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COMMENTS ON VARIOUS EXTENSIONS OF THE

RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES : ABOUT THE

LEIBNIZ AND CHAIN RULE PROPERTIES

by

Jacky Cresson and Anna Szafrańska

Abstract. — Starting from the Riemann-Liouville derivative, many authors have built their
own notion of fractional derivative in order to avoid some classical difficulties like a non zero
derivative for a constant function or a rather complicated analogue of the Leibniz relation.
Discussing in full generality the existence of such operator over continuous functions, we derive
some obstruction Lemma which can be used to prove the triviality of some operators as long
as the linearity and the Leibniz property are preserved. As an application, we discuss some
properties of the Jumarie’s fractional derivative as well as the local fractional derivative. We
also discuss the chain rule property in the same perspective.
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1. Introduction

Recently, many authors have tried to define new operators acting on continuous functions
starting from the well known Riemann-Liouville derivatives. The reason for such general-
izations is usually the fact that the Riemann-Liouville fractional derivatives do not respect
some interesting properties. As an example, the Riemann-Liouville derivatives of a constant
function is non zero or they do not satisfy the Leibniz’s relation. The Jumarie’s derivative
introduced by G. Jumarie in 2006 (see [14]) and in 2009 (see [15]) and the local fractional
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derivatives introduced by Kolwankar and Gangal in 1996 (see [19]) are examples of such a
strategy. The question is then : imposing some specific algebraic constraints on a given op-
erator acting on continuous functions or a suitable subset of continuous functions, what type
of operators can we construct ?

A partial answer was given by V.E. Tarasov in two articles dealing with operators satisfy-
ing the Leibniz or chain rule formula. Starting with a classical rigidity results for derivations
acting on C2 functions, he deduces that derivations over continuous functions can not sat-
isfy the Leibniz or chain rule. The incompleteness of this argument was pointed out by X.
Wang in [28] arguing that for some local version of the fractional derivative the Leibniz for-
mula can hold and moreover that the aim of fractional derivative is precisely to deal with
non-differentiable functions. However, some counter examples to the fact that the Jumarie
fractional derivatives satisfies the Leibniz property were given in [22, 26, 27]. The same
questioning concerning the chain rule property was also discussed.

In the following, we formulate precisely the extension problem and we prove in particular
that any linear operator acting on the set of continuous functions and satisfying the Leibniz
property is trivial (the obstruction Lemma). This result seems not to be known by many
authors working on fractional calculus so that we provide a proof in this article. This result
means that in order to generalize the classical derivative of continuous functions, one has to
cancel one of the two previous relations. If not, one obtains an operator which gives zero for
all functions. This result gives a complete proof of Tarasov’s idea that the Leibniz property
is too strong to be preserved when extending the derivative to continuous functions. We give
precise statements in the following.

We then discuss the construction of alternative fractional derivatives proposed by G. Ju-
marie and by Kolwankar and Gangal respectively. These two operators are supposed to
satisfy the linearity and the Leibniz’s property and to be defined on continuous functions.
However, in view of the obstruction Lemma, this is not possible. We then look more precisely
on the construction of these operators and their properties. We prove in particular that the
Jumarie’s fractional derivative can not satisfy the Leibniz’s property. This result has strong
consequences as it invalidates many uses of this operator as for example to extend the classical
calculus of variations [1, 23].

We also discuss the Kolwankar-Gangal notion of local fractional derivatives. Here again,
using the obstruction Lemma, one can prove that this operator must be trivial on a huge
subset of continuous functions. This result was already proved using different arguments in
[4].

We end our discussion with some way to bypass the obstruction Lemma. As we will see,
even from the algebraic point of view, the Riemann-Liouville fractional derivatives can be
seen as a universal solution to an extension problem over suitable analogue of continuous
functions.

2. Rigidity property and the Leibniz property

In this Section, we consider the set C0([a, b]) of real valued continuous functions defined
on the interval [a, b] and the set C1([a, b]) of continuously differentiable real valued functions
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defined on [a, b].

The classical derivative of a real valued function f ∈ C1([a, b]) is usually denoted by f ′ and
defined for all t ∈]a, b[ as

(1) f ′(t) = lim
h→0

f(t+ h)− f(t)

h
.

The classical derivative satisfies two fundamental properties:

– It is a linear operator: for all (λ, µ) ∈ R
2 and (f, g) ∈ C1([a, b]), we have (λf + µg)′ =

λf + µg.
– The Leibniz property : for all (f, g) ∈ C1([a, b]), we have

(2) (f · g)′ = f ′ · g + f · g′.

These two properties have leaded to the algebraic notion of derivations which appears in
many context.

Definition 1 (Derivations). — Let A be a ring over an algebraic closed field K. A deriva-
tion on A is a mapping D : A→ A such that D is K linear and satisfies the Leibniz property:
for all (x, y) ∈ A, we have D(x · y) = Dx · y + x ·Dy.

We refer to ([13],Chap.I,§.2,p.5) for more details.

We denote by DNL the Newton-Leibniz derivation defined over C1([a, b]) and given for all
x ∈ C1([a, b]) by DNL(x) = x′.

A classical results is the following rigidity result:

Lemma 1 (Rigidity). — Any derivation D over C2([a, b]) is of the form

(3) D = a.DNL,

where a is an arbitrary C1 function.

This result is interesting when one is dealing with extending the classical derivative to more
general functional space. Indeed, the linearity and the Leibniz property completely charac-
terize this operator.

The usual proof of this result used the Hadamard Lemma (see [12], Exercice 22, p.44-45).
However, for the readers which are not familiar with such a type of result, a good idea is first
to look for a derivation acting on polynomials in order to see in a constructive way the role
of the Leibniz property.

Let R[x] be the set of polynomial with real coefficients. Let P ∈ R[x], P (x) =

n
∑

i=0

aix
i,

ai ∈ R, i = 0, . . . , n. We have D(P ) =

n
∑

i=0

aiD(xi). Moreover, the Leibniz property implies

that D(xi) = ixi−1D(x). As a consequence, we have D(P ) = D(x)P ′(x). The action of a
derivation on polynomials is fixed by the choice of D(x). The Leibniz property gives then
huge constraints on the set of derivations.
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Remark 1. — – In [26], Tarasov deduces from this Lemma that any derivation must
break the Leibniz formula in order to be define on more general functional sets. However,
the conclusion of this Lemma is only that we have precisely rigidity of a derivation
over C2([a, b]) functions. As we will see, this results indicates that these two algebraic
conditions are very strong and must be difficult to satisfy when extending the classical
derivative. This is the content of our next Lemma.

– The formulation of the ”no violation of the Leibniz rule. No fractional derivative” by
Tarasov is misleading. The statement is made for a one parameter α ∈ R family of
derivations Dα even if this parameter plays no role in the rigidity Theorem.

– One can of course look for some rigidity property of some one parameter family of
operators acting on continuous functions which are not differentiable. This can be done
for example by dealing with tempered distributions and posing an algebraic problem which
gives more or less a unique solution for the Riemann-Liouville fractional derivative (see
[10]).

A more general result is proved by H. König and V. Milman in [21]:

Theorem 1. — If T : C1(R) → C(R) is an operator satisfying the Leibniz property then
there are continuous functions c, d ∈ C(R) such that

(4) T (f)(x) = c(x)f ′(x) + d(x)f(x) ln | f(x) | .

The main point is that the operator T is not even assumed to be linear. The Leibniz
property is by itself very strong. If one impose linearity then one obtains an extension of
Lemma 1 as any derivations from C1(R) to C(R) is of the form c(x)f ′(x).

3. What about derivations on continuous functions ?

The previous result does not apply to derivation acting on continuous functions. This
remark was in fact at the basic of many comments against Tarasov’s reasoning concerning
the impossibility to extend the classical properties of the derivatives to continuous functions.
The authors argues that the main object of fractional calculus is precisely to deal with non
differentiable functions and as a consequence the rigidity result is not sufficient to conclude
to the non existence of such operators. These remarks are indeed correct and Tarasov’s
argument is indeed not complete. Unfortunately, one can prove that the Leibniz property
together with linearity is a too strong condition if one wants the operator to be defined on
continuous functions. Indeed, we have the following obstruction Lemma:

Lemma 2 (Obstruction-Leibniz). — There exists no non trivial derivations over C0([a, b]).

