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Abstract
The theory of communication through coherence (CTC) proposes that brain oscillations re-

flect changes in the excitability of neurons, and therefore the successful communication between
two oscillating neural populations depends not only on the strength of the signal emitted but also
on the relative phases between them. More precisely, effective communication occurs when the
emitting and receiving populations are properly phase locked so the inputs sent by the emitting
population arrive at the phases of maximal excitability of the receiving population. To study
this setting, we consider a population rate model consisting of excitatory and inhibitory cells
modelling the receiving population, and we perturb it with a time-dependent periodic function
modelling the input from the emitting population. We consider the stroboscopic map for this
system and compute numerically the fixed and periodic points of this map and their bifurcations
as the amplitude and the frequency of the perturbation are varied. From the bifurcation dia-
gram, we identify the phase-locked states as well as different regions of bistability. We explore
carefully the dynamics of particular phase-locking regimes emphasizing its implications for the
CTC theory. In particular, we study how the input gain depends on the timing between the input
and the inhibitory action of the receiving population. Our results show that naturally an optimal
phase locking for CTC emerges, and provide a mechanism by which the receiving population
can implement selective communication. Moreover, the presence of bistable regions, suggests a
mechanism by which different communication regimes between brain areas can be established
without changing the structure of the network.
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List of abbreviations

CTC Communication Through Coherence
E-I Excitatory-Inhibitory
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1 Introduction
Neural oscillations are ubiquitous in the brain. Since they were first observed in 1929 by

Hans Berger [1], they have been profusely studied to unveil their link with brain function. Nowa-
days, they are classified in the following bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz),
beta (13-30 Hz) and gamma (30-70 Hz). Although some of these frequency bands have been
associated to specific tasks or behaviours, their functional role is still not completely understood
[2].

Fast brain oscillations in the gamma frequency band have been hypothesized to occur in lo-
cal neural networks composed by excitatory pyramidal neurons and inhibitory interneurons (E-I
networks) [3, 4]. There is an increasing number of studies which link oscillations in the gamma
band frequencies with cognitive processes and communication between brain areas [5, 6, 7]. In
this context, the Communication Through Coherence (CTC) Theory [8] conjectures that oscilla-
tions can account for a flexible mechanism of communication between neural populations. More
precisely, oscillations generated across the interaction of excitatory and inhibitory cells cause
that the excitability of the excitatory population is not the same for all the phases of the cycle due
to the inhibitory action [9, 10]. Indeed, when the excitatory population receives an external input
at the phase in which the inhibition is not present, the excitatory cells can respond effectively,
thus promoting communication, while if the inhibition is present, the input might be ignored,
thus preventing communication (see Fig. 1). Therefore, according to the CTC theory, two neu-
ronal populations with underlying oscillatory activity communicate much effectively when they
are coherent, that is, they are properly phase locked so that the output sent by the pre-synaptic
(emitting) population reaches the post-synaptic (receiving) population in its peaks of excitability.

Different predictions following the CTC theory have been experimentally tested [11]. On one
hand, different studies link the phase of the inhibitory receiving population with the modulation
of the input gain [12]. On the other hand, different studies support that selective communication,
that is, the ability of the post-synaptic group to respond to a given input and ignore the others, is
implemented through selective coherence [13, 14].

Furthermore, besides the experimental studies, the CTC framework has also been studied by
means of computational models, which focus on the link between gamma oscillations and stimu-
lus selection [15, 16, 17]. Conclusions agree with the CTC hypothesis that the phase relationship
which is established between a rhythmic input and the post-synaptic group turns to be optimal for
the CTC scheme [18]. Most of these computational studies are based on E-I networks of spiking
neurons. Nevertheless, mean field approaches are also useful to complement these results and to

Figure 1: The picture illustrates different
excitability properties along a cycle gener-
ated by the interaction between excitation
(red) and inhibition (blue). Once the inhibi-
tion decays, the network is sensitive to ex-
ternal inputs.
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gain insight into the mechanisms underlying the CTC hypotheses. Indeed, they allow for a more
manageable analytical treatment, while keeping the essential processes involved [19].

In this work we propose a theoretical approach to the CTC theory by means of a phenomeno-
logical description of the population activity in terms of the mean firing rate. More precisely, in
order to deepen in the mechanism underlying phase-locking in a neuronal cycle having different
excitability phases, we will consider the effect of an external periodic input onto a network model
consisting of a single population of excitatory neurons and a single population of inhibitory neu-
rons (E-I network). For such setting we consider the simplest canonical model describing the
mean firing rates of an E-I network: the Wilson-Cowan equations [20]. The parameters of this
model will be chosen so that the system shows oscillations [21]. In particular, we focus on oscil-
lations of the Wilson-Cowan model arising from a Hopf bifurcation -we also provide a prelim-
inary exploration of the case close to a Saddle-Node on an Invariant Circle (SNIC) bifurcation.
The goal is to study the different phase-locking patterns that emerge between the oscillatory E-I
network and the external periodic input for different input parameters. We remark that our setting
explores the dynamics emerging from unidirectional communication. Indeed, some studies have
conjectured that a given brain area has neurons receiving inputs and different neurons sending
outputs [22]. Nevertheless, we point out that schemes based on bidirectional communication
have also been proposed to play a role in the context of CTC theory [23, 24].

To determine and compute the phase-locked states, we consider the stroboscopic map for
this system and compute numerically its fixed and periodic points and their bifurcations, as the
amplitude and the frequency of the perturbation are varied. The techniques that we use to do
the bifurcation analysis have no restriction neither on the amplitude nor on the frequency of
the perturbation, or how close the limit cycle of the Wilson-Cowan equations is from a bifurca-
tion. From the bifurcation diagram, we can identify the phase-locked states as well as different
regions of bistability between different invariant objects. We explore carefully the dynamics on
these invariant objects and we discuss the implications of these results for the CTC theory, paying
attention to the phase-locking and amplitude of the response of the oscillatory neuronal popu-
lation to the external input. Notably, our results provide a mechanism by which the receiving
population can implement selective communication, as well as a mechanism by which different
communication regimes between areas can be established (communication can be turned on and
off) without changing the connectivity of the network.

The structure of the paper is as follows. In Section 2, we introduce the mathematical model
by which we explore the theoretical basis of CTC. Section 3 contains the mathematical analysis
of the model. More precisely, in Section 3.1, we introduce the stroboscopic map and compute the
bifurcation diagram of its fixed points as the frequency and the amplitude of the perturbation are
varied. In Section 3.2 we provide a complete dynamical analysis of the different phase-locking
regions including the bistability regions identified in the bifurcation diagram. In Section 4 we
discuss the implications for CTC theory of the different dynamical scenarios found in Section
3.2 and we finish with a discussion in Section 5. The Appendix A contains details of the nu-
merical algorithms used to compute the bifurcation diagram, Appendix B contains a preliminary
exploration of the Wilson-Cowan equations in the oscillatory regime close to a SNIC bifurcation
and Appendix C includes an exploratory result for non-sinusoidal type of inputs.
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2 Mathematical setting for CTC
In this Section we present the theoretical setting based on a canonical population firing rate

model that implements mathematically the CTC framework. We consider the classical Wilson-
Cowan model, which describes the behaviour of a coupled network of excitatory and inhibitory
neurons [20], and we perturb it with a time-periodic function p(t) which models the input from
an external oscillating source. The perturbed Wilson-Cowan equations have the form

