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Highlights

e This paper studies a class of quasi-linear impulsive systems of functional differential
equations with infinite time delay.

e It uses the Banach contraction principle
e It has established criteria on uniform stability and asymptotic stability

e The proposed approach utilizes the idea of averaging instead of the point-wise esti-
mate in the Lyapunov method.

e It shows that the Banach contraction principle can be used as a possible alternative
to Lyapunov methods for stability analysis when the conditions of Lyapunov method
fails to hold.
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Abstract This paper studies a class of quasi-linear impulsive systems of functional differ-
ential equations with infinite time delay. By employing the contraction principle, several
criteria on uniform stability and asymptotic stability are established. The proposed ap-
proach utilizes the idea of averaging instead of the point-wise estimate in the Lyapunov
method. Our results show that the Banach contraction principle can be used as a possible
alternative to Lyapunov methods for stability analysis when the conditions of Lyapunov
method fails to hold. Several examples are discussed to illustrate the ideas of our results.
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1 Introduction

Impulsive systems have attracted an increased interest of the world research community
due to their important applications in many areas[1, 15, 22, 28, 30, 31, 36, 37]. Some typ-
ical real world processes which exhibit impulsive behavior include impacts in constrained
mechanics, sudden population decrease of a species due to natural disasters such as earth-
quakes or fire, burst activity in the propagation of action potentials of neurons. In other
situations, they arise as a from of control that is designed to enable the dynamics in a
desired manner. Examples include orbital transfer of satellite, vibration suppression of
flexible structure in a space craft, interest adjustment in financial and economics manage-
ment, maintains of a species through periodic stocking or harvesting, and consensus via
impulsive protocol in multi-agent systems. An impulsive system normally contains three
main elements: a continuous system of differential equations, which governs the evolution
of the system between impulsive events; a discrete system of difference equations, which
govern the way the system states are instantaneously mapped when a setting event occurs;
and a criterion for determining when the states of the system are to be reset. The theory
of impulsive systems of ordinary differential equations (ODEs) has been well-developed,
see [15, 17, 18, 21, 22, 28] and references therein. However, the corresponding theory for
impulsive systems of functional differential equations (FDEs) is yet to be fully developed.
There are a few challenges one must face in studying impulsive FDEs. For example, in the
theory of FDEs, it is shown that the continuity of a function x(¢) in R” implies the conti-
nuity of the functional x; in C™. This fact is crucial in proving the existence of solutions
of FDEs [13]. However, a solution z(¢) of an impulsive FDEs is piecewise continuous, but
the functional x; is in general not piecewise continuous. In fact it could be discontinuous
in an entire interval. Thus even if f(¢,v) is well-behaved and very smooth in its two
variables one cannot, in general, confirm anything about the composition function f(¢,z)
whenever z(t) is piecewise continuous. This problem was solved in [3, 24], where existence
and uniqueness results for impulsive FDEs are established.
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The method of Lyapunov has been a very effective tool in the study of stability prob-
lems for impulsive FDEs. The manifest advantage of this method is that it does not require
the knowledge of solutions and therefore has great power in applications. The stability
analysis may be divided into two approaches. In one approach, Lyapunov functions are
used, where the derivative of the Lyapunov function is estimated with respect to an appro-
priate minimal class of functionals. This approach is known as the Lyapunov-Ruzumikhin
technique[4, 19, 23, 25, 33, 36]. The other approach employs Lyapunov functionals, where
the corresponding derivative can be estimated without demanding minimal classes of func-
tionals. Numerous interesting stability results have been established for impulsive systems
of FDEs, see [2, 4, 5, 12, 19, 20, 23, 29, 30, 33, 35, 36, 38] and references therein. However,
there have been some known difficulties in employing this method. It is needless to say
that there is difficulty constructing Lyapunov function and Lyapunov functionals. Even if
a suitable Lyapunov function or functional is found there still remains significant problem
to determine a set where its derivative along solutions of the concerning system is definite.
These difficulties motivate us to consider other methods in conjunction with the Lyapunov
method. In relatively recent studies, the fixed point method for stability analysis has been
successfully applied to FDEs, see [6, 7, 9, 10, 39], and references therein. The advantage of
the fixed point method is the idea of averaging while the Lyapunov method requires point-
wise estimate. However, this method is yet to become popular, especially for impulsive
system of FDEs.