We give the proof for the convenience of the reader.

Proof. — First, let Cc := c, c ∈ R be a constant function. Then for all c ∈ R and any
derivation D over C0([a, b]) one has D(Cc) = 0. Indeed, the function C1 is the neutral
element of (C0([a, b], ·) so that for all f ∈ C0([a, b]), we have f · C1 = f . As a consequence,
we have using the Leibniz property

(5) D(C1) = D(C1 · C1) = D(C1) · C1 + C1 ·D(C1) = 2C1D(C1),

from which we deduce that D(C1) = 0. Using the linearity, we have

(6) D(Cc) = D(c · C1) = c ·D(C1) = 0.
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Let us consider a continuous function f ∈ C0([a, b]). We can always find a continuous function
g ∈ C0([a, b]) such that f = g3. As a consequence, we have

(7) D(f) = D(g3) = 3g2 ·D(g).

It follows that if there exists t ∈ [a, b] such that f(t) = 0 then D(f)(t) = 0.
The end of the proof now goes as follows. Assume that for some t ∈ [a, b], one has f(t) 6= 0.

Let us define g := f − f(t). We have g(t) = 0 and as a consequence D(g)(t) = 0. As
D(g) = D(f)−D(Cf(t)) = D(f), we deduce that D(f)(t) = 0.

Hence, for all t ∈ [a, b], one has D(f)(t) = 0 and the derivation is trivial.

If one cancels the linearity condition, we have the following result proved in [21]:

Theorem 2. — If T : C(R) → C(R) is an operator satisfying the Leibniz property then there
exists a continuous function d ∈ C(R) such that T has the form

(8) T (f)(x) = d(x)f(x) ln | f(x) | .

This kind of functions is called an entropy function in [21].

At this point, we have a partial answer to the extension problem of the classical derivative
to continuous functions. As we will see, it will be sufficient to discuss some proposed exten-
sions in fractional calculus.

It must be pointed out that the obstruction Lemma is valid for all functional space F ⊂
C0([a, b]) such that for all f ∈ F one can find g ∈ F such that f = g3.

4. About the Jumarie’s fractional derivative

In a series of papers, G. Jumarie introduces a ”new” fractional derivative which is now
called the Jumarie’s fractional derivative. This derivative knows some success due to the fact
that it satisfies unusual properties like the Leibniz’s property or the Chain rule property and
is moreover defined on the set of continuous functions. Precisely, following G. Jumarie (see
[14], Definition 2.2, p.1369):

Definition 2. — Let 0 < α < 1, the Jumarie’s fractional derivative denoted by DJ is defined
by

(9) DJ [x] =
d

dt

[

I1−α
0+ [x− x(0)]

]

.

The previous definition is assumed to be define on continuous functions (see [14],Definition
2.1 p.1368 and top of p.1369). The author insists on the fact that continuous but non differ-
entiable functions can be considered (see [14], Introduction p.1367). We will return to these
points in the following which will be fundamental.

4.1. Triviality of the Jumarie’s fractional derivative ?— In ([14] p.1371, Equation
(3.11) and [15] p.382, Corollary 4.1, Equation (4.3)) the author states without proof that his
operator satisfies the Leibniz property

(10) Dα
J (x · y) = Dα

J (x) · y + x ·Dα
J (y),
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over the set of continuous functions (see [15], discussion on the validity of each properties
after Corollary 4.1, p.382).

Using the obstruction Lemma, we deduce :

Lemma 3. — Let us assume that the Jumarie fractional derivative Dα
J , 0 < α < 1, satisfies

the linearity and the Leibniz relation on the set of continuous functions then Dα
J is trivial,

i.e. Dα
J := 0.

A consequence of this result is that any work dealing with the Jumarie’s fractional
derivative and using the Leibniz property leads to an empty theory.

However, the Jumarie’s fractional derivative is known to be non zero on some special
functions as for example monomial functions tγ . What is the problem ?

4.2. Jumarie’s fractional derivative versus the Caputo derivative. — As the Ju-
marie’s fractional derivative is obviously non trivial over some functions, it means that the
assumptions of Lemma 3 are not satisfied. The linearity being evident, only the Leibniz
property has to be questioned. In fact, one can easily proves the following Lemma :

Lemma 4. — The Jumarie’s fractional derivatives does not satisfy the Leibniz property.

This Lemma is a consequence of the fact that the Jumarie’s fractional derivative can be
rewritten as

(11) Dα
J [x] = Dα

0+[x− x(0)]

and the following well known equality (see [17]):

Lemma 5. — For every 0 < α < 1 and x ∈ AC([a, b],R), Dα
0,+[x] and cD

α
0+[x] are defined

almost everywhere on [a, b] and the following equality holds:

(12) cD
α
0+[x] = Dα

0+[x− x(0)].

As a consequence, we have:

Lemma 6. — For every 0 < α < 1 and every x ∈ AC([a, b],R), we have Dα
J [x] = cD

α
0+[x].

This result implies the fact that the Jumarie’s fractional derivative does not satisfy the
Leibniz rule (as usual for the Caputo’s derivative) and also that the Jumarie’s derivative is
not a new fractional derivative.

5. The Kolwankar-Gangal local fractional derivative

In [18], Kolwankar and Gangal introduce the idea of local fractional derivative giving rise
to the local fractional calculus. The idea is to localize the Riemann-Liouville derivative with
respect to its base point in order to recover a local operator. In [3], Ben Adda and one of
the authors have given an alternative representation of this theorem using what is now called
α difference quotient local fractional derivative(1). This result can be used to deduce that
the Kolwankar-Gangal (KG) fractional derivative satisfies some special properties which are

(1)The proof of the representation Theorem in [3] was incorrect as pointed out for example by [7] and [6]. A
correct proof was given in [7] and later under more general conditions in [4].
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unusual on some subset of continuous functions. In particular, one can prove that the KG
fractional derivative satisfies the Leibniz property. As for the Jumarie fractional derivative,
this will have very strong consequences, in particular that this derivative is trivial over a very
big set and almost everywhere trivial generically.

5.1. Definitions and properties. — We denote by Dα
KG,σf the Kolwankar-Gangal local

fractional derivative (KG-LFD) defined by

(13) Dα
KG,σ[f ](y) = lim

x→yσ
Dα

y,σ [σ(f − f(y))] (x), σ = ±.

When α = 1, and f ∈ AC([a, b]), we have D1
y,σ[f ](x) = σf ′(x) and then D1

y,σ(σ(f −

f(y)))(x) = σ2f ′(x) = f ′(x) ∈ L1. We deduce that for f ∈ C1, D1
KG,σ[f ](y) = f ′(y).

The domain of existence of the Kolwankar-Gangal fractional derivative is difficult to de-
scribe. First, the left Riemann-Liouville derivative of a function f is defined as long as f
belongs to the functional space Eα

a,+([a, b]) defined by

(14) Eα
a,+([a, b]) =

{

f ∈ L1, I1−α
a,+ [f ] ∈ AC([a, b])

}

.

This space is defined in Samko and al. (see [25], Definition 2.4,p.44).

Second, the Kolwankar-Gangal local fractional derivative makes sense as long as Dα
a,+[f −

f(a)] is well defined on a given interval ]a, a+δ[ where δ > 0. In the following, the existence of
the KG-LFD will be always understood as f being such that f − f(a) ∈ Eα

a,+([a, a+ δ]). This
condition implies that Dα

a,+[f−f(a)] is well defined at least almost everywhere in ]a, a+δ]. In

particular, if f −f(a) has a left RL fractional derivative in the usual sense, i.e. I1−α
a,+ [f −f(a)]

is differentiable at every point, then f − f(a) belongs to Eα
a,+([a, a+ δ]) (see [25],Remark 2.2

p.44).

In [3] another quantity which generalizes directly the representation of the classical deriva-
tive as limit of a difference-quotient is defined by :

Dα
BC,σ[f ](y) = Γ(1 + α) lim

x→yσ

σ(f(x)− f(y))

| x− y |α
, σ = ±.

This quantity was introduced by G. Cherbit in [8] and is denoted BC-LFD in the following.

This quantity is called difference-quotient local fractional derivative(2) in [7] or local fractional
derivative in the sense of Ben Adda-Cresson in [11].

In [3], we state the following Theorem :

Theorem 3. — Let 0 < α < 1 and f ∈ C0([a, b]) and y ∈]a, b[ be such that Dα
KG,σ[f ](y)

exists, then

(15) Dα
KG,σ[f ](y) = Dα

BC,σ[f ](y).

For a complete and corrected proof of this theorem, we refer to [4]. This equality leads
easily to the following result :

(2)Up to the constant factor Γ(1 + α).
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Lemma 7. — For all (f, g) such that Dα
KG,σ[f ] and Dα

KG,σ[g] exist, we have

(16) Dα
KG,σ[f · g] = Dα

KG,σ[f ] · g + f ·Dα
KG,σ[g].

As for the Jumarie’s fractional derivative, the fact that the Kolwankar-Gangal operator
or BC- operator satisfy the Leibniz property seems to indicate that these operators must be
trivial on some sets.

5.2. Triviality of the Kolwankar-Gangal fractional derivative ?— As already pointed
out, the fact that the Kolwankar-Gangal fractional derivative satisfies the Leibniz property
and is a linear operator gives some indications that this operator is trivial at least on some
functional sets where it is defined. This is indeed the case, as proved in [4]:

Theorem 4. — Let f ∈ Hλ([a, b]), then for all 0 < α < λ ≤ 1, we have Dα
KG,+[f ](x) = 0 in

[a, b].

Proof. — This follows from a direct computation. As f ∈ Hλ([a, b]), 0 < λ ≤ 1, we have for
all α < λ and all x ∈ [a, b[ (see [25],p.239,Lemma 13.1 and page 242, Corollary of Lemma
13.2) that

(17) Dα
x,+[f ](y) =

f(x)

Γ(1− α) (y − x)α
+ ψf (y),

where ψf ∈ Hλ−α([x, x + δ]) for a certain δ > 0 such that ψf (x) = 0. As a consequence,
Dα

x,+[f − f(x)](x) = ψf−f(x)(x) = 0 which concludes the proof.

Remark 2. — The previous result is proved in ([6],Lemma 3.1 p.69) when f is at least C1.

An alternative proof of Theorem 4 is to see that the arguments of the obstruction Lemma
holds when one is dealing with a functional set F such that for all f ∈ F , we can find g ∈ F

such that f = g3. This is indeed the case for Hölderian functions of order 1 > λ > α.

The previous result does not implies that the Kolwankar-Gangal fractional derivatives is
always trivial. One can indeed find some explicit class of functions for which this derivative
can be effectively computed. See for example [20].

Two results are important here and related to the validity of the Leibniz property for this
operator and its domain of definition.

First, in order to apply the obstruction Lemma, the operator must satisfy the Leibniz
property over a functional set where it is always defined. However, for Hölderian functions
in the class Hα([a, b]) the RL fractional derivative of f − f(x) is not always defined, even
almost everywhere. Indeed, when λ = α, we have I1−α

x,+ [f − f(x)] ∈ H1,1([x, x + δ]) (see
[25],Theorem 3.1 p.53-54) which corresponds to Log-Lipschitz continuous functions instead

of H1+(λ−α)([a, b]) when λ > α.

Remark 3. — An example of a function f in Hα([a, b]) for which the RL fractional deriva-
tive of order α Dα

x,+[f − f(x)] is not defined is given by the Weierstrass function Wα(x) =
∞
∑

n=0

q−αn cos(qnx) with q > 1 (see [24] Theorem 2 p.150 and Remark 4 p.155).
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Second, assuming that the Kolwankar-Gangal fractional derivative is well defined on an
interval and continuous, one can proved directly that it is trivial (see for example [9],§.3,
Theorem 4.1 and Corollary 4.1 p.4923).

Remark 4. — This negative result was in fact one of the reasons that has leaded one of the
authors not to continue the exploration of the use of local fractional derivatives in Physics as
first studied in [5].

Even with a less stronger condition, existence almost everywhere on a given interval, we
have the following result proved in [7]:

Theorem 5. — Let f : [a, b] → R be a locally α-Hölder continuous function in [a, b] for
0 < α < 1. Assume that the Kolwankar-Gangal fractional derivative exist almost everywhere
in [a, b]. Then, the Kolwankar-Gangal fractional derivative is zero almost everywhere in [a, b].

As a consequence, the Kolwankar-Gangal fractional derivative is not trivial but almost
everywhere trivial.

6. Rigidity property and the chain rule property

The previous analysis proves that the Leibniz property is indeed very strong. What about
the chain rule property ? The Jumarie fractional derivative was assumed to satisfy some
kind of chain rule formula (see [15],Corollary 4.1 formula (4.4) and (4.5)). However, as
this fractional derivative corresponds exactly to the Caputo derivatives this can not be true.
Tarasov has in particular discussed this problem restricting his attention to the action of an
operator satisfying a specific chain rule formula on monomial functions (see [27]). In fact, a
complete answer is given in [2]. But first, we give the following result states in [21]:

Theorem 6. — Suppose T : C1(R) → C(R) satisfies the Leibniz rule and the chain rule
functional equations

T (f · g) = Tf · g + f · Tg,
T (f ◦ g) = (Tf) ◦ g · Tg,

for all f, g ∈ C1(R). Then T is either identically 0 or the derivative, Tf = f ′.

The chain rule property is even a stronger algebraic constraint than the Leibniz rule.
Indeed, we have (see [2],Proposition 3):

Theorem 7. — Assume that T : C(R) → C(R) satisfies the functional equation T (f ◦ g) =
(Tf)◦g·Tg, for all f ,g ∈ C(R) and that there exists g0 ∈ C(R) and x0 ∈ R with (Tg0)(x0) = 0.
Then T is zero on the class of half-bounded continuous functions.

This Theorem implies the following result :

Theorem 8 (Obstruction-chain rule). — There exists no non trivial operator D : C(R) →
C(R) which satisfies the chain rule property and such that D is zero on constant functions.

The reason for formulating such a result is that most of the modifications of the fractional
Riemann-Liouville derivatives are done in order to satisfy the fact that the derivative of a
constant function is zero. We see that imposing this condition and the chain rule property
lead to a trivial operator.
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We return now to the ”proof” proposed by G. Jumarie in [16] of the Leibniz rule for
fractional derivatives as long as one considers non-differentiable functions. We have already
seen that this is not possible but the previous Theorem invalidate also the approach given
in [16]. Indeed, G. Jumarie assumes in [16] that his fractional derivative is zero on constant
functions and satisfies the chain rule property (see [16],§.1,p.50). As a consequence, even if
one can make some computation assuming the existence of such an operator and to deduce
some properties satisfied by this operator, all the theory is empty due to the fact that no such
operators exist.

7. Conclusion and perspectives

Using some known results on operators satisfying the Leibniz or chain rule property, we
have explained that a fractional derivative which as a basic constraint corresponds to the
classical derivative over C1(R) function can not satisfy the chain rule property. The same is
true for the Leibniz property as long as linearity is preserved.

The previous discussion can be extended in order to determine the set of algebraic con-
ditions which are necessary in order to recover the classical Riemann-Liouville fractional
derivatives. This will be discussed in an another work [10].
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1998.

[13] N. Jacobson, Lie Algebras, Dover ed., 1962.



CONSTRUCTION OF FRACTIONAL DERIVATIVES 11

[14] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferen-
tiable functions. Further results, Comput. Math. Appl., Vol.51 (2006), 1367-1376.

[15] G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Rie-
mann–Liouville derivative for non-differentiable functions, Appl. Math. Lett., Vol. 22 (2009),
378–385.

[16] G. Jumarie, The Leibniz rule for Fractional derivatives holds with non-differentiable functions,
Mathematics and Statistics, Vol. 1(2) 2013, 50-52.

[17] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and applications of fractional differential
equations, Volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam,
2006.

[18] K.M. Kolwankar, A.D. Gangal, Fractional differentiability of nowhere differentiable functions and
dimensions, Chaos 6 (1996), 505-513.

[19] K.M. Kolwankar, A.D. Gangal, Local fractional derivatives and fractal functions of several vari-
ables, in Proceedings of Fractals in Engineering (1997).
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