ṙe = −re + Se(c1re − c2ri + P + Ap(t)),

ṙi = −ri + Si(c3re − c4ri +Q),
(1)

where the variables re and ri are the firing rate activity of the excitatory and inhibitory popula-
tions, respectively, and

Sk(x) =
1

1 + e−ak(x−θk)
, for k = e, i, (2)

is the input-output function.
As we will use the Wilson-Cowan equations to model the receiving population, we need to

choose parameters in (1) such that for A = 0 they show a limit cycle. The conditions for the
Wilson-Cowan equations to display oscillations have been studied in classical papers [20, 21].
Typically, the external currents P and Q are set as the bifurcation parameters. The reason is
because they translate the nullclines of system (1) and thus determine the position and number
of the critical points. For this problem we will use the following set of parameters

P = {c1 = 13, c2 = 12, ae = 1.3, θe = 4, c3 = 6, c4 = 3, ai = 2, θi = 1.5}, (3)

for which, as the bifurcation diagram in Fig. 2 shows, the system (1) for A = 0 displays a limit
cycle denoted by Γ0 for some (P,Q) values. In particular, in this paper we choose (P,Q) =
(2.5, 0), so the unperturbed limit cycle is near a Hopf bifurcation.

Besides the Wilson-Cowan equations, we model the external input p(t) to the excitatory
population by means of a positive T ′-periodic function. In this paper we have chosen:

p(t) = 1 + cos

(
2πt

T ′

)
. (4)

3 Dynamical Analysis
In this Section we will define the stroboscopic map of system (1) and study the bifurcations

of its fixed points as the amplitude and the frequency of the perturbation p(t) in (4) are varied.
In particular, we will focus on the study of the 1:1 and 1:2 phase-locked states, as we will see in
Section 4, they can serve to interpret several aspects of the CTC theory.
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Figure 2: For the unperturbed
(A = 0) Wilson-Cowan equa-
tions (1) having the set of pa-
rameters P given in (3) we
show: Bifurcation diagram
as a function of the exter-
nal stimuli P and Q (Top
panel). The pink dot indi-
cates the pair of (P,Q) =
(2.5, 0) values chosen so that
(1) shows oscillations. The
bottom-left panel shows the
nullclines and the phase space
for the choice (P,Q) = (2.5,
0). The phase space shows
a limit cycle Γ0 and an un-
stable focus P1. The bottom-
right panel shows the dynam-
ics over the limit cycle Γ0.
Notice how oscillations arise
from the interaction between
excitatory and inhibitory ac-
tivity.

3.1 The stroboscopic map
To study the T ′-periodic system (1) we use the stroboscopic map defined by

FA : R2 → R2,

x → FA(x) = φA(t0 + T ′; t0, x), (5)

where φA(t; t0, x) is the solution of (1) such that φA(t0; t0, x) = x. Calculations in this paper
will always assume that t0 = 0.

As it is well known, periodic orbits of system (1) are given by the fixed and periodic points of
the stroboscopic map (5), whereas the quasi-periodic solutions correspond to its invariant curves
[25]. More precisely, if γ(t) = φA(t; t0, x) is a solution of system (1) and [FA(x)]q = x, then
φA(t0 + qT ′; t0, x) = x and therefore γ(t) is a periodic orbit of system (1) with period qT ′.
Analogously, if γ(t) = φA(t; t0, x) is a periodic orbit of period T of (1) with T ′

T
= p

q
, p, q ∈ N,

then
[FA(x)]q = φA(t0 + qT ′; t0, x) = φA(t0 + pT ; t0, x) = x. (6)

Otherwise, if T ′/T ∈ R \ Q, then the iterates of FA fill densely an invariant curve denoted by
ΓA.
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In the perturbed Wilson-Cowan model (1), the relationship (6) indicates a p:q phase locked
state between the population and the perturbation. This means that the neuronal population
variables re and ri have completed p revolutions in the same time that the perturbation p(t) has
completed q revolutions.

3.2 Dynamics of the stroboscopic map FA

Computing bifurcations of the fixed points of the stroboscopic map becomes relevant to iden-
tify different synchronous regimes as well as asynchronous ones. Using the techniques described
in Appendix A we can compute the bifurcation diagram for the fixed points of the stroboscopic
map (5) of system (1) as the amplitude and the frequency of the perturbation p(t) in (4) are
varied. As Fig. 3 shows, the fixed points of the map FA undergo different bifurcations, namely,
saddle-node, Neimark-Sacker and period doubling bifurcations, which bound the 1:1 and 1:2
phase locking areas, and allow for a natural identification of the synchronous regimes of interest.
The yellow and pink regions correspond to 1:1 and 1:2 phase locked states of system (1), re-
spectively. We recall that they correspond to fixed points (1:1) and 2-periodic points (1:2) of the
map FA. The white regions may contain other p:q phase-locked states, as well as asynchronous
states. The orange regions contain more than one stable invariant object for the map FA.

Next, we study in detail the dynamics predicted by the bifurcation diagram in Fig. 3. In
particular, we will consider different T ′/T intervals and study in detail the dynamics as the
amplitudeA of the perturbation p(t) is increased. We recall that by choosing the set of parameters
P given in (3), (P , Q) = (2.5, 0) and A = 0, the phase space for system (1) shows the limit cycle
Γ0 and an unstable focus P1 (see Fig. 2 bottom left). As both objects are normally hyperbolic
we expect them to persist for weak enough amplitudes as an invariant curve ΓA and a fixed
point P1, respectively, for the corresponding stroboscopic map FA in (5). The analysis that we
perform focuses on 1:1 and 1:2 phase-locked states because they occupy the largest regions of
the parameter space. Furthermore, as we will see in Section 4, the dynamics emerging in the 1:1
and 1:2 phase-locking regions can be interpreted in terms of the CTC theory which motivates
this study. In particular, the 1:1 phase-locking pattern allows for the study of the modulation of
the input gain whereas the 1:2 phase-locking pattern accounts for selective communication.
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Figure 3: Bifurcation
diagram for the fixed
points of the stroboscopic
map (5) of system (1) for
the set of parameters P
given in (3), (P , Q) =
(2.5, 0), as the frequency
and the amplitude of the
perturbation are varied.
Solid curves correspond
to bifurcations of stable
fixed points whereas
dashed curves correspond
to bifurcations of unsta-
ble fixed points. The
coloured regions corre-
spond to different phase
locking regimes: 1:1
phase-locking (yellow),
1:2 phase-locking (pink),
bistability (orange). See
text for more details.

Dynamics close to the saddle-node bifurcation at the 1:1 phase-locking region

The dynamics for values of T ′ such that 0.9388 < T ′

T
< 1.04, was studied in [26]. For the

sake of completeness we recall here the main results, which are shown in Fig. 4. For A small,
an attracting invariant curve ΓA and an unstable focus P1 inside it exist (regions A1 and B). In
region A1 the invariant curve ΓA has no fixed points and once the saddle-node bifurcation (solid
blue curve) is crossed (region B), there appear two fixed points on the invariant curve: a stable
node P2 and a saddle P3, thus a SNIC bifurcation occurs, so ΓA consists of the union of the
saddle P3, its unstable invariant manifolds, and the stable node P2. If the amplitude is increased
(region C), P1 becomes an unstable node (dashed gray curve). Furthermore, if the amplitude
is increased further, P1 coalesces with P3 in an unstable saddle-node bifurcation (dashed blue
curve), causing the disappearance of the invariant curve ΓA and the stable node P2 remains as
the unique fixed point (region D). Observe that it is possible to pass from region A1 to region C,
without passing through region B. In the region A2 the unstable focus P1 becomes an unstable
node before crossing the saddle-node bifurcation curve (solid blue curve).
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Figure 4: Dynamics close to the saddle-node bifurcation at the 1:1 phase-locking region. Central
panel shows a zoom of the bifurcation diagram for the map FA in Fig. 3 in the region close to
the saddle-node bifurcation at the 1:1 phase-locking region. Panels A-D show a sketch of the
phase space for the map FA in different parameter regions indicated accordingly in the central
panel. Solid and empty dots correspond to stable and unstable fixed points, respectively, while
orange curves correspond to a sketch of the invariant curves. Arrows indicate only the type of
fixed point. See text for more details.

Dynamics close to the Neimark-Sacker bifurcation at the 1:1 phase-locking region

The dynamics for values of T ′ such that 0.51 < T ′

T
< 0.9388, was studied in [26]. For the

sake of completeness we recall here the main results, which are shown in Fig. 5. For A small, the
attracting invariant curve ΓA has no fixed points of FA, and an unstable focus P1 exists inside ΓA
(region A). If the amplitude A is further increased, a Neimark-Sacker bifurcation occurs (green
curve). At this point, the curve ΓA collapses to P1 and disappears, while P1 becomes a stable
focus (region B).
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Figure 5: Dynamics close to the Neimark-Sacker bifurcation at the 1:1 phase-locking region.
Right panel shows a zoom of the bifurcation diagram for the map FA in Fig. 3 in the region close
to the Neimark-Sacker bifurcation at the 1:1 phase-locking region. Panels A-B show a sketch
of the phase space for the map FA in different parameter regions indicated accordingly in the
central panel. Solid and empty dots correspond to stable and unstable fixed points, respectively,
while orange curves correspond to a sketch of the invariant curves. Arrows indicate only the type
of fixed point. See text for more details.

Dynamics on the left hand side of the 1:2 phase-locking region

For values of T ′ such that 0.32 < T ′

T
< 0.42, the phase portrait for the map FA in different

regions of the parameter space is shown in Fig. 6. ForA small, there exists a stable invariant curve
and an unstable focus P1 (region A). When the amplitude increases, P1 becomes an unstable
node when it crosses the dashed grey curve (region B). If the amplitude increases more, one
finds, depending on the T ′ value considered, different bifurcation curves where there appear
unstable fixed points for the map F 2

A. Next, we describe the dynamics in the zoomed region
in Fig. 6 containing a sketch of such bifurcations. For 0.355 < T ′

T
< 0.4, as A increases an

unstable saddle-node bifurcation for F 2
A is crossed (dashed blue curve) and two saddles (P3 and

P5) and two unstable nodes (P2 and P4) appear as fixed points for the map F 2
A (region C). By

contrast for 0.32 < T ′

T
< 0.355, one finds a period doubling bifurcation (dashed purple curve),

at which there appear two unstable nodes (P2 and P4) and the unstable node P1 becomes a
saddle (region G). In both cases, a slight increase of the amplitude A causes the unstable nodes
P2 and P4 of F 2

A to become unstable focuses at the dashed grey line (regions D and H). These
focuses change their stability at a subcritical Neimark-Sacker bifurcation (green curve). Thus,
an unstable invariant curve appears surrounding each of the stable focuses (regions E and I,
respectively), generating a situation of bistability between the invariant curve ΓA and the fixed
points P2 and P4. These unstable invariant curves undergo a homoclinic bifurcation (not shown)
generating a unique unstable invariant curve which collides with the stable invariant curve ΓA at
a saddle-node bifurcation of invariant curves (brown dashed curve). Therefore, the stable focuses
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Figure 6: Dynamics close to the left hand side of the 1:2 phase-locking region. Top central panel
shows a zoom of the bifurcation diagram for the map F 2

A in Fig. 3 for 0.32 < T ′/T < 0.42.
The bottom central panel contains a sketch of the bifurcations inside the black rectangle. Panels
A-L show a sketch of the phase space for the map F 2

A in different parameter regions indicated
accordingly in the central panel. Solid and empty dots correspond to stable and unstable fixed
points, respectively, while orange curves correspond to a sketch of the invariant curves. Arrows
indicate only the type of fixed point. See text for more details.
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P2 and P4 remain as the unique attractors (regions F and J). Additionally, the saddles P3 and P5

in region F disappear at a period doubling bifurcation (dashed purple curve) and transitioning
from region F to J.

So, as the amplitude A increases, by means of different bifurcation routes, that depend on
T ′/T , the map F 2

A shows the phase portrait depicted in region J, consisting of a saddle P1 and
two stable focuses P2 and P4. Finally, for large enough amplitudes, the stable focuses P2 and P4

for the map F 2
A become stable nodes when crossing the dashed grey line (region K). Increasing

the amplitude further, both points collapse at a period doubling bifurcation (solid purple line)
where the saddle P1 becomes a stable node (region L).

Dynamics on the right hand side of the 1:2 phase-locking region

For values of T ′ such that 0.42 < T ′

T
< 0.51, the phase portrait for the map (5) in different

regions of the parameter space is shown in Fig. 7. For A small, the attracting invariant curve
ΓA generated from the unperturbed limit cycle Γ0 has no fixed points, and an unstable focus P1

exists inside ΓA (region A). When the amplitude is increased, a saddle node bifurcation curve of
F 2
A is crossed (blue curve), and there appear four fixed points on the invariant curve for the map
F 2
A: two stable nodes (P2 and P4), and two saddles (P3 and P5) (region B). The invariant curve

consists of the union of both saddles and their unstable invariant manifolds with the fixed points
P2 and P4.

For values of T ′ such that 0.48 < T ′

T
< 0.51, as the amplitude is increased, P2, P3, P4

and P5 pair-collide again on a saddle-node bifurcation (blue curve) and disappear leaving an
attracting invariant curve without periodic points and the unstable fixed point P1 (region A).
The amplitude of this invariant curve decreases as the amplitude A increases until it reaches a
supercritical Neimark-Sacker bifurcation (green curve) for the map FA leaving just a stable focus
as the unique fixed point P1 (Region F).

For values of T ′ such that 0.42 < T ′

T
< 0.48, as the amplitude A increases, very close to

the saddle node bifurcation curve, P2 and P4 become stable focuses at the grey dashed curve
(region C). In this region the only stable objects are the focuses P2 and P4. As the amplitude is
increased further, this situation is maintained until P2 and P4 cross again the grey dashed curve
and become stable nodes, and the invariant curve is the union of the saddle points P3 and P5 and
their unstable invariant manifolds with the fixed points P2 and P4 (region B’).
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Figure 7: Dynamics close to the right hand side of the 1:2 phase-locking region. Central panel
shows a zoom of the bifurcation diagram for the map F 2

A in Fig. 3 for 0.42 < T ′/T < 0.51. The
inset panel contains a sketch of the bifurcations inside the black rectangle. Panels A-F show a
sketch of the phase space for the map F 2

A in different parameter regions indicated accordingly in
the central panel. Solid and empty dots correspond to stable and unstable fixed points, respec-
tively, while orange curves correspond to a sketch of the invariant curves. Arrows indicate the
type of fixed point in panels A, B and F while for the rest we include an sketch of the globaliza-
tion of the invariant manifolds. See text for more details.

As the amplitude is increased further, a homoclinic bifurcation is crossed (red curve) and
an invariant curve appears (region D). Therefore, we have found a region where our system
presents bistability between an attracting invariant curve and the fixed points P2 and P4 for F 2

A.
If the amplitude is increased further, a Neimark-Sacker bifurcation is crossed (green curve), thus
the invariant curve disappears and P1 changes stability (region E). This situation of bistability
between a 2-periodic orbit and a fixed point P1 of the map FA persists as the amplitude increases
further until it reaches a saddle-node bifurcation (blue curve) for F 2

A when the stable focus P1

remains as the only fixed point (region F). See Appendix A for the description of the procedure
followed to compute the homoclinic bifurcation curve.
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Dynamics on the bottom right of the 1:1 phase-locking region

For values of T ′ such that 1.04 < T ′

T
< 1.125, the phase portrait for the map (5) in different

regions of the parameter space can be seen in Fig. 8. The invariant curve ΓA (region A) evolves as
the amplitude increases until crossing a saddle-node bifurcation (blue curve). At this bifurcation
a stable node P2 and a saddle P3 are born and the invariant curve consists of the union of the
saddle P3 and its unstable invariant manifolds with the stable node P2 (region B). Increasing the
amplitude, a homoclinic bifurcation is crossed (red curve) and there appears a stable invariant
curve without fixed points generating bistability between the invariant curve itself and the fixed
point P2 (region C). This invariant curve collapses at a Neimark-Sacker bifurcation (green curve),
where the focus becomes stable, generating bistability between the fixed points P1 and P2 (region
D). This situation persists until P1 becomes a stable node at the grey dashed line (region E) which
coalesces with the saddle P3 at a saddle node bifurcation (blue curve) and disappears leaving P2

as the unique (stable) fixed point (region F). See Appendix A for the description of the procedure
followed to compute the homoclinic bifurcation curve.

Figure 8: Dynamics close to the bottom right of the 1:1 phase-locking region. Central panel
shows a zoom of the bifurcation diagram for the map FA in Fig. 3 for 1.04 < T ′/T < 1.125. The
inset contains a sketch of the bifurcations inside the black rectangle. Panels A-F show a sketch
of the phase space for the map FA in different parameter regions indicated accordingly in the
central panel. Solid and empty dots correspond to stable and unstable fixed points, respectively,
while orange curves correspond to a sketch of the invariant curves. Arrows indicate only the type
of fixed point. See text for more details.

Dynamics on the top right of the 1:1 phase-locking region

For values of T ′ such that 1.125 < T ′

T
< 1.255, the phase portrait for the map (5) in different

regions of the parameter space can be seen in Fig. 9. As the amplitude is increased, the invariant
curve ΓA (region A) collapses at a Neimark-Sacker bifurcation (green curve), where the stability
of the focus P1 changes (region B). If the amplitude is increased further, a stable node P2 and a
saddle P3 appear at a saddle-node bifurcation (blue curve), generating a situation of bistability
between the focus P1 and the node P2 (region C). As the amplitude A increases further, P1

becomes a stable node at the grey dashed line (region D) and coalesces with P3 at a saddle-node
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bifurcation, leaving node P2 as the unique (stable) fixed point (region E).

Figure 9: Dynamics close to the top right of the 1:1 phase-locking region. Central panel shows a
zoom of the bifurcation diagram for the map FA in Fig. 3 for 1.125 < T ′/T < 1.255. The inset
contains a sketch of the bifurcations inside the black rectangle. Panels A-F show a sketch of the
phase space for the map FA in different parameter regions indicated accordingly in the central
panel. Solid and empty dots correspond to stable and unstable fixed points, respectively, while
orange curves correspond to a sketch of the invariant curves. Arrows indicate only the type of
fixed point. See text for more details.

4 Implications for CTC Theory
In this section, we interpret the results obtained in Section 3 in terms of the CTC framework.

More precisely, we explore the implications of the 1:1 phase-locked states in the modulation of
the input gain, the 1:2 phase-locked states in selective communication and the bistability regions
in regulating communication.

According to the CTC theory, phase locking between the emitting and receiving populations
is required to establish an effective communication. Nevertheless, as an effective communication
is characterized by a noticeable increase of the response of the excitatory receiving population,
it turns out that the timing between the input and the inhibitory response might modulate the
response of the excitatory receiving population. Indeed, inputs preceding inhibition may partici-
pate effectively in the response of the receiving population, thus increasing it. By contrast, inputs
following the inhibitory action may be partially or totally silenced and, thus, have almost no no-
ticeable effect in the receiving population. Next, in order to explore the relationship between the
timing of the inhibition and the increase of the response of the excitatory population to the input
we define and compute two magnitudes, ∆θ and ∆α, on the phase-locking areas of interest.

In particular, we define ∆θ to compute the phase difference between the maximum of the
inhibitory population and the maximum of the perturbation, that is,

∆θ =
tinh − tpert

T ′
, ∆θ ∈ [−0.5, 0.5), (7)

where tinh and tpert are the times at which I(t) and p(t) of system (1) achieve a maximum
inside a cycle. Notice that when ∆θ is positive, the perturbation precedes the activation of
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Figure 10: Effect of the phase ∆θ defined in Eq. (7) onto the excitatory response. For ∆θ > 0
(left) the input (green dashed curve) precedes the inhibition (blue curve), whereas for ∆θ < 0
(right) the input follows the inhibition. Parameters used are (A, T ′/T ) = (0.47, 1.2) (left) and
(A, T ′/T ) = (0.47, 1.24) (right).
Notice how, for two perturbations of identical amplitude and similar frequency, changes on the

sign of ∆θ imply a change on the excitatory population response (red curve).

the inhibitory population, so we expect that the excitatory receiving population is sensitive to
the input. On the contrary, when ∆θ is negative, the perturbation follows the activation of the
inhibitory population, so we expect that the excitatory receiving population is less sensitive to
the input due to the presence of inhibition (see Fig. 10).

In addition, ∆α computes the maximum of the activity of the excitatory population αA,
normalized by the maximum of the activity of the unperturbed excitatory population α0, that is,

∆α =
αA
α0

. (8)

Notice that when the rate ∆α is greater than one, the perturbation increases the amplitude of
re(t). Therefore, the larger ∆α the more effective the input.

Next, we compute both magnitudes ∆θ and ∆α for each of the two phase locked regions
considered. Notice that results for both regions can be interpreted differently. In the 1:1 region,
as there is just one input per period, the input can precede or follow the inhibitory action, whereas
in the 1:2 case, as there are two inputs per period, we expect one to precede and the other to follow
the inhibitory action.

4.1 Modulation of the Input Gain (1:1 phase-locking region)
By looking at the bifurcation diagram in Fig. 3, we observe that there is a large region of

1:1 entrainment, which corresponds to the yellow region. To investigate the features of this
entrainment we compute the quantities ∆θ and ∆α described above (see Fig. 11).
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Figure 11: For the 1:1 phase-locking region we show the phase difference ∆θ defined in Eq. (7)
(left) and the amplitude increase factor ∆α defined in eq. (8) (right).

We observe that, in general, 0 ≤ ∆θ ≤ 0.5, indicating that inhibition typically follows the
input. Predominance of positive values of ∆θ (blue in the left panel of Fig. 11) seems to indicate
that the perturbation will have a positive effect onto the activity of the excitatory population.
Indeed, we observe that the activity of the excitatory population increases since ∆α > 1 (see
the right panel for Fig. 11). Nevertheless, this increase is not the same for all the points in the
1:1 phase-locking region. Notice that, as it is expected, the response of the receiving population
is larger as the amplitude of the input increases. Nevertheless, for a fixed forcing amplitude A,
the factor ∆α is lower near the borders of the 1:1 phase-locking region (white and red regions),
where the inhibition action precedes the input (∆θ < 0) and it can suppress totally or partially
the input effect.

In conclusion, the 1:1 phase-locking pattern naturally produces a stable phase relationship
that is optimal for CTC in the sense that it promotes an increase in the firing rate activity of the
receiving population. Interestingly, near the boundaries of the 1:1 region this situation is reversed
(∆θ < 0) so the perturbation follows the inhibitory action.

4.2 Selective communication (1:2 phase-locking region)
In the previous Section, we have shown that for the 1:1 phase-locking region, the input typ-

ically precedes the inhibitory response. This is especially interesting when studying the forcing
with higher frequencies, as it is the case of the 1:2 phase-locking region. In this region, the input
undergoes two cycles for one cycle of activity of the receiving population. Because of this, we
expect that one of the input cycles precedes the inhibitory action whereas the other one follows
it. Indeed, we can interpret the input in the 1:2 phase-locking region as two identical inputs, I1(t)
and I2(t), from two different emitting neural populations, which arrive to the receiving popula-
tion separated by a half-period (see Fig. 4.2), and study competition between inputs. That is, we
explore whether one input phase-locks at an optimal phase so that it increases the post-synaptic
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response, while the other one is ignored [27, 28]. In the CTC context, this situation is known as
selective communication (only one pre-synaptic population communicates effectively) [8]. We
refer to input I1(t) as the one that precedes the main inhibitory response and I2(t) as the one
that follows it. Thus, we expect that input I1 produces an increase in the activity of the receiving
population whereas the other one I2, is ignored.

The 1:2 phase locked states
can account for selective
communication as the in-
put p(t) can be interpreted
as the sum of two identical
competing inputs I1(t) and
I2(t) in anti-phase coming
from different sources. See
text for more details.

Similarly as the procedure followed in the 1:1 phase-locking case, we will study selective
communication by computing the timing between the input and the inhibitory response ∆θ and
the rate change in the response of the excitatory receiving population ∆α. Since in this case the
input is interpreted as the sum of two inputs (Fig. 4.2), we will compute ∆θ and ∆α for each
input, provided that each input generates a response of the population. For the first input I1(t),
as we assume that it will always precede the inhibitory response, we can always compute the
following magnitudes

∆θ1 =
t
(1)
inh − t

(1)
pert

T ′
, ∆α1 =

α
(1)
A

α0

, (9)

where t(1)
inh is the time at which ri(t) achieves a maximum inside a cycle and t(1)

pert is the time at
which I1(t) achieves a maximum inside the interval 0 < t < T ′. Moreover, we denote by α(1)

A

the value of the excitatory activity at the main maximum.
Nevertheless, for the second input I2(t) the situation is not so straightforward. We will con-

sider that this input elicits a response from the receiving population if the activity of the excita-
tory/inhibitory population shows, apart from the main maximum, a second peak (see Fig. 12). In
that case, we will also compute

∆θ2 =
t
(2)
inh − t

(2)
pert

T ′
, ∆α2 =

α
(2)
A

α0

, (10)

where t(2)
inh is the time at which ri(t) achieves a second local maximum inside a cycle and t(2)

pert is
the time at which I2(t) achieves a maximum inside a cycle, so T ′ < t

(2)
pert < 2T ′. Moreover, we

denote by α(2)
A the value of the excitatory activity at the second local maximum.

We remark that, differently from the 1:1 case in which the perturbation can either follow or
precede the inhibition, so −0.5 < ∆θ < 0.5, in this case both magnitudes ∆θ1 and ∆θ2 are
defined in such a way that they always precede an inhibitory response, so ∆θ1,∆θ2 ∈ [0, 1].
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Figure 12: Stable solution for system (1) with forcing parameters (A, T ′/T ) = (0.4, 0.4) (left)
and (A, T ′/T ) = (0.7, 0.38) (right). In the left panel, the first input (green curve) elicits a
response of the excitatory population (red curve), whereas the second input (purple curve) is not.
By contrast, in the right panels, both inputs elicit a response (two bumps in the excitatory and
inhibitory activity). In the left panel we compute only ∆θ1 and in the right panel we compute
∆θ1 and ∆θ2.

Fig 13 shows the magnitudes ∆θ1 and ∆α1 defined in (9), for the first input I1. Observe
that as I1 was defined as always preceding the main inhibitory response, then 0 < ∆θ1 < 1 (see
Fig. 13 left panel), so similarly to the 1:1 phase-locking case, the effect of this input is to increase
the activity of the excitatory population (∆α1 > 1) (see right panel in Fig. 13). By contrast, the
second input only elicits a response of the receiving population for large values of the amplitude
(see coloured region in Fig. 14 and Fig 15), and this is smaller than the one produced by the first
input. Indeed, both inputs only elicit the same response just at the upper boundary of the 1:2
phase-locking region.

In conclusion, the 1:2 phase-locking pattern naturally establishes a stable phase relationship
so that one of the inputs enhances the response of the excitatory neurons while preventing the
second one to elicit a response (except at the upper boundary of the 1:2 phase-locking region).
Notice that because of the symmetry of the problem, no input is preferred, so phase-shifts can
change the input selected for effective communication.
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Figure 13: For the 1:2 phase-locking region we show for the input I1 the phase difference ∆θ1

(left) and the amplitude increase factor ∆α1 defined in Eq. (9) (right).

Figure 14: For the 1:2 phase-locking region we show for the input I2, whenever the excita-
tory/inhibitory activity shows two local maxima, the phase difference ∆θ2 (left) and the ampli-
tude increase factor ∆α2 defined in Eq. (10) (right).
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Figure 15: For the 1:2 phase locking region we show some phase locked states as the amplitude
of the perturbation is increased. From lower to higher amplitude values, the frequency values are
0.46, 0.4, 0.37 and 0.38, respectively.

4.3 Bistable regions
The analysis in Section 3.2 revealed the existence of different bistable regions which can

be interpreted in terms of the CTC framework. Bistability suggests that, for a given input, the
population may operate in different regimes depending on the initial conditions (which in fact
correspond to the initial phase difference between oscillators). More interestingly, the bistability
regions that we have found can generate situations in which two different synchronous regimes
or co-existence of synchronous and asynchronous regimes are possible. Namely,

• Bistability between a 2-periodic orbit and an invariant curve without fixed or 2-periodic
points for the map FA (panel D in Fig. 7 and panels E and I in Fig. 6).

• Bistability between a 2-periodic orbit and a fixed point of FA (panel E in Fig. 7).

• Bistability between a fixed point and an invariant curve without fixed points of the map FA
(panel C in Fig. 8).

• Bistability between two stable fixed points of the map FA (panels D and E in Fig. 8 and
panels C and D in Fig. 9).
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Figure 16: For the region of bistability in the 1:1 phase-locking area we show examples of bista-
bility between synchronous solutions (left column) and between synchronous and asynchronous
solutions (right column). Central panel shows a zoom of the bifurcation diagram in Fig. 3. The
bistable dynamics in the left column (Syn + Syn) can be found in the orange region of the central
panel corresponding to regions D and E in Fig. 8. Alternatively, the bistable dynamics in the
right column (Syn + Asyn) can be found in the green region of the central panel corresponding
to region C in Fig. 8.

Figures 16 and 17 show the main bistable regions. In particular, bistable situations between
fixed points of the stroboscopic map imply a defined phase locking relationship, suggesting that
there can exist different encodings of the input by the receiving population depending on the
initial phase difference, as Fig 16 left illustrates. In this case, one of the solutions shows a
larger variation in the activity of the E cells. We also observe bistability between 1:1 and 1:2
entrainment, see Fig.17 left, where the receiving population can either select only one input or
respond to both at the price of reducing its effects.

By contrast, bistable situations between fixed points and attracting invariant curves, as illus-
trated in Fig 16 right and Fig. 17 right, suggest that there might exist or not coherence between
the emitting and receiving neural groups depending on the initial conditions. The absence of
coherence (asynchronous regimes) prevents the communication between them.

5 Discussion
In this paper we have introduced a mathematical framework based on a phenomenological

description of the population activity to study some aspects of the CTC theory, namely coher-
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Figure 17: For the region of bistability in the 1:2 phase-locking region we show examples of
bistability between synchronous solutions (left column) and between synchronous and asyn-
chronous solutions (right column). Central panel shows a zoom of the bifurcation diagram in
Fig. 3. The bistable dynamics in the left column (Syn + Syn) can be found in the orange region
of the central panel corresponding to region E in Fig. 7. Alternatively, the bistable dynamics
in the right column (Syn + Asyn) can be found into the green region of the central panel corre-
sponding to region D in Fig. 7.

ence or selective communication. Our approach considers an oscillating population of excitatory
and inhibitory neurons described by the Wilson-Cowan equations, which models the receiving
population, submitted to an external time-periodic input, which models the effect of the emitting
population. By varying the amplitude and the frequency of the external forcing, we studied the
phase-locking regions between the forcing and the system, and interpreted the dynamics in terms
of the CTC theory.

To do so, we considered the stroboscopic map FA and computed the bifurcation diagram of
the fixed points in terms of the amplitude and the frequency. We have focused in the regions
corresponding to 1:1 and 1:2 phase locking since they are the largest ones and have stronger im-
plications for CTC theory. In general, our analysis revealed the existence in the parameter space
of only one attracting object, either a fixed point for the map FA (or F 2

A) or an invariant curve
without fixed points on it, which correspond to stable synchronous or asynchronous regimes, re-
spectively. By performing a detailed analysis of the boundaries of these regions, we have found
rich dynamics, like bistability between invariant objects.

Once we have identified the stable phase-locked states of the system, we have analysed those
aspects of the dynamics that have important implications for the CTC theory. In particular, the
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phase relationship between the inhibition and the input and the increase in the activity of the
target excitatory population due to the external input. Indeed, for an effective communication
(a positive effect of the input onto the activity of the excitatory target population), the theory
requires the input to precede activation of the inhibition, since the inhibition may partially or to-
tally silence the input effect. In general, we have found that the entrainment of the postsynaptic
population to the rhythmic input from the presynaptic population naturally sets up a phase rela-
tionship that is optimal for CTC, in the sense that the input precedes the inhibition, leading to an
effective communication. Interestingly, we have found that near the borders of the phase-locking
region, where the transition from synchronous to asynchronous dynamics occurs, the general
tendency is reversed and the inhibition precedes the input. This result suggests a relationship
between the loss of effective communication and the loss of phase-locking.

By repeating the analysis for the 1:2 phase-locking region, we explored a different aspect
of the CTC theory, which is selective communication, that is, for a population that receives two
identical inputs from different sources, how it can respond to one while ignoring the other [11].
To do so, for this region, we interpreted the input to the receiving population as the sum of two
identical inputs arriving in anti-phase (see Fig 4.2), and observed that the phase automatically
sets up so that one of the inputs precedes and the other one follows the inhibitory action. Our
results confirm the hypothesis that the input following the inhibitory action has almost no effect
onto the target population.

Moreover, we have found regions with bistability. Bistability suggests that depending on the
initial conditions, the population may operate in different regimes without changing the structure
or the connections of the network. Thus, bistability between synchronous and asynchronous solu-
tions suggests that communication between brain areas cannot be predicted by the actual network
but depends on the current state of the network (initial conditions), indicating that communica-
tion between neuronal populations can be switched on and off by means of possibly top-down
influences [11].

Thus, we stress that thanks to the low-dimensionality of our system, we have been able to
obtain a bifurcation diagram which provides a broad picture of the dynamics in a large parameter
space. Thus, our results confirm previous computational results on spiking networks, while they
provide new results that suggest further research. More precisely, our study corroborates the
general result for network approaches [11, 18], in which the phase established between the input
and the receiving network is optimal for CTC. Moreover, we have also observed that selective
communication occurs and depends on the amplitude and frequency (see also [17, 16]). More-
over, because of the wide range of parameters explored, we have found new interesting results.
Namely, we have been able to detect the break up of the phase-locking patterns and relate them
to the phase relationship between excitation and inhibition, as well as to detect the possibility
of having bistability between synchronous regimes or synchronous and asynchronous regimes,
which can motivate future research.

The CTC theory proposes several hypothesis and we have not included all of them here.
Other papers in the neuroscience literature regarding the mathematical implementation of the
CTC theory, focus on different aspects than the ones considered here. As the only requirement
of our mathematical analysis is the periodicity of the input, it can be applied to explore other
hypothesis and propositions of the CTC theory. For instance, some studies related to our problem
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have explored the coherence (in the sense of width) of the input in selective communication
[16, 17]. Instead of a sinusoidal input, we could have considered other types of functions for the
input, like Gaussian-shaped with a parameter that controls the width of the input coherence (see,
for instance, [16, 18]) to study this feature of CTC by means of our setting. We refer the reader
to the Appendix C for preliminary results on other types of inputs. Moreover, we could have
also explored the implications of inputs to the inhibitory cells (see, for instance, [29]), as they
have been also proposed to be a mechanisms of phase-shifting in models of cortical networks
[15]. Indeed, regarding the role of inhibition in the CTC, the Wilson-Cowan equations that we
used describe oscillations across the PING (Pyramidal Interneuron Network Gamma) mechanism
[30]. As the ING (Interneuron Network Gamma) mechanism can also account for gamma E-I
oscillations [31, 32], we can use our setting to explore the implications of ING mechanism in
the CTC [7]. Furthermore the extension of our setting to networks of two populations, can lead
to the exploration of bi-directional communication [23, 24, 33, 34] instead of the unidirectional
communication that we have explored in this paper.

Finally, the model can be adjusted in order to provide a more biologically-based mathemati-
cal framework. As we stated in the introduction, the framework that we introduce in this paper is
an alternative to large-dimensional network approaches to the CTC. A macroscopic observable
measuring the mean rate of such neuronal networks has been described by means of PDE equa-
tions such as the Fokker-Planck equation [35] or the refractory density equation [36] which have
been used to describe emerging oscillations in such neuronal networks. Interestingly, recently
several groups have developed exact firing rate models solving the Fokker-Planck PDE equation,
thus leading to new neural mass models described by ODEs [37, 38], to which we can apply
the methodology described in this paper. As the results from these models can be automatically
checked on the spiking network, these new models appear as a feasible and more realistic al-
ternative to heuristic equations such as the Wilson-Cowan equations that we use. Furthermore,
independently of the rate model which is being used, the addition of synaptic equations can ac-
count for the description of realistic gamma band scenarios in which our scheme can also be
applied [39].

Besides the neuroscience considerations, we would like also to emphasize several mathe-
matical implications of our work. Perturbations of non-linear oscillators have been extensively
studied in the mathematical literature [40, 41]. In particular, this paper explores the dynamics of
a perturbed oscillator close to a Hopf bifurcation. Our results are based on a rigorous numerical
study of a particular system (the Wilson-Cowan equations), which does not have any restrictions
regarding the size of the amplitude or the forcing frequency [42]. The results obtained numer-
ically match the theoretical predictions for perturbations of a Hopf bifurcation obtained in [43]
using the normal form. We highlight here that our method does not require the system to be close
to the Hopf bifurcation. Indeed, we also have applied it to the case close to the SNIC bifurca-
tion (see Appendix B). Interestingly, although the regions of strong resonances show a different
shape, we obtain the same bifurcations of fixed points. A detailed study of the implications for
CTC theory of this scenario is an interesting topic for future research.

In conclusion, we have shown that a simplified setting that extracts the essence of the CTC
theory allows a basic understanding of the processes involved in the generation of communication
through rhythms according to the CTC theory. We expect that it would shed light into the field
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and open the door for future studies.

A Numerical computation of the bifurcation Diagram
In this Section we provide a brief description of the numerical procedure used to compute the

bifurcations of the fixed points of the map FA defined in (5). We highlight that we have developed
our own numerical software in Python to compute the bifurcation diagram instead of relying on
existing software packages, thus providing more control on the calculations performed. We
consider three types of bifurcations of fixed points: Saddle-Node (SN), Period Doubling (PD)
and Neimark-Sacker (NS) (see [44]).

We first note that the parameters that we will vary for the map FA in (5) will be the amplitude
A and the period T ′ of the perturbation. The computation of the bifurcation curves is based on
the numerical methods provided in [45]. Here we summarize the main steps of the procedure.

We first assume that A is fixed and we look for a point x ∈ R2 and a period T ′ ∈ R that
satisfy that x is a fixed point of the map FA together with a bifurcation condition ΦBIF (x) = 0.

To set the mathematical formalism, we consider the extended system consisting of system (1)
(that we will denote generically ẋ = X(x, t, T ′) where x = (x1, x2) ∈ R2) with the extra
equation Ṫ ′ = 0. Let us denote φ̃A(t; t0, x, T

′) the flow of the extended system and let us
introduce the map

F̃A : R3 → R3,

z = (x, T ′) → F̃A(z) = (F̃ x
A(z), F̃ T ′

A (z)) = φ̃A(T ′; z), (11)

Notice that we have set t0 = 0 and abusing of notation we have removed the dependence on
t0 from the expression of the flow φ̃A. From now on we will also remove the subscript A to
avoid stodgy notation. The superscript F̃w refers to the w-component of the map F̃ , where
w = x1, x2, T

′.

Remark A.1. We consider the extended system with the trivial equation Ṫ ′ = 0 because, as we
will see later, we need to know how the solutions of system (1) vary with respect to the parameter
T ′.

Thus, to detect the bifurcation values we need to look for zeroes of the equation

G(x, T ′) =

{
F̃ x(x, T ′)− x = 0

ΦBIF (x, T ′) = 0.
(12)

The conditions which must be satisfied at the bifurcation values for a Saddle-Node (SN),
Period Doubling (PD) and Neimark-Sacker (NS) bifurcations are, respectively,

ΦSN(x, T ′) = det(DxF̃
x(x, T ′)− Id2) = 0,

ΦPD(x, T ′) = det(DxF̃
x(x, T ′) + Id2) = 0,

ΦNS(x, T ′) = det(DxF̃
x(x, T ′))− 1 = 0,

(13)
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where we denote by DxF̃
x the Jacobian matrix of the map F̃ x restricted to the first two compo-

nents.
We have implemented a Newton method to solve system (12). Suppose we have an approx-

imate solution z = (x, T ′) of system (12) and we look for an improved solution z∗ = z + ∆z.
Straightforward calculations show that ∆z has to satisfy:

DG(z)∂x1F̃ x1(z)− 1 ∂x2F̃
x1(z) ∂T ′F̃ x1(z)

∂x1F̃
x2(z) ∂x2F̃

x2(z)− 1 ∂T ′F̃ x2(z)
∂x1ΦBIF (z) ∂x2ΦBIF (z) ∂T ′ΦBIF (z)


∆z∆x1

∆x2

∆T ′

 = −

EF̃ x1(z)− x1

F̃ x2(z)− x2

ΦBIF (z)

 (14)

Notice that for the first two rows of the matrix DG we have

∂xj F̃
xk(z) = ∂xj φ̃

xk(T ′; z),

∂T ′F̃ xk(z) = ∂T ′(φ̃xk(T ′; z)) =
dφ̃xk

dt
(t; z)|t=T ′ +

∂φ̃xk

∂T ′
(t;x, T ′)|t=T ′

= Xxk(φ̃(T ′; z)) +
∂φ̃xk

∂T ′
(t;x, T ′)|t=T ′

(15)

for j, k = 1, 2. In order to obtain the derivatives of the flow φ̃ with respect to initial conditions
(x1, x2, T

′) at time T ′, we need to integrate the first variational equations given by

d

dt
Dzφ̃(t; z) = A(t)Dzφ̃(t; z) (16)

with initial condition Dzφ̃(0; z) = Id3, where

A(t) =

∂x1Xx1 ∂x2X
x1 ∂T ′Xx1

∂x1X
x2 ∂x2X

x2 ∂T ′Xx2

0 0 0


|φ̃(t,z)

Recall that these equations need to be integrated together with the flow φ̃(t, z) up to time T ′.
Finally, one needs to compute the terms in the third row of DG in (14). The exact expression

depends on the bifurcation for which we look for (see Eq. (13)). Next, we will derive the
expression for the SN case to illustrate the method, and the other cases are analogous. The
determinant of DxF̃

x − Id2 writes as

ΦSN = det(DxF̃
x − Id2) = (φ̃x1x1 − 1)(φ̃x2x2 − 1)− φ̃x2x1φ̃

x1
x2
, (17)

where φ̃xkxj = ∂xj φ̃
xk(T ′;x, T ′) and therefore

∂x1ΦSN =φ̃x1x1x1φ̃
x2
x2

+ φ̃x1x1φ̃
x2
x2x1
− φ̃x1x1x1 − φ̃

x2
x2x1
− φ̃x2x1x1φ̃

x1
x2
− φ̃x2x1φ̃

x1
x2x1

∂x2ΦSN =φ̃x1x1x2φ̃
x2
x2

+ φ̃x1x1φ̃
x2
x2x2
− φ̃x1x1x2 − φ̃

x2
x2x2
− φ̃x2x1x2φ̃

x1
x2
− φ̃x2x1φ̃

x1
x2x2

∂T ′ΦSN =φ̃x1x1T ′φ̃
x2
x2

+ φ̃x1x1φ̃
x2
x2T ′ − φ̃x1x1T ′ − φ̃x2x2T ′ − φ̃x2x1T ′φ̃

x1
x2
− φ̃x2x1φ̃

x1
x2T ′

(18)
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where φ̃zkzizj = ∂2

∂zj ∂zi
φ̃zk(T ′; z) for k = 1, 2 and i, j = 1, 2, 3. Notice that z3 = T ′.

The computation of the terms in equations (18) requires to solve the second order variational
equations, which are given in components as

d

dt
φ̃zkzizj(t; z) =

3∑
p,q=1

∂zpzqX
zk(φ̃(t; z))

∂φ̃zp(t; z)

∂zi

∂φ̃zp(t; z)

∂zj
+

3∑
p=1

∂zpX
zk(φ̃(t; z))

∂2φ̃zp(t; z)

∂zi∂zj
,

(19)
with initial condition φ̃zkzizj(0; z) = 0 and k = 1, 2, i, j = 1, 2, 3.

Once a point z∗ satisfies (12) with the established tolerance (in our case 10−8), the pro-
cedure to continue the bifurcation curve consists in selecting a new value for the amplitude
Anew = A + ∆A, use the computed point z∗ as initial seed, and repeat the above procedure
for the new value Anew. This procedure –which is the one used in this manuscript– requires to
change the sign of ∆A by hand when the derivative of the bifurcation curve with respect to A
is zero. Nevertheless, alternative strategies as the Lagrange multipliers or the pseudo arclength
method (see [45, 46], respectively) can be used so the tangent vector v to the bifurcation curve
evaluated at z∗ is obtained and can be used to provide z∗ + εv as initial seed for ε small enough.

Homoclinic bifurcation

In this Section, we explain the method used to compute the homoclinic bifurcation curve in
Section 3.2. The crossing of an homoclinic bifurcation implies the appearance/disappearance
of an attracting invariant curve which surrounds the unstable focus P1. Therefore, the crossing
of this bifurcation implies a qualitative change in the asymptotic solutions of system (5) when
using an initial condition near the unstable focus P1. More precisely, in the case corresponding
to “Dynamics on the right hand side of the 1:2 phase-locking region” (see Fig. 7), if an attracting
invariant curve exists, an initial condition near the unstable focus P1 will tend to the invariant
curve for a large enough time of integration (see panel D in Fig. 7). Otherwise, the 2-periodic
orbit (P2, P4) will be the asymptotic solution (see panel B’ in Fig. 7). Similarly, in the case “Dy-
namics on the bottom right of the 1:1 phase-locking region” (see Fig. 8), if an attracting invariant
curve exists, an initial condition near the unstable focus P1 will tend to the invariant curve for a
large enough time of integration (see panel C in Fig. 8). Otherwise, the fixed point P2 will be the
asymptotic solution (see panel B in Fig. 8). In conclusion, in both cases, the homoclinic bifur-
cation curve is delimited by considering different values of the fraction T ′

T
, and slightly varying

the amplitude while checking whether there is a qualitative change in the asymptotic solution of
points near P1.

B Bifurcation Diagram for oscillations close to a SNIC bifur-
cation

The unperturbed Wilson-Cowan equations (1) with the set of parameters P given in (3), can
also have oscillations which are born from a Saddle-Node on Invariant Curve (SNIC) bifurcation
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(see Fig. 2). Thus, when we pick the values (P,Q) = (1.4,−0.75), identically as to the Hopf
case, the phase space for system (1) shows a limit cycle and an unstable focus (see Fig. 18).
We have carried out a numerical exploration of the bifurcations that occur when we perturb this
limit cycle close to a SNIC bifurcation. Preliminary results are shown in Figure 18 bottom. The
regions with p:q phase-locking, start out of the point (p/q, 0) but, as the amplitude increases,
they tilt towards lower values of p/q as predicted by the Phase Response Curves [47]. Indeed,
the PRC for limit cycles close to a SNIC are mainly positive indicating that the phase can only
be advanced by an external excitatory perturbation. Therefore, they can only synchronize with
external inputs with higher frequency.

Moreover, when we compare with the Hopf diagram, in both cases, the phase-locking regions
are bounded by saddle-node bifurcation curves (for small values of A) and Neimark-Sacker and
period-doubling bifurcation curves for other values of the amplitude. So, our preliminary study
suggests a qualitatively similar dynamics as in the Hopf case. A thorough study is left for future
work.

Figure 18: For the
unperturbed (A = 0)
Wilson-Cowan equa-
tions (1) and the set of
parameters P given in
(3) we show: Top-Left:
Nullclines and phase
space for (P,Q) = (1.4,
-0.75). The phase space
shows a limit cycle
Γ0 and an unstable
focus P1. Top-Right:
dynamics over the limit
cycle Γ0. Bottom:
Bifurcation diagram
for the fixed points
of the stroboscopic
map (5) of system (1)
as the frequency and
the amplitude of the
perturbation are varied.
The coloured regions
correspond to different
p:q phase locking
regimes
.
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C Non-sinusoidal inputs
Our analysis has been carried out for sinusoidal inputs while the oscillations generated by

the E-I network are not. Thus, in order to consider a more realistic approach, in this Section,
we present preliminary results on the dynamical effects of unidirectional coupling between two
Wilson-Cowan populations. Thus, we use the value of re of one population as the input for the
second one, which is periodic but non-sinusoidal. Mathematically, we consider the following
system of equations:

ṙe1 = −re1 + Se(c1re1 − c2ri1 + P + re2),

ṙi1 = −ri1 + Si(c3re1 − c4ri1 +Q),

ṙe2 = −re2 + Se(c1re2 − c2ri2 + P ),

ṙi2 = −ri2 + Si(c3re2 − c4ri2 +Q),

(20)

where the parameters are the same for both populations and correspond to the set P in (3).

Figure 19: For the unidirection-
ally coupled Wilson-Cowan equa-
tions (20) and the set of parame-
ters P given in (3) we show the
firing rate dynamics of the receiv-
ing population re1 and ri1 , and the
non-sinusoidal input correspond-
ing to re2 . Results show that an
optimal phase relationship ∆θ >
0 leading to an effective commu-
nication ∆α > 1 is established.

When we simulate this system, the network establishes a 1:1 phase-locking and a phase rela-
tionship ∆θ > 0 that increases the amplitude of oscillations ∆α > 1 (see Fig. 19), in agreement
with the results of the paper presented in Section 4.1. A complete investigation varying the am-
plitude and frequency of the input, or even the coherence (in the sense of sharpness) of the input
(see [18]) is left for future work. Indeed, regarding the coherence of the input, preliminary results
with inputs of the form p(t) = cosn(2πt/T ′) with n = 4, 8, which have higher coherence than
the input (4) considered in this paper, show qualitatively the same bifurcation diagram as in Fig 3
(results not shown).
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