In this paper, We shall consider a class of impulsive FDEs and establish some stability
criteria utilizing the ideas given in [9, 39]. We thus generalize the previous results to a
theoretical framework of impulsive FDEs, and in doing so we will obtain some insight into
how difficult it may be to fit in these “harmless” perturbations of the previous result.
Harmless in the sense that they do not break the contraction requirement of the previous
result by [9, 39]. We will notice that we also obtain global existence of solutions as a by-
product, just like Lyapunov stability methods can do. The fixed point method here gives
a global existence and uniqueness result, whereas existence results such as those of [3, 24]
give local existence and uniqueness. Determining global existence is not a trivial matter
for impulsive differential equations, as is illustrated in [32, 34]. Although perhaps, it is not
a surprise that in both of these aforementioned results, fixed point methods are used in or-
der to prove the existence of global solutions. However, instead of the Banach contraction
principle, which we shall use, the aforesaid papers use the fixed point theorem by Schaefer.

The rest of this paper is organized as follows. In Section 2, we introduce some notations
and definitions. . Then in Section 3, we obtain some criteria on uniform stability and
asymptotic stability for impulsive systems of FDEs. Section 4 discusses the issues about
uniqueness of solutions which is a required condition in our approach. We consider some
special cases in Section 4 and give a conclusion in Section 5. Several remarks and examples
are given to illustrate the ideas of our results.

2 Preliminaries

Let a < b with a,b € R and D C R™ be open. We define the following classes of functions.

PC([a,b],D) = {z : [a,b] — D | x(t) = z(t"), Vt € [a,b); z(t") exists, Vt € (a,b];
x(t™) = z(t) for all but at most a finite number of points t € (a,b]}.

PC([a,b),D) = {z : [a,b) — D | z(t) = z(t1), Vt € [a,b); z(t") exists, Vt € (a,b);
x(t™) = z(t) for all but at most a finite number of points ¢t € (a,b)}.

These classes describe spaces that are right-continuous with left limits everywhere, and
they are left continuous except possibly on a finite number of points where they are defined.
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Notice the previous intervals of definition are finite in length. For infinite intervals we have

PC(la,<), D) ={z : [a,00) — D |Vc > a,x|jqq € PC([a,c],D)}.

PC((—00,b],D) = {z: (—00,b] — D | x(t) = x(t"), Vt € (—o0, b);
x(t7) exists in D, YVt € (—o0,b]; z(t™) = z(t)
for all but a countable number of points t € (—o0, b],

and discontinuities do not have finite accumulation points}.

PCR,D)={x:R— D |VWeR,x|_sy € PC((—o0,b],D)}.

PCB([a,b],D) = PC([a,bl], D).

PCB([a,b),D) ={x € PC([a,b),D) | z is bounded on [a,b)}.

PCB([a,00),D) = {z: [a,00) — D [ Ve > a,z|[4,q € PC(la, ¢}, D), x is bounded on [a,0)}.
PCB((—o0,b],D) = {z € PC((—o0,b], D) | x is bounded on (o0, b]}.

PCB(R,D) ={z € PC(R,D)| zis bounded on R}.

Remark 2.1. We will be interested in the space PCB([—r,0],D), with 0 < r < oo.
We will sometimes omit the open set D C R™ when this set is implicitly understood to
be fixed. In the case when r = oo, we still denote the space PC'B(—o00,0] by the nota-
tion PCB[—r,0], by considering for this special case [—r, 0] to mean the infinite interval
(—00,0], and using the piecewise continuous bounded functions on (—o0,0]. Of course,
PCB[-r,0] = PC[—r,0] when r < o¢. If = 0o , the state x; always contains part of the
initial functions. As a result of this, each different phase space in general requires a new
and separate development for the theory [13].

Consider the impulsive delayed differential equation

d(t) = A(t)x(t) + g(t,z), t# 7, t>0

Aw(t):I(taxt*)v t=71,,t>0 (1)

where z(t) € R", g,1 : J x PCB([-r,0], D) — R™ with J C R an interval, D C R" an
open set and Axz(t) = xz(t) — z(t~). The impulse times 73, satisfy 0 = 70 < 71 < --- and
limy_y00 7 = 00. A(t) is an n X n matrix of continuous function, in the sense that each
entry of A(¢) is a continuous function of ¢ in the interval of definition of the functional
differential equation (1).

The initial condition for equation (1) will be given for ¢ty > 0 as

Tty = d) (2)

for ty € J, and ¢ € PCB([-r,0], D).
The norm that we use on PCB([—r,0], D) will be

[¥llr == sup [(s)],

s€[—r,0]

where of course for r = oo this norm is [|¢)[|; = supse(—o0 0] [¥(s)|. Wherever the norm
symbol ||-|| is used, we refer to the norm on PCB([—r,0], D). We will denote the Euclidean
norm by |z| whenever no confusion should arise. Let us define

[l = sup [3h(u)].

u€ls,t]
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If for some o € R, a > 0 we have a continuous function z : [0 — r,a] — R", then for
each ¢ € [0, a] we denote by z; the element in PCB[—r,0] defined explicitly as

2 (0) :=z(t+6)  for 6 e [—r 0] (3)

Note that if  : [0 — r,a] — R", then for each t € [0, a], z; simply denotes the restriction
of s — z(s) to the interval s € [t — r,t].

By x;- in (1) we refer to the function defined by a given =z € PCB([ty — 7,b], D)
through the assignment
x4 (8) = x4(s)  for s € [-r,0)
- (0) = lim z(u) = x(t™). (4)

u—t—

This is a way of getting a well defined function in PC B[—r, 0], that takes into account only
the information available right until before the jump occurs right at t = 7. In this way,
the mapping I induces a jump from z(¢7) to a value x(t), using the information available
until just before the impulse occurs at time ¢.

As in the convention used in [3], we do not ask for the jump condition in (1) to be
satisfied at tg, since this imposes an unnecessary restriction on the initial condition.

We now give the definitions of stability for impulsive FDEs. Let us have

z'(t) = f(t, ) t# 1, > 1o

)
Ax(t) =I(t,xy-), ~ t =Tk, t > tp. 5)

We have f : J x PCB([-r,0],D) — R"™ with J = [0,00). Let each ty € J,¢ €
PCB([-r,0],D) induce an initial value problem by appending to (5) the initial condi-
tion

Ty = . (6)
Remark 2.2. For stability analysis, we assume that 0 € D, which implies that 0 €

PCB([—r,0], D) and that f(¢,0) = 0 for all t € J, and I(73,0) = 0 for all k. Thus 0 is an
equilibrium solution.

It should be noted that the Euclidean norm is denoted by | - |.
Definition 2.1. The zero solution of (5) is said to be

[S1] stable if for each € > 0 and ty € J, there exists a § = d(e,tg) > 0 such that
for ¢ € PCB([—r,0], D) with ||¢]|, < 0, and any solution z(t) = x(¢; o, ¢) of the
induced IVP (5)-(6) satisfies

lz(t;to, )| <€, Vt>to; (7)

[S2] wuniformly stable if the ¢ in [S1] is independent of t;

[S3] asymptotically stable if [S1] holds and for every ty € J there is a constant ¢ = ¢(tg) >
0 such that for ¢ € PCB([—r,0], D) with ||¢]|, < ¢, then z(t) = x(t;t9, ) — 0 as
t — 00;

[S4] wunstable if [S1] fails to hold.

In order to extend results to time-dependent impulsive systems, will use the theoretical
framework of impulsive systems as done in [23, 26]. In order for the necessary integrals to
exist (namely those of nonlinear part g), we will assume that ¢ is composite-PC B.
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Definition 2.2. A mapping g : J x PCB([-7,0],D) — R", where 0 < r < oo, is
said to be composite-PCB if for each ty € J and § > 0 where [tg,to + 8] C J, if z €
PCB([to — r,to + B8], D), and z is continuous at each t # 74 in (to,to + (] then the
composite function t — g¢(t, z¢) is an element of the function class PCB([to, to + 5], R™).

Remark 2.3. We denote by B(L) C PCB[—r,0] the closed ball of radius L in PCB[—r,0]:

B(L) = {4 € PCB[=r,0] : [¢[l» < L}.

3 Main Results

We shall state and prove our main results in this section. For this purpose, we shall use
the fundamental solution matrix ®(¢,¢y) of the system of linear ODEs

y'(t) = At)y(t)

y(to) = vo ®)

such that the solution of IVP (8) is

y(t) = @(, to)vo-

For a matrix M we use the standard linear operator norm induced by the Euclidean
norm |- | on R™:
M| := [|M||zgny = sup [Myl.
ly|=1
We will use the inequality |[My| < || M|||y| for y € R™
Notice that the previous results in [9, 39] can be generalized to the n-dimensional case by
noticing that we have that for ¢1, s in the scalar case:

t
(I)(tg, tl) =e ft12 a(u)du‘

Therefore it follows that a way of determining that ||®(¢,0)| — 0 as ¢ — oo for the 1-
t

dimensional case, is by observing that / a(s)ds — oo as t — oo is a sufficient condition.

0
In the main result of [39], asymptotic stability is concluded for the continuous (non-
impulsive) scalar version of (1), namely

2(t) = —a(t)a(t) + g(t, z1), (9)

with respective continuity assumptions on g(¢,x;). Notice that in the proof of Theorem
2.1 in [39], & constant K is defined as

K = sup{e” o 1%y (10)
t>to
order to prove asymptotic stability. Said constant K depends on the particular ¢y of
interest, so that K = K (tp). Given this scalar case, we notice that K > 1, and K > 1 is
possible when a(t) takes on negative values a(t) < 0. We quickly illustrate this dependence
of K on tg for the scalar case, through the following example.

Example 3.1. Suppose

5sin(t) if t € [0, 7]
a(t) = ¢ sin(2t — ) if t € [m, 27|
t—2mw if ¢t > 2m.
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We have that a(t) < 0 if ¢t € (r,37). As mentioned previously, negative values of a(t)
might make K = K(tp) > 1. Nonetheless, the most negative contribution of f s)ds for
t € (m,37), does not affect if ¢y = 0, when defining K (0), since

37 37

/ i a(t)dt = / ’ sin(2t — m)dt = —% cos(2t — ) =-1 (11)

t=m

is cancelled out by the positive contribution from the interval [0, 7] of fo

/0 a(t)dt = 5 /0 sin(t)dt = 10. (12)

This makes, if g = 0, K := K(0) = sup;> <e* Jo a(“)d“) = 1, since afterwards, on the

interval [%w, 00), we only have positive contributions to the integral.
However, the case is different if we now take ¢y = . This is because of (11), so that
we have

K = K(m) = sup (e_ Jx “(“)d“> =e>1

t>m

with the maximum value achieved at t = 2 , since the integral f u)du is decreasing on
3

(m, 7) and afterwards, positive contributions come to the integral after this time, making
t— f s)ds increasing on (2,

overall domlnant behavior of the positiveness causes f 5)ds — o0 as t — oo so that

00). On (27, 00) it is positive and increasing such that the

e Jralwdu Thus, this is how K depends on the 1n1t1a1 time £y taken into account.

Remark 3.1. The previous example gives insight into how to calculate, for the scalar
case, a K that is independent of the initial time ¢y, by focusing on the longest interval
where a(t) in (9) is negative. The condition fo s)ds — oo as t — oo makes it clear that
overall a(t) is positive and that negative values of a(t) are transient behavior, or not as
dominant as the positive values. The constant K can be taken as a measure of how bad
things get before the positive values of a(t) overtake.

Through a modest modification, we can slightly improve to uniform stability plus
asymptotic stability, by making K independent of ¢y, as we do in the following result.

Theorem 3.1. Suppose that there exists positive constants a, L and continuous functions
b,c: RT — R such that the following conditions hold:

(i) For all s9 > s1 € [0,00), let us have the uniform bound ||®(s2,s1)|| < K < oo, in
other words let sup,,>,, >0 (|®(s2,51)]]) < K < 00.!

(”) ’g(t? ¢) - g(t’@b)’ S b(t)H¢ - ?ﬁ“ fOT’ all ¢?¢ € B(L)7 and g(t,O) =0.
(117) |I1(t, ) — I(t, )] < c(t)||¢ — ] for all ¢,¢ € B(L) and I(t,0) = 0.
(iv) For allt >0

/ b(s) [0t s)lds + 3 e(m)[@(t )] < a < 1. (13)

0<m <t

(v) For every e >0 and Ty > 0, there exists a Ty > Ty such that t > Ty and z; € B(L)
implies
lg(t, )] < b(t) (e+ 2| )
I(t,2,-)| < c(t) <e n ||xy|[T1,t]) _

'Notice that ®(t,t) = I; for every ¢ implies K > 1.

(14)
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(vi) ||®(t,0)]] — 0 as t — oo.

Then zero solution of (1) is uniformly stable and asymptotically stable.

Proof. We show that if

(1-a)
K

then for an initial condition? ||¢|| < dg, the zero solution of (1) is uniformly stable and

asymptotically stable.

50 < L, (15)

For an initial condition ||¢|| < do, let us define the space

S ={x € PCB([to —r,0),D) : x4, = ¢, ¢ € B(L) for t > ty,

x is discontinuous only at impulsive moments t = 7, and z(t) — 0 ast — oco}.

S is a nonempty complete metric space under the metric

ds(z,y) = sup |z(s) —y(s)|= sup |z(s) —y(s)| forz,y €S,

s€[to—T,00) s€[to,00)

where we note that we can disregard the contribution on the subinterval [ty —r, tg] because
of the definition of S, and we remind the reader that [ty — 7, ty| = (—00,tp] when r = oco.

To obtain a mapping suitable for the Banach fixed point theorem, we make the follow-
ing observation. For s € [1;_1,7;), we have that, using the fundamental matrix and the
functional differential equation (1):

t
2(t) = B(t, T 1)a(rir) + / B, 5)g(s, za)ds

Tk—1

= ®(t, 7k—1) [m(Tk__l) + I <7‘k_1,1'7_k—_1):| + /t O(t,5)g(s,xs)ds

Tk—1

Note that the necessary integrals will exist because g(t,z;) is composite-PCB as defined
above.

The first line follows from variation of parameters for ODEs, as follows. Assume that
a solution in the interval s € [r5_1,7) is given by z(t) = ®(t, 7,—1)m(t), where m(t) is
a differentiable vector valued function to be determined in the following fashion. By the
product rule for differentiation we have that

o' (t) =0 (t, 7p_1)m(t) + ®(t, 7e_1)m/(t)
=A)P(t, T_1)m(t) + (¢, Tp_1)m’ (¢)

By the differential equation that x(t) satisfies on [rx_1, 7 ), this implies
AR)P(t, Ti—1)m(t) + ®(t, Ti_1)m/ (t) = A{t)®(t, Te_1)m(t) + g(t, z¢).

Thus
m'(t) = [CIJ(t,Tk_l)]_lg(t,xt) = O(1g_1,t)g(t, x¢)

The previous expression implies, after integrating from 751 to ¢ and using m(7x_1) =
x(Tk—1) that
t
mit) =a(na) + [ @(rr,9)g(sa)ds

Tk—1

2Notice that §o < L since K > 1and 1 —a < 1.
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so that .
x(t) = O(t, Ti—1)2(Th—1) —i—/ O(t,5)g(s,xs)ds.

Tk—1

Thus, for ¢ € [Tx_1,7k), we obtain the formula

£(t) = B(t, me_)a(m ) + / a1, 8)g(s, 2)ds + ()] (micrz— ). (16)

Tk—1

We stress that this formula holds for ¢ € [rx_1,7x) only, but by backstepping we can
express x(t,_,) using the analogous formula to (16) but for ¢ € [r,_o, 74—1), since z(7,_,)

uses the expression for x(t) for ¢t € [r,_2,7%_1), as t — 7,_,. Backstepping in this way we
get:

Tk—1
x(1y 1) = O(Th—1, Th—2)x(T_5) + / D(1-1,5)9(s, xs)ds + P(T—1, Tk—2)] (Tk,g, xT;Z_2>

Tk—2

x(ry ) = (2, m)x(ry ) + /T1 D(19,5)g(s,xs)ds + ®(ma, 1)1 (7’1,1’7_1—)

T2

z(1y ) = (71, t0)$(0) + /T1 D(11,8)g(s,xs)ds,

to

where we remind ourselves that z(tg) = ¢(0) and ¢y > 0 = 79. By recursive substitution
into (16) we get that in general, the solution z(#) must satisfy:

x(t) = ®(t,t0)(0) + /tq)(t,s)g(s,xs)ds—i— > ot (e, )

to to<Tp<t
This makes us define the mapping P by
(P x)to =9,

and for ¢ > tg:

t

(Px)(t) = ®(t,10)p(0) +/ O(t,5)g(s,xs)ds + Z O (t, 1)1 <Tk,ka_> . (17)

to to<Te<t

To prove that P defines a contraction mapping on S, we must prove first that P maps
S to itself.

Clearly, Pz has left limits well defined, since 3, -, -, ®(t, 7)1 (ng,ka_) has limit

from the left, since ®(t,7) is continuous and each I <Tk, asTk—) is well defined thanks to x
having limit from the left at each 7. Clearly the term

<I>(t,t0)¢(0)+/t D(t,s)g(s, xs)ds

has well defined limits at impulse times, since this part is even continuous at impulse
moment 7, by continuity of the Riemann integral. Right continuity at each impulse time
71 is reduced to verifying right continuity of

Q(t) = Z O(t, )1 (Tk,ka—>

to<tr <t

at 7;. Choose n > 0 small enough such that 77 +n < 741. Then

Q(n+mn) —Q(n) =



Z O(r +n, 7)1 (Tk,xﬂ» — Z (1, 1)1 <Tk,$r,;>

to<tT<T+n to<Tp<T
0
= Y [@m+nm) — ()1 (Tk,ﬂﬂTk—) =0
to<Ti<T

where we note that both sums have the same number of elements, due to 7, + 1 < 741.
Therefore for each x € S, we have that Px is right continuous and has left limits at impulse
times, clearly it is continuous at nonimpulsive moments.

By definition of S, we must show that |(Px)(t)| < L for every t > 0.
We remind the reader that ||¢|| < dg, with d¢p as defined in (15). We claim that |(Pz)(t)] <
L for all t > ty. We have that, noticing that |xz(s)| < L by definition of S, so that the
Lipschitz properties (ii) and (iii) hold, so that

(Pa)(o) < [0 t0)l60)] + [ 19 llg(s,mlids+ 32 (e m)lIT (o) |

to<mp<t

Séollcb(t,to)HJr/ b(s) IR (t, 9)|zslids +D - e(m)ll@(t, )|z, |

to to<tp<t
t
6K+ sup [2(0)] /b(s)|yq>(t,s)y|ds+ S el et )l
0€[to—n,t] to to<Tp <t

§50K+CML<L.

Thus |(Pz)(t)| < L for every ¢t > 0.
By definition of S, we have that (Pz);, = ¢. Now we show what (Px)(t) — 0 as t — oo.

For this, note that we can divide Px into
(Pr)(t) = (Prx)(t) + (Pox)(t)

with

(Prz)(t) = ®(t, o) p(0) + Z O(t, 1)1 (Tk’ﬂ%k—)

to<mi <t

and

t
(Po)(1) = / (1, 5)g(s, 34)ds.

to

By definition of S, x(t) — 0 as t — co. Thus we have that for any € > 0 there exists
T} > tg such that
lz(t)| < e for all t>T;. (18)

By hypothesis (iv), given this e and T}, there exists T, