 + (c3 − 2c2νh)w3 + O(|w|4).

In order to annihilate the term νw2 we should take h = c2/c1, which is well defined near ν∗ = 0,
because c1(0) , 0. With such choice of h, we have

Gk(ν,w) = c1νw + d3w3 + O(|w|4),

where d3 = c3 − 2c2
2ν/c1 and d3(0) = c3(0) , 0. Put β = −d3/c1. From (16) and (26) we have

c1(0)c3(0) < 0. Therefore β(0) = −c3(0)/c1(0) > 0. Setting α = c1 we conclude, that Gk takes
the required form (22). �

Theorem 12. Under assumptions of Theorem 8 (C1–C4 and (14)), there is a smooth ν-dependent
substitution p1 = p1(ν,w) which brings the bifurcation function (8) to the normal form

Gk(ν,w) = αw(ν − βw) + O(|w|3), (27)

where α = α(ν), β = β(ν) and they are non-zero at ν = 0.

Proof: Let ν∗ be the parameter value at which bifurcation occurs. Without loosing generality we
may assume that ν∗ = 0. Reasoning as in the proof of Theorem 11, substitution z = p1 − p1(ν)
brings Gk to the form Gk(ν, z) = zgk(ν, z). Put z∗ = 0. From C1–C4 and (14) we have that

∂Gk
∂z (ν∗, z∗) = gk(ν∗, z∗) + z∗ ∂gk

∂z (ν∗, z∗) = 0,
∂2Gk
∂z2 (ν∗, z∗) = ∂2Gk

∂p2
1

(ν∗, p∗1) , 0,
∂2Gk
∂z∂ν (ν∗, z∗) = ∂2Gk

∂p1∂ν
(ν∗, p∗1) + ∂2Gk

∂p2
1

(ν∗, p∗1)p′1(ν∗) , 0.

Hence, in these coordinates we have

Gk(ν, z) = c1νz + c2z2 + O(|z|3),

with c1(0) , 0 and c2(0) , 0. Setting α = c1 and β = c2/c1 we obtain the required normal form
(27). �
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4. Validation of bifurcations of symmetric periodic orbits: reversible Hamiltonian systems

In this section we show, how to adopt the general framework described in Section 3 to au-
tonomous Hamiltonian systems. We consider an R–reversible Hamiltonian system

ẋ = J∇H(x), (28)

where J is the standard symplectic matrix and H : R2n+2 → R is C4-smooth. First, we choose a
C3-smooth Poincaré section Π ⊂ R2n+2. If Fix(R) ⊂ Π, by [48, Lemma 3.3] the Poincaré map
P : Π → Π is R|Π–reversible, too. In what follows we will study bifurcations of R-symmetric
fixed points for P2.

In autonomous Hamiltonian systems, a natural choice of the bifurcation parameter is the
value of H, because it is a constant of motion. On the other hand, from the point of view of
rigorous numerics, it is much easier and efficient to work in the phase space coordinates and
parametrize periodic orbits for P by one of them.

This dissonance between numerical efficiency and formal description of a bifurcation is
solved in the following way. We expect that two families of periodic points for P intersect at
a bifurcation point. This geometric condition can be checked in the phase-space coordinates.
Additional conditions on H, which will be given in this section, will guarantee, that H can be
used (locally) as a bifurcation parameter.

Let us give a brief overview of the construction we are going to perform. Period-tupling
and touch-and-go bifurcations are local phenomena. Thus, we can choose local coordinates
(p0, p, q0, q) ∈ R × Rn × R × Rn near an apparent bifurcation point, such that

1. Π = {(p0, p, q0, q) ∈ R × Rn × R × Rn : q0 = 0} and
2. Fix(R) = {(p0, p, q0, q) ∈ R × Rn × R × Rn : q0 = 0, q = 0} ⊂ Π.

In order to simplify further notation we will use (p0, p, q) coordinates in Π and we will always
skip q0 = 0 as an argument of P and H. We also assume, that the vector field (28) is transverse
to Π near an apparent bifurcation point, so that the Poincaré map is well defined and smooth.
Define Πh = {(p0, p, q) ∈ Π : H(p0, p, q) = h}.

Assuming that near an apparent bifurcation point there holds

∂H
∂p0

(p0, p, q) , 0

we can conclude that the projection Πh 3 (p0, p, q) → (p, q) is a local diffeomorphism. This
allows us to parametrize Πh locally by (p0(h, p, q), p, q) for h belonging to some intervalH . Our
goal is to specify conditions on P and H, which will guarantee, that the map

f (h, p, q) = π(p,q)P(p0(h, p, q), p, q) (29)

is well defined on some domain and it has period-tupling and/or touch-and-go bifurcations in the
sense of Definition 3 and Definition 4, respectively.

Let us fix k > 1. Following Section 3, we split p = (p1, p2) and q = (q1, q2). We assume,
that the set of R–symmetric fixed points of P2 near an apparent bifurcation point forms a regular
curve, which is parametrized by the coordinate p0

P0 3 p0 → xH
f p(p0) := (p0, p1(p0), p2(p0), 0) ∈ R × R × Rn−1 × Rn (30)
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and defined on an explicit, open interval P0. We also assume, that for i = 1, . . . , k − 1 there holds

Fix(P2i, P0 × P1 × P2 × {0})) = {xH
f p(p0) : p0 ∈ P0}. (31)

First we perform the Lyapunov-Schmidt reduction. We assume that there is a set P0 × P1 × P2
and a smooth function pH

2 : P0 × P1 → P2, such that for (p0, p1, p2) ∈ P0 × P1 × P2

πq2 (Pk(p0, p1, p2, 0)) = 0 ⇐⇒ p2 = pH
2 (p0, p1). (32)

Using this implicit function we can define the bifurcation function by

GH
k (p0, p1) = πq1 (Pk(p0, p1, pH

2 (p0, p1), 0)) (33)

and factorize it as GH
k (p0, p1) = (p1 − p1(p0))gH

k (p0, p1), where the reduced bifurcation function
reads

gH
k (p0, p1) =

∫ 1

0

∂GH
k

∂p1
(p0, p1(p0) + t(p1 − p1(p0))) dt. (34)

Now we can specify the standing assumptions in the context of Hamiltonian systems:

HC2: P1 is a closed interval, and P2 is a closed set, such that p1(p0) ∈ int P1 for p0 ∈ P0, where
p1(p0) is given by (30) and there is a smooth function pH

2 : P0 × P1 → int P2 solving (32);

HC3: there exists a smooth function P1 3 p1 → p0(p1) ∈ P0 such that{
(p0, p1) ∈ P0 × P1 : gH

k (p0, p1) = 0
}

= {(p0(p1), p1) : p1 ∈ P1} ,

where gH
k is defined by (34);

HC4: there holds

0 <
∂2GH

k

∂p0∂p1
(P0 × P1) +

∂2GH
k

∂p2
1

(P0 × P1)p′1(P0).

Assumptions HC2–HC4 and Lemma 7 imply, that the set of R–symmetric fixed points for P2k

in P0 × P1 × P2 × {0} is the union of two regular curves, which intersect at unique point x∗ =

(p∗0, p∗1, pH
2 (p∗0, p∗1), 0), where pH

2 is defined by (32). These parametric curves are defined on
explicit range p0 ∈ P0 and p1 ∈ P1, respectively, which makes it possible for further continuation
of these branches by the method described in Appendix A. On the other hand, we have no
information about the type of bifurcation at the intersection point.

Generically we expect, that the value of H can be used as the bifurcation parameter. It may
happen, however, that H is not monotone (or even constant) along one or both curves of periodic
points. In the remaining part of this section we derive (easily checkable by means of rigorous
numerics) conditions, which guarantee, that

1. H can be used as the parameter near x∗ and
2. the mapping (29) undergoes one of the bifurcations defined by Definition 3 and/or Defini-

tion 4.

For further use we define four functions

s(p0, p, q) = (H(p0, p, q), p, q),
xH

b (p1) =
(
p0(p1), p1, pH

2 (p0(p1), p1), 0
)
,

h f p(p0) = H(xH
f p(p0)) and

hb(p1) = H(xH
b (p1)).
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Lemma 13. If P2(x∗) = x∗ and
∂H
∂p0

(x∗) , 0, (35)

then there is an open intervalH and an open set U, such that

1. s(x∗) ∈ H × U,
2. s−1|H×U is well defined diffeomorphism onto image and
3. Pk ◦ s−1 is defined onH × U.

Proof: From (35) it follows, that det (Ds(x∗)) = ∂H
∂p0

(x∗) , 0 and thus s is a local diffeomorphism
near x∗. The inverse function takes the form

s−1(h, p, q) = (p0(h, p, q), p, q).

Since x∗ is a fixed point of P2, we can also find open setsH and U, such that s(x∗) ∈ H ×U and
such that Pk ◦ s−1 is defined onH × U. �

Theorem 14. Assume HC2–HC4 and let x∗ = (p∗0, p∗1, pH
2 (p∗0, p∗1), 0) be the unique intersection

point from Lemma 7. If k > 1 is odd, ∂H
∂p0

(x∗) , 0, h′f p(p∗0) , 0 and h′b(p∗1) , 0, then f 2
h defined by

(29) has kth-order touch-and-go bifurcation at s(x∗).

Proof: Take H × U from Lemma 13. From (30)–(31) the point xH
b (p1), p1 ∈ P1 is of principal

period 2k for P, except the intersection p∗1. Since h′f p(p∗0) , 0 and h′b(p∗1) , 0, we can choose
[h1, h2] ⊂ H , h∗ ∈ (h1, h2), such that h−1

f p and h−1
b are defined on [h1, h2] and both functions

x f p = π(p,q) ◦ xH
f p ◦ h−1

f p and xb = π(p,q) ◦ xH
b ◦ h−1

b

have range in U. By the construction they satisfy conditions from Definition 4 for the function f
defined by (29). �

Theorem 15. Assume HC2–HC4 and let x∗ = (p∗0, p∗1, pH
2 (p∗0, p∗1), 0) be the unique intersection

point from Lemma 7. If k ≥ 2 is even, ∂H
∂p0

(x∗) , 0, h′f p(p∗0) > 0 and h′′b (p∗1) > 0, then f 2
h defined

by (29) has period k-tupling bifurcation at s(x∗).

Proof: Take H × U from Lemma 13. We will show that h′b(p∗1) = 0. Let us fix a sequence
pn

1 → p∗1, such that p∗1 , pn
1 and xH

b (pn
1) is defined for all n ∈ N. Let us set xn = xH

b (pn
1) and

yn = Pk(xn). We also have yn , xn, because by (31) the principal period of xn is 2k. This
and HC3 imply, that pn

1 , πp1 yn. Since k is even and x∗ is a fixed point for P2, we have that
limn→∞ yn = x∗, yn , xn and H(yn) = H(xn) = hb(pn

1). Hence, in the interval joining pn
1 and πp1 yn

there is a point at which h′b vanishes and in consequence h′b(p∗1) = 0. The assumption h′′b (p∗1) > 0
implies, that p∗1 is a proper local minimum of hb.

The remaining part of the construction goes as in Theorem 9. The function hb is convex near
p∗1 ∈ int P1 which allows us to define two continuous branches

hbi : [h∗, h2]→ int P1, i = 1, 2,

of h−1
b , for some h2 ∈ H . The function h f p is invertible near p∗0, because we assumed that

h′f p(p∗0) , 0. Restricting the domain, if necessary, we may assume, that the inverse is defined on
[h1, h2] with h∗ ∈ (h1, h2). Define

x f p = π(p,q) ◦ xH
f p ◦ h−1

f p and xbi = π(p,q) ◦ xH
b ◦ hbi , i = 1, 2.
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Shrinking again the interval [h1, h2] if necessary, we may assume, that the range of the above
three functions is in U. Thus f 2

h defined by (29) has period k-tupling bifurcation at s(x∗). �
We end this section by a version of Theorem 10 for Hamiltonian systems. Proceeding as in

Section 3.3 we assume, that (28) admits a symmetry S and a reversing symmetry R. We also
assume that the function defined by (30) satisfies

Fix(P2, P0 × P1 × P2 × {0},CR ∧ CS ) =
{
xH

f p(p0) : p0 ∈ P0

}
.

Then, we define GH
1 and gH

1 by (33) and (34), respectively. We state the following result without
a proof, as it is similar to that of Theorem 10 and Theorem 15.

Theorem 16. Assume HC2–HC4 with k = 1 and let x∗ = (p∗0, p∗1, pH
2 (p∗0, p∗1), 0) be the unique

intersection point from Lemma 7. If S and R commute, ∂H
∂p0

(x∗) , 0, h′f p(p∗0) > 0 and h′′b (p∗1) > 0,
then f 2

h defined by (29) has symmetry breaking bifurcation at s(x∗).

5. Bifurcations of odd periodic solutions in the Falkner-Skan equation

The Falkner-Skan equation [35] is a third order ODE given by

f ′′′ + f f ′′ + β
[
1 − ( f ′)2

]
= 0. (36)

It is low-dimensional and without singularities. Therefore it is relatively easy for rigorous nu-
merical investigation. Although for some physical reasons solutions of certain BVP for (36) are
relevant, we use the system to test the methodology introduced in Section 3 and thus we will fo-
cus on periodic solutions. Using this example we will also provide the reader with some details
regarding validation of the presence of period-tupling and touch-and-go bifurcations. A higher-
dimensional hamiltonian system (Circular Restricted Three Body Problem), which is also more
computationally demanding, will be studied in Section 6.

Our aim is to prove that some family of odd periodic solutions of (36) parametrized by β
undergoes period-doubling, third order touch-and-go and period-quadrupling bifurcations.

The equation (36) can be rewritten as a system of first order equations
x′ = y,
y′ = z,
z′ = β(y2 − 1) − xz

(37)

and in the sequel we will work with (37). The system (37) is reversible with respect to R(x, y, z) =

(−x, y,−z). For all β > 0 the points (0,±1, 0) are R-symmetric equilibria. Numerical simu-
lation shows, that there is a family of R-symmetric periodic orbits uβ(t) = (xβ(t), yβ(t), zβ(t))
parametrized by β > 1. These periodic orbits intersect the symmetry line Fix(R) = {(0, y, 0) :
y ∈ R} at exactly two points, which approach (0,±1, 0), respectively, when β → 1+ — see
Fig. 3. Thus, the period of these orbits goes to infinity when β → 1+. It is also observed, that
maxt∈R ‖xβ(t)‖ goes to infinity when β→ 1+.

For small β > 1, these periodic orbits are hyperbolic. For larger β they become elliptic and
crossing strong 1 : k resonances, k = 2, 3, 4 at approximate parameter values β̂k, respectively,
where

β̂2 = 340.18753498914353231,
β̂3 = 453.442586821384637563,
β̂4 = 679.95415507296894192.

(38)
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Figure 3: The y coordinate of two intersection points of Fix(R) with an approximate R-symmetric periodic solution of
(37) as a function of β ∈ (1, 100 000].

Approximate initial conditions for resonant R-symmetric periodic orbits are (0, ŷk, 0), where

ŷ2 = 0.939792756949623004649,
ŷ3 = 0.939848585715971576498,
ŷ4 = 0.939904499164097608161.

(39)

and their shapes are shown in Fig. 4. It seems, the family uβ continues to exists for all β > 1
approaching 1 : 1 resonance when β→ ∞.
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Figure 4: R-symmetric periodic orbits corresponding to 1 : 2 (solid), 1 : 3 (dashed) and 1 : 4 (dotted) resonances.

Let us define a Poincaré section

Π = {(x, y, z) : z = 0}.

We will use (x, y) coordinates to describe points in Π. By Pβ : Π → Π we denote the associated
Poincaré map for the system (37) with the parameter value β. The map Pβ is reversible with
respect to involution R(x, y) = (−x, y). We will also use the notation P(β, x, y) = Pβ(x, y).

The aim of this section is to give a computer-assisted proof of the following theorem.
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Theorem 17. There is a smooth family uβ = (xβ, yβ) of R-symmetric period-two points for Pβ
parametrized by β ∈ J = [ 9

8 , 100 000]. This family undergoes period-doubling, third order
touch-and-go and period-quadrupling bifurcations at some points (β∗k, 0, y

∗
k), k = 2, 3, 4, respec-

tively, with

β∗k ∈ Jk := β̂k + | − 1, 1] · 10−9, y∗k ∈ Yk := ŷk + [−1, 1] · 10−13,

where approximate bifurcations points are listed in (38)–(39).

Proof: The existence of a smooth branch of R-symmetric period-two points for Pβ has been
proved by means of the method described in Appendix A. We used an adaptive cover of the
parameter range J =

⋃10478
j=1 J j, where the diameters of intervals J j are smaller (approximately

2 · 10−5) if J j is close to 9
8 and quite large (above 141) in the second end of the parameter range.

Then, for each subinterval J j we check the assumptions of the parametrized Interval Newton
Method (Lemma 25). If succeed, we prove that the segments y(J j) glue into a smooth curve by
checking the the bounds on y(J j) resulted from the Interval Newton operator overlap, when their
domains do.

We will give more details regarding validation of bifurcations. The bifurcation function is

Gk(β, y) = πxP
k
β(0, y)

for k = 2, 3, 4. Hence, the Lyapunov-Schmidt reduction is not needed. In order to apply the
general framework introduced in Section 3 we need first to check conditions C2–C4. We have
the following bounds on G1.

G1(Jk × {ŷk}) ∂G1
∂y (Jk × Yk) −G1(Jk × {ŷk}) · ∂G1

∂y (Jk × Yk)−1

k = 2 [−1.134, 1.22] · 10−14 0.63412293[27, 30] [−1.8, 1.8] · 10−14

k = 3 [−9.19, 9.06] · 10−15 0.549359258[1, 4] [−1.7, 1.7] · 10−14

k = 4 [−6.82, 6.73] · 10−15 0.448707213[7, 9] [−1.5, 1.6] · 10−14

We see that in each case ŷk −G1(Jk × {ŷk}) · ∂G1
∂y (Jk × Yk)−1 ⊂ Yk, which proves that, there is a

branch (β, y(β)) of zeroes of G1 parametrized by β ∈ Jk, for k = 2, 3, 4.
In order to check C3 we need bounds on the reduced bifurcation function gk – see (10). We

have

gk({β̂k} × Yk) ∂gk
∂β

(Jk × Yk) −gk({β̂k} × Yk) · ∂gk
∂β

(Jk × Yk)−1

k = 2 [−9, 9] · 10−17 0.0037227[7, 9] −[2.3, 2.33] · 10−14

k = 3 [−1.37, 1.36] · 10−12 0.00364[29, 31] [−3.73, 3.74] · 10−10

k = 4 [−2.32, 2.17] · 10−15 0.001[2961, 3416] [−1.67, 1.79] · 10−12

Note, that in order to obtain tiny bounds on gk({β̂k}×Yk) we used high precision interval arithmetic
[36]. Again, in each case we have β̂k − gk({β̂k} × Yk) · ∂gk

∂β
(Jk × Yk)−1 ⊂ Jk, which proves that for

k = 2, 3, 4 the function gk has branch of zeroes (β(y), y) parametrized by y ∈ Yk and thus C3 is
satisfied.

From the following estimates

∂2Gk
∂β∂y (Jk × Yk) ∂2Gk

∂y2 (Jk × Yk) y′(Jk)
k = 2 0.0037227[7, 9] [−1, 1] · 10−5 6.56766[1, 3] · 10−7

k = 3 0.00364[79, 81] −[27.1801, 27.1803] 3.699[899, 901] · 10−7

k = 4 0.001[2961, 3416] [−0.045, 0.045] 1.64687[86, 92] · 10−7

(40)
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it follows that

0 <
∂2Gk

∂β∂y
(Jk × Yk) +

∂2Gk

∂y2 (Jk × Yk)y′(Jk)

for k = 2, 3, 4 and the condition C4 is also satisfied.
There remains to check conditions specific for each type of bifurcation. In (40) we have

already computed bound on ∂2G2
∂y2 (J2 × Y2), which proves that the assumptions of Theorem 8

are satisfied. Thus, the proof of the existence of third order touch-and-go bifurcation for P2 in
Jk × {0} × Yk is completed.

For period-doubling and period-quadrupling bifurcations we have to check non-degeneracy
condition (16). From (40) we already have, that for k = 2, 4 there holds ∂2Gk

∂β∂y (Jk ×Yk) > 0. Thus,

it suffices to check that ∂3Gk
∂y3 (Jk × Yk) is non-zero. We have the following bounds

∂3G2

∂y3 (J2 × Y2) ⊂ [1372, 1374] and

∂3G4

∂y3 (J4 × Y4) ⊂ −[1860, 2047].

Eventually, we have to check that the principal periods of bifurcating orbits. The cases k = 2, 3
do not require any computation, as both numbers are primes. For the case k = 4 we computed

g2(J4 × Y4) ⊂ 0.4481076[0, 7].

This completes the proof. �

6. Halo orbits in the Circular Restricted Three Body Problem

In this section we apply the general framework described in Section 4 to the Circular Re-
stricted Three Body Problem. First, we will give a short overview of the CR3BP and we list
some of its relevant properties. Then, we will give a computer-assisted proof, that the well
known families of halo orbits undergo various types of bifurcations.

6.1. Equations of motion

The CR3BP is a mathematical model, that describes the motion of a small body with negli-
gible mass under the gravitational influence of two point like big bodies, called primaries, which
rotate around their common mass centre on a circle.

Denote by µ the relative mass of the smaller primary. In a rotating coordinate system centred
at the common mass centre of two big primaries, the dynamics of the small particle is governed
by the following system of second-order differential equations [26, 44]

ẍ − 2ẏ =
∂Ωµ(x, y, z)

∂x
, ÿ + 2ẋ =

∂Ωµ(x, y, z)
∂y

, z̈ =
∂Ωµ(x, y, z)

∂z
, (41)

where

Ωµ(x, y, z) =
1
2

(x2 + y2) +
1 − µ√

(x + µ)2 + y2 + z2
+

µ√
(x − 1 + µ)2 + y2 + z2

.
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The system is Hamiltonian and it admits a first integral, called the Jacobi constant, which is given
by

Cµ(x, y, z, ẋ, ẏ, ż) = 2Ωµ(x, y, z) − (ẋ2 + ẏ2 + ż2).

The hyperplane {(x, y, z = 0, ẋ, ẏ, ż = 0)} is invariant under the local flow induced by (41) and
the corresponding four-dimensional Hamiltonian system is called the Planar Circular Restricted
Three Body Problem (PCR3BP).

6.2. Symmetries of the CR3BP
The system possesses two main symmetries

S : (x(t), y(t), z(t)) −→ (x(t), y(t),−z(t)),
R : (x(t), y(t), z(t)) −→ (x(−t),−y(−t), z(−t)), (42)

It is important to note that R and S commute. This property is required for our method of
validation of the existence of symmetry breaking bifurcations — see Theorem 18.

6.3. Poincaré map in the CR3BP
Let us define the following Poincaré section

Π = {(x, y, z, ẋ, ẏ, ż) ∈ R6 : y = 0}

and denote by Pµ : Π → Π the associated Poincaré map. We will skip the dependency on µ and
write P, if it will be clear from the context. Since the y variable is fixed and equal to zero on the
section, we will use (x, z, ẋ, ẏ, ż) coordinates to describe points in Π. With some abuse of notation
on R, we will denote by the same letter the reversing symmetry of the system restricted to points
on Π, i.e.

R(x, z, ẋ, ẏ, ż) = (x, z,−ẋ, ẏ,−ż).

Since
Fix(R) = {(x, z, ẋ = 0, ẏ, ż = 0) : x, z, ẏ ∈ R} ⊂ Π

by [48, Lemma 3.3] the mappingP is reversible, too. Thus, the frameworks for computer-assisted
verification of various types of bifurcations introduced in Section 4 can be applied to P.

6.4. Periodic orbits near libration points
The CR3BP possesses five equilibrium points, called the libration points. All of them are

located in the {z = 0, ż = 0} invariant hyperplane and thus they are equilibrium points for the
PCR3BP, as well. Three of libration points, commonly denoted by L1, L2 and L3, are collinear
and are located on the x-axis. They are of saddle-centre type for the PCR3BP. It is well known
[44], that for all µ ∈ (0, 1) there exists a family of R–symmetric periodic orbits, called planar
Lyapunov orbits (PLO), that surround these libration points — see also Figure 5. In [11, 12]
the existence of Lyapunov orbits around L1 and L2 libration points for selected mass parameters
has been proved in an explicit domain. Computer-assisted methods have been used to prove
[2, 45, 49, 50], that for the mass parameter µ = 0.0009537 corresponding to the Sun-Jupiter
system there are Lyapunov orbits around L1 and L2 for certain energy level, and there is countable
infinity of connecting orbits between them in both directions.

For the full system (CR3BP) the libration points L1,2,3 are of saddle-centre-centre type, for
all µ. In additional direction z there exists a second family of vertical Lyapunov orbits (VLO),
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which are double symmetric both with respect to symmetry S and reversing symmetry R defined
by (42). These orbits intersect twice the x-axis. Therefore, an object (a spacecraft) located nearby
one of those orbits will be periodically collinear with the two main primaries. Thus eclipses or
shadows are unavoidable for trajectories approaching planar or vertical Lyapunov orbits.

There is a numerical evidence [19, 21, 22], that a branch of out-of-plane R-symmetric or-
bits, called halo orbits, bifurcates from the Lyapunov family. In opposite to planar and vertical
Lyapunov orbits, they never cross the x-axis, except at the bifurcation point. For large vertical
amplitudes z the halo orbits become more and more aligned to the (y, z) plane allowing contin-
uous observation of both primaries without eclipses. Parts of L1-Lyapunov and L1-halo families
are shown in Figure 5 for the relative mass corresponding to the Sun-Jupiter system.

Figure 5: A branch of planar Lyapunov orbits near L1 libration point and bifurcating halo orbits for the mass parameter
µS J = 9.5388114032796904 · 10−4 corresponding to the Sun-Jupiter system — see also (43).

6.5. Symmetry breaking bifurcations of halo orbits in the CR3BP

The halo orbits in the CR3BP are R-symmetric, out-of-plane periodic orbits, which bifurcate
from the planar Lyapunov family — see Figure 5. Although, there were extensive numerical
study of these orbits and their bifurcations (just to mention few papers [22, 21, 19]), to the best
of our knowledge, they were never proved to exist.

The best theoretical result in this direction has been done in [14, 15]. The authors consider
a certain normal form, which approximates the CR3BP. They prove, that in the normal form sys-
tem there is a branch of R-symmetric halo orbits bifurcating from R-symmetric planar Lyapunov
orbits. Moreover, they give an explicit expression for the bifurcation point. This result is valid
for all L1,2,3 points and for all mass parameters.

The results of this section are complementary to those from [14]. We give a computer-assisted
proof of the existence of halo orbits for the original CR3BP system for all libration points L1,2,3
and for some (not full) range of µ. We will also study continuation and bifurcations of L1,2-halo
families.

23



Theorem 18. There are continuous functions

hi : [µ∗, µ∗] × Z 3 (µ, z)→ (xi(µ, z), 0, z, 0, ẏi(µ, z), 0) ∈ Fix(R)

with [µ∗, µ∗] = [9.5 · 10−4, 0.5] and Z = [−1, 1] · ∆z, where ∆z = 10−7, such that

1. hi(µ, 0) is a point of symmetry breaking bifurcation of out-of-plane family of R–symmetric
periodic orbits from the planar family of Lyapunov orbits near Li libration point and

2. for µ ∈ [µ∗, µ∗] and z ∈ Z the point hi(µ, z) is an initial condition for an R–symmetric
periodic out-of-plane (halo) orbit.

Proof: We applied the framework from Section 4 to the family of Poincaré maps Pµ. For fixed
i = 1, 2, 3 we proceed as follows (we skip dependencies on i to simplify notation). The range
of parameters [µ∗, µ∗] is initially subdivided into N smaller overlapping subintervals [µ∗, µ∗] =⋃N

j=1 µ j, where µ j = [µ j, µ j]. For each j = 1, . . . ,N we execute in parallel the following (inde-
pendent) tasks.

1. We find an approximate bifurcation point û j = (x̂, 0, 0, ˆ̇y, 0) for the mass parameter µ̂ j =
1
2 (µ j + µ j). For this purpose we use the scheme described in Appendix B — see also
Remark 26.

2. The planar double-symmetric Lyapunov orbits can be easily isolated by restriction to the
planar system. Using Lyapunov-Schmidt reduction and the method from Appendix A we
validate the existence of smooth, two-parameter families of periodic orbits

u f p : µ j × X → X × {0} × {0} × Ẏ × {0},
hi : µ j × Z → X × Z × {0} × Ẏ × {0},

which correspond to Lyapunov orbits and halo orbits, respectively. The diameters of X and
Ẏ were hand-optimized to speed-up computation.

3. The set W = X×{0}×{0}× Ẏ×{0} is a bound for the bifurcation point for each µ ∈ µ j. Then
we check the assumptions of Theorem 16, i.e. d

dxCµ j (W) , 0, d
dxCµ j (u f p(µ j, X)) , 0 and

d2

dz2 Cµ j hi(µ j, z = 0) , 0. Note, that in Theorem 16 we required, that the branching-off curve
is convex, but switching of either sign does not change the geometry of overall picture.

If any of the above steps fails, the interval µ j is being subdivided and we repeat computation for
each element of subdivision. Finally, if all tasks are completed, using the methods from [20, 7]
we check, that the pieces of hi glue into a smooth function. �

Graphs of µ → hi(µ, 0) are shown in Figure 6. We would like to emphasize, that they match
quite well bifurcation points coming from the normal forms found in [14]. Our validation algo-
rithm used to prove Theorem 18, by its construction, cannot continue with µ→ 0. The threshold
value µ∗ = 9.5 · 10−4 as well as size of out of plane amplitude ∆z = 10−7 are by our choice a
compromise between CPU time needed to obtain the result and the range of µ and z we can cover.
In particular, the range of mass parameter [µ∗, µ∗] contains two relevant values

µS J = 9.5388114032796904 · 10−4, µEM = 1.2150584460350998 · 10−2 (43)

corresponding to Sun-Jupiter and Earth-Moon systems, respectively. The values listed in (43)
are taken as the nearest IEEE-754 double precision numbers to the recent mass measurements
reported in [40, 3].
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Figure 6: Curves of symmetry breaking bifurcation points (xi(µ), ẏi(µ)) for L1,2,3-Lyapunov families and the Jacobi
constant Cµ(xi(µ), 0, 0, 0, ẏ(µ), 0). The right-bottom panel indicates, that the Jacobi constant at the bifurcation point as a
function of µ has a local minimum. In order to make this minimum more evident, the plot is shown in log-exp scale.
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Remark 19. The L3 is a special case, because for small µ the maximal order of normal form
constructed in [14] is 2, and it is divergent when µ → 0 [42]. In this case we observe an
interesting phenomenon. If µ → 0, the Jacobi integral seems to be not monotone along the
curve of bifurcation points — see Figure 6 right-bottom panel. The computation, which indicate
the presence of a local minimum is non-rigorous but performed in high accuracy (400 bits of
mantissa) floating point arithmetic [36] and using 80th order ODE solver with the tolerance per
time step set to 10−60.

6.6. Continuation and bifurcations of halo orbits
Theorem 18 guarantees that for µ ∈ [9.5 · 10−4, 0.5] a branch of halo orbits near Li can be

parametrized by out of plane amplitude z to at least |z| ≤ ∆z. Numerical simulations [19, 21]
strongly indicate, that these branches continue to exist for much larger amplitudes and that they
undergo period-doubling and period-quadrupling and third-order touch-and-go bifurcations. The
next theorem addresses this issue.

Theorem 20. Consider the CR3BP with µ ∈ {µS J , µEM} as defined in (43). There exists a smooth
function hµ : S1 → R6 such that for τ ∈ [0, 2π] the following holds true.

1. hµ(τ) = (x(τ), 0, z(τ), 0, ẏ(τ), 0) is an initial condition for an R–symmetric periodic (halo)
orbit.

2. hµ(τ) = S (h(2π − τ)) – the family is S symmetric.

This closed loop of halo orbits intersect the invariant subspace {z = 0, ż = 0} at exactly two
points h(0) and h(π), at which an symmetry breaking bifurcation occurs. Moreover, the branch
hµ undergoes period doubling, period quadrupling and third order touch-and-go bifurcations as
listed in Table 1.

Proof: The branch of halo orbits is split into four pieces.
1. Proceeding as in the proof of Theorem 18 we validate the existence of two symmetry

breaking bifurcations: one in the region x > 0 and the second in x < 0 — see Figure 7.
From HC3 we also have, that there is a branch of out-of-plane R-symmetric periodic orbits
parametrized by z ∈ [−∆z,∆z], for an explicit ∆z > 0.

2. Both out-of-plane families are then continued (see Appendix A) and parametrized by z
variable until hand-chosen threshold value z = 0.625, as shown in Figure 7.

3. The upper arc joining two halo orbits with z = 0.625 is parametrized by x variable.

By the well known techniques [7] we can check, that these pieces glue into a smooth curve.
By the symmetry we obtain the lower branch of halo orbits. Summarizing, we obtained, that
the branch of halo orbits is a compact, smooth, one-dimensional manifold without boundary. It
is well known [33], that such a manifold is diffeomorphic to a circle. By the construction the
manifold is S -symmetric, thus the parametrization h can be chosen to preserve this symmetry, as
well.

Approximate bifurcation points listed in Table1 (except for k = 1 were found with very high
accuracy (of order 10−60) using high-order ODE solvers from the CAPD library [10] based on
high precision floating-point arithmetic[36]. Then we checked assumptions of Theorem 14 and
Theorem 15 on very small sets (of the size about 10−30) centred at these approximate bifurca-
tion points. Notice, that in one case j = 7 and µ = µS J we could not obtain bounds on third
order derivatives sharp enough to check convexity of Jacobi integral along bifurcation curve.
We checked, however, the conditions HC2–HC4, which in particular means, that there are two
curves of halo orbits of period 1 and 4 intersecting at a single point. �
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Remark 21. Although we did not prove it, there is a strong numerical evidence that the points
hµ(0) belongs to the family of L1-Lyapunov orbits. A possible method to close this gap is to apply
the method for computation of invariant manifolds of Lyapunov orbits, as proposed in [12].

Projections of the two curves hµ(S1) for µ ∈ {µS J , µEM} resulting from Theorem 20 onto (x, z)
plane are shown in Figure 7. These families form a 2D–tori in the full phase space. Such torus
for the mass µ = µS J is shown in Figure 8.
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Figure 7: Projection onto (x, z)-plane of hµ(S1), µ ∈ {µS J , µEM} as defined in Theorem 20. Each point hµ(τ) is an initial
condition for a halo orbit, thus the entire family forms a 2D-tori in the full phase space – see Figure 8.

Numerical simulation [22, 19] shows that L2,3-halo families continue to exists until a collision
with one of the primaries — see Figure 9. Hence, on the Poincaré section Π, (x, z) coordinates
of these orbits approach (1 − µ, 0) and (µ, 0) respectively, while |ẏ| tends to infinity.

We have the following partial result for the L2-halo family.

Theorem 22. Consider the CR3BP with µ ∈ {µEM , µS J} as defined in (43). There is a smooth
function hµ : [−1, 1]→ R6 such that for τ ∈ [−1, 1] the following statements hold true.

1. hµ(τ) = (xµ(τ), 0, zµ(τ), 0, ẏµ(τ), 0) is an initial condition for an R–symmetric periodic
(halo) orbit.

2. hµ(τ) = S (h(−τ)) – the family is S symmetric.
3. hµ(0) is a point of an symmetry breaking bifurcation.
4. The function ẏµ(τ) has a unique local minimum at τ = 0 satisfying

ẏµEM (0) ∈ 0.176040[3, 5], ẏµS J (0) ∈ 0.069870[3, 8]. (44)

5. The branches continue to at least

ẏµEM (±1) = 20.5, ẏµS J (±1) = 8. (45)
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Figure 8: 2D torus of primary L1-halo orbits in the Sun-Jupiter system.

Moreover, these branches undergo period doubling, period quadrupling and third order touch-
and-go bifurcations as listed in Table 2.

Proof: The validation is split into three steps.

1. From Theorem 18 we know, that there is an symmetry breaking bifurcation of halo orbits
from L2-Lyapunov family. The estimates (44) are taken from this proof. The branching of
family of halo orbits hµ(z) = (xµ(z), 0, z, 0, ẏµ(z), 0) is parametrized by z ∈ [−1, 1] ·∆z, with
∆z = 10−7. We also check that ẏ′′µ (z) > 0 for |z| ≤ ∆z.

2. The branch is then rigorously continued using Appendix A and parametrized by hµ(z) =

(xµ(z), 0, z, 0, ẏµ(z), 0), z > 0 until some hand-chosen threshold value of ẑ (dependent on
µ). We also checked that for z ∈ [∆z, ẑ] there holds ẏ′µ(z) > 0.

3. Further continuation of the branch starting from hµ(ẑ) is parametrized by ẏ until hand-
chosen threshold values (45).

Summarizing, in each segment the variable ẏ is increasing along the branch of periodic orbits
which makes it possible to re-parametrize the curve as a function

hµ(τ) = (xµ(τ), 0, zµ(τ), 0, ẏµ(τ), 0)

defined on τ ∈ [0, 1]. From the symmetry S we obtain the second branch for τ ∈ [−1, 0].
The bifurcations listed in Table 2 (except j = 0) were validated using Theorem 15 and

Theorem 14 in high-precision interval arithmetics. Notice, that in two cases j = 8 and µ =

{µS J , µEM}we could not obtain bounds on third order derivatives sharp enough to check convexity
of Jacobi integral along bifurcation curve. We checked, however, the conditions HC2–HC4,
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Figure 9: Intersection of families of L1,2,3-halo orbits in the Earth-Moon system with the Poincaré section Π along with
strong resonances, that lead to period-doubling and period-quadrupling bifurcations (marked by squares and disks in
z > 0 half-plane, respectively) and touch-and-go bifurcations (marked by diamonds in z < 0 half-plane), as proved in
Theorem 20 and Theorem 22. (a) Mutual location of L1,2,3-halo branches: L1,2-branches are shown on {y = 0, ẏ > 0}
section, L3 is shown on {y = 0, ẏ < 0} section; (b) location of strong resonances on L2-halo branch; (c) and (d) location
of strong resonances on L1-halo branch.
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Table 1: Bound on Jacobi constant for period k-tupling and touch-and-go bifurcations of L1 halo families for the mass
parameters µEM and µS J . Multiplicity k = 1 corresponds to symmetry breaking bifurcations. Multiplicity k = 3 stands
for touch-and-go bifurcations. In the case j = 7 and µ = µS J , denoted by a star, the convexity condition in Theorem 15
has not been checked. We could not obtain bounds on third order derivatives so sharp, which would guarantee that the
second derivative of Jacobi integral along bifurcation curve is non-zero.

j k bound on Jacobi constant (µEM) bound on Jacobi constant (µS J)

0 1 3.17435[03, 36] 3.03588[11,51]
1 4 3.08384097317512242430038839[79,91] 3.01979992774088569676042962[45,59]
2 3 3.058886412529835176423178819[4,6] 3.015412945713342018918305256[4,5]
3 2 3.0216192479264201986830801047[6,8] 3.00909434962110748263791018519[3,9]
4 3 2.999986911642456326104353768[3,8] 3.00589961847845578773000478[64,75]
5 3 2.997919501600216512922520[69,71] 3.00584514988954760426886596[07,61]
6 3 2.94132864491556775199[28,32] 2.9941342902214648929134[15,26]
7 4 2.940683922766931384[68,79] 2.9940756819941148370203478568[3,4]*
8 2 -0.986509091038502895183600231[6,9] -0.99874596801401641137454972[14,21]
9 3 -0.996795335128162658942078721[1,5] -1.0006666037342203004067305[44,52]
10 4 -1.004727349648878143369879[07,22] -1.00227845861825336488127[00,44]
11 1 -1.016[09,14] -1.00460[55,77]

which in particular means, that there are two curves of halo orbits of period 1 and 4 intersecting
at a single point. �

Remark 23. The threshold values in (45) have been chosen so that the validated arc of L2–halo
orbits contains all strong resonances at which period-tupling and touch-and-go bifurcations oc-
curs for both values of µ ∈ {µS J , µEM}. Numerical simulation shows, that for larger values of
ẏ strong resonances are not present. However, we did not validate this conjecture. A possible
approach to close this gap and obtain a full picture of what happens to L2,3–halo families is to
perform Levi-Civita regularisation [44] and continue branches of halo orbits in these coordi-
nates.

6.7. Implementation notes

The source code of all programs is available to download from the web page of the corre-
sponding author [47]. The programs are written in C++-11 and use rigorous ODE solvers and al-
gorithms for computation of Poincaré maps and their derivatives [46, 53] from the CAPD library
[10]. All programs the from the were compiled using g++-4.9.2 and executed on a computer
equipped with Intel Xeon E7-8867 v4 2.40GHz processors (64 cores).

Appendix A. Interval Newton method for implicit equations

In this section we provide a method for validated computation of implicit functions. Such
an algorithm is needed to check assumptions C2–C3 or HC2–HC3, as well as to compute wide
branches of periodic orbits far from bifurcation points. The method is an adaptation of the well
known Interval Newton Method (INO) [34, 39] to the case of implicit equations. The main
modification which significantly improves the method is the use of higher order derivatives. The
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Table 2: Bound on Jacobi constant for period k-tupling and touch-and-go bifurcations of L2 halo families for the mass
parameters µEM and µS J . Multiplicity k = 1 corresponds to symmetry breaking bifurcation. Multiplicity k = 3 stands for
touch-and-go bifurcations. In two cases j = 8 and µ = {µS J , µEM}, denoted by a star, the convexity condition in Theorem
15 has not been checked. We could not obtain bounds on third order derivatives sharp enough, which would guarantee
that the second derivative of Jacobi integral along bifurcation curve is non-zero.

j k bound on Jacobi constant (µEM) bound on Jacobi constant (µS J)

0 1 3.15211[87,91] 3.03413[67,72]
1 4 3.071869946146936057096946[46,52] 3.01887850935398942392012584[04,38]
2 3 3.05083503865220863946099978[87,93] 3.014802161770970024871372364[53,86]
3 2 3.0229911591596336379776897124[1,5] 3.0091557491590008844773187520[3,6]
4 4 3.0158978159595140970471[78,93] n/a
5 2 3.017143662542155479781194411[85,94] n/a
6 4 3.0190035761795315910790[19,29] n/a
7 3 3.077836508502735302[69,73] 3.019542146861187965925873562[20,98]
8 4 3.104289978034786552471088092[8,9]* 3.024350541079342605537853984[5,6]*

method itself is quite straightforward but to the best of our knowledge, it has not appeared in the
literature. First we recall the Interval Newton Method [34, Thm. 8.4], [39, Thm. 5.1.7].

Theorem 24 ([34, 39]). Let f : Rn → Rn be a C1 map and let X ⊂ Rn be a convex, compact set.
For x0 ∈ intX we define the interval Newton operator by

N( f , x0, X) = x0 − [D f (X)]−1
I f (x0),

where by [D f (X)]I we mean a convex hull of the set of matrices {D f (x) : x ∈ X}.

1. If N( f , x0, X) ⊂ int X then f has a unique zero in X that belongs to N( f , x0, X).
2. If N( f , x0, X) ∩ X = ∅ then f has no zeros in X.

The above theorem can be used to validate the existence of solutions to implicit equations
over an explicit domain.

Lemma 25. Let f : Rm × Rn → Rn be a C1 map, Z ⊂ Rm be the closure of an open set and let
X ⊂ Rn be a convex, compact set with non-empty interior. For x0 ∈ int X we define the interval
Newton operator by

N( f , x0, X,Z) = x0 − [Dx f (Z, X)]−1
I f (Z, x0). (A.1)

If N( f , x0, X,Z) ⊂ int X then there exists a C1 smooth function g : Z → X such that the set of
zeroes {(z, x) ∈ Z × X : f (z, x) = 0} coincides with the graph of the function g, i.e.

{(z, x) ∈ Z × X : f (z, x) = 0} = {(z, g(z)) : z ∈ Z} .

Proof: Let us fix z ∈ Z and put fz = f (z, ·). Then we have

N( fz, x0, X) ⊂ N( f , x0, X,Z) ⊂ int X.

From Theorem 24 for all z ∈ Z there exists a unique x = g(z) ∈ X such that f (z, x) = 0. Let us
observe, that the condition (A.1) implies, that Dx f (z, x) is invertible at each point (z, x = g(z)).
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By the implicit function theorem the function g is smooth, as it solves an implicit equation
f (z, g(z)) ≡ 0 at every point z ∈ Z. �

The efficiency of the INO (Theorem 24) is hidden in the fact, that we usually have a very
good approximation (from numerical experiments) for zero, i.e. f (x0) ≈ 0. Then the quantity
[D f (X)]−1

I f (x0) can be very tight, even if the computed bound on derivative D f (X) is overesti-
mated. This is not the case for parametrized maps, as equation (A.1) contains the term f (Z, x0).
If Z is large then having f (z, x) ≈ 0 for all z ∈ Z is rather unlikely.

A straightforward way to overcome this problem is to make a substitution (z, x) = s(z,w),
such that in the new coordinates the function z → w(z), which solves the implicit equation
f (s(z,w)) = 0, is flat. Let us fix (z0, x0) ∈ Z × X, such that f (z0, x0) ≈ 0 and assume Dx f (z0, x0)
is non-singular. We define an affine substitution by

(z, x) = s(z,w) := (z, x0 + w − A(z − z0)),

where A = Dx f (z0, x0)−1Dz f (z0, x0). The map s is invertible because its linear part has de-
terminant equal to one and thus zeroes of f are in one-to-one correspondence with zeroes of
g := f ◦ s. In the new coordinates the point (z0,w0 = 0) is an approximate zero of g. Moreover,
Dzg(z0,w0) = 0 (provided A is computed exactly). The above idea of changing linearly coordi-
nate system has been proposed in [7], but the method for validation of a branch of zeroes was
different and based on so-called radii polynomial approach [20, 7].

In the remaining part of the section we will show, how to efficiently evaluate all the terms,
which appear in the INO for the mapping g. Our test show, that using this approach we could
significantly reduce overestimations in evaluation of the INO, which lead to significant advantage
of this approach in comparison to direct evaluation of INO for g.

The INO for the mapping g on the set Z ×W, which contains (z0,w0) reads

N(g,w0,Z,W) = −[Dwg(Z,W)]−1
I g(Z,w0).

In what follows, we will show how we can bound all the terms that appear in this expression. Let
X be such that s(Z,W) ⊂ (Z, X) and denote ∆Z = Z − z0. The term g(Z,w0) can be bounded by
means of the mean value theorem

g(Z,w0) ⊂ g(z0,w0) + [Dzg(Z,w0)]I · ∆Z

= f (z0, x0) + [Dzg(Z,w0)]I · ∆Z (A.2)

and the set of matrices Dzg(Z,w0) can be bounded by

Dzg(Z,w0) ⊂ [Dz f (Z, x0)] −
[
Dx f (Z, x0)A

]
I ∩

[(
Dx f (Z, x0)Dx f (z0, x0)−1

)
Dz f (z0, x0)

]
. (A.3)

By the choice of A, we have Dzg(z0,w0) = 0. Therefore we expect that for not very large param-
eter radius ∆Z, the term Dzg(Z,w0) ·∆Z in (A.2) is a small box around zero, as desired. Note, that
the above considerations hold true for any matrix A. Therefore the quantities Dx f (z0, x0)−1 and
Dz f (z0, x0) can be computed using just floating point arithmetic, however their product A must
be bounded rigorously, if we want to take the intersection in (A.3).

The quantity g(Z,w0) can be also bounded using second order Taylor expansion

g(Z,w0) ⊂ f (z0, x0) + Dzg(z0,w0) · ∆Z +
1
2

∆ZT D2
zzg(Z,w0)∆Z. (A.4)
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Recall, the point (z0, x0) is chosen so that f (z0, x0) ≈ 0 and the substitution s is chosen so that
Dzg(z0,w0) ≈ 0 (note, usually it cannot be computed exactly). Since both quantities are evalu-
ated at a single point, we can take advantage (if necessary) of high-precision interval arithmetic
and make these terms as close to zero as desired. Therefore, the bound on g(Z,w0) is practi-
cally quadratic in the radius of the parameter range ∆Z. One can take the intersection of direct
evaluation of g(Z,w0) in interval arithmetic with the bounds obtained from (A.2) and (A.4).

In order to compute the Interval Newton Operator for g we have to bound Dwg(Z,W). Direct
evaluation gives

Dwg(Z,W) ⊂ Dx f (Z, X). (A.5)

Using second order derivatives of f we can obtain another enclosure

Dwg(Z,W) ⊂ Dx f (z0, x0) + D2
wwg(Z,W)W + D2

zwg(Z,W)∆Z,

which can be intersected with (A.5).
Numerical experiments we performed show that using the above approach we can usually

validate the existence of solution to the implicit equation on much wider domain Z (without
subdivision) than in the original coordinates.

In principle, both g(Z,w0) and Dwg(Z,W) can be bounded using higher order Taylor expan-
sions. This should come along with nonlinear (usually polynomial) substitution s, such that all
derivatives of g = f ◦ s with respect to z vanish at (z0,w0) up to desired order r. Then the bound
on g(Z,w0) can be made of order O(‖∆Z‖r+1).

In the context of the CR3BP we have found, that the second order expansion is very effi-
cient. Note, that computation of higher order derivatives of Poincaré maps in a high dimensional
system is costly — the complexity of the Cr–Lohner algorithm [53] used to integrate varia-
tional equations is O(n3rns2), where n is the dimension, s is the order of Taylor method and
r ≥ 1 is the largest order of derivative of Poincaré map, we request. Clearly, increasing r in a
high-dimensional system is very expensive. Secondly, the bounds on higher order derivatives of
Poincaré map are usually much overestimated than those of lower order.

Appendix B. Newton like scheme for finding bifurcation points

A straightforward way to localize period-tupling and touch-and-go bifurcation points of
a family of reversible maps fν(x) is to follow the branch of period-2 points x(ν) and look for
resonant eigenvalues of D f 2

ν (x(ν)). In low-dimensional systems one can look at the stability pa-
rameter [21, 22]. This method is very efficient when we want to find a rough approximation to
the bifurcation point. In reversible or hamiltonian case multiple eigenvalues may occur making
computation of eigenvalues with high-accuracy quite non-trivial task.

In this short section we propose eigenvalue-independent yet efficient scheme for finding very
accurate approximation to bifurcation points. In what follows we focus on reversible Hamiltonian
systems and use the notation from Section 4, but the idea applies to any family of reversible maps.

Following Section 4 we assume that (p0, p1, p2, q = 0) ∈ Fix(R) is an approximate period-2
point for the Poincaré map P, which is close to 1 : k resonance. We would like to refine it by a
Newton-like scheme. Since we have n + 1 unknowns (p0, p1, p2) we need n + 1 equations with
expected isolated zero. We impose

P̃(p0, p1, p2) := πqP(p0, p1, p2, 0) = 0 and gH
k (p0, p1) = 0, (B.1)
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where gH
k is defined by (34). The first equation selects the points from the curve of fixed points,

while the second equation guarantees that the solution is also on the bifurcation curve. In order
to apply the Newton method to the system of equations (B.1), we need to compute derivatives of
gH

k . From (34) we have

∂gH
k

∂p1
(p0, p1) =

∫ 1

0

∂2GH
k

∂p2
1

(p0, p1(p0) + t(p1 − p1(p0))) tdt.

If the seed point for the Newton method is quite close to the bifurcation point, we may assume
that p1(p0) almost constant and thus

∂gH
k

∂p1
(p0, p1) ≈

∂2GH
k

∂p2
1

(p0, p1)
∫ 1

0
tdt =

1
2
∂2GH

k

∂p2
1

(p0, p1) .

The second partial derivative reads

∂gH
k

∂p0
(p0, p1) =

∫ 1

0

∂2GH
k

∂p0∂p1
(p0, p1(p0) + t(p1 − p1(p0))) dt+∫ 1

0

∂2GH
k

∂p2
1

(p0, p1(p0) + t(p1 − p1(p0))) p′1(p0)(1 − t)dt.

Again, assuming p1 ≈ p1(p0) we can approximate

∂gH
k

∂p0
(p0, p1) ≈

∂2GH
k

∂p0∂p1
(p0, p1) +

1
2
∂2GH

k

∂p2
1

(p0, p1) p′1(p0).

In order to compute D2GH
k we need second order derivatives of Pk and of the function pH

2 (p0, p1)
obtained from the Lyapunov-Schmidt reduction — see (32). The latest can be computed by
differentiation of the identity

πq2

(
Pk(p0, p1, pH

2 (p0, p1), 0)
)
≡ 0.

Summarizing, the Newton-like iteration for equation (B.1) is given by

(pm+1
0 , pm+1

1 , pm+1
2 ) = (pm

0 , pm
1 , pm

2 ) − r

where r is the solution to the linear equation M · r = b with

M =


∂2GH

k (pm
0 ,p

m
1 )

∂p0∂p1
+ 1

2
∂2GH

k (pm
0 ,p

m
1 )

∂p2
1

p′1(pm
0 ) 1

2
∂2GH

k (pm
0 ,p

m
1 )

∂p2
1

0
∂P̃(pm

0 ,p
m
1 ,p

m
2 )

∂p0

∂P̃(pm
0 ,p

m
1 ,p

m
2 )

∂p1

∂P̃(pm
0 ,p

m
1 ,p

m
2 )

∂p2

 ,
b =

 ∂GH
k (pm

0 ,p
m
1 )

∂p1

P̃(pm
0 , pm

1 , pm
2 )

 .
Using the above scheme, finding approximate bifurcation points of halo orbits with accuracy
10−60 was not a difficult task.

Remark 26. In the computer-assisted proof of Theorem 18 we used similar strategy to localize
approximate points of symmetry breaking bifurcations. We solved for zeroes of the function

(x, ẏ)→
(
πẋP(x, 0, 0, 0, ẏ, 0),

∂πżP

∂z
(x, 0, 0, 0, ẏ, 0)

)
.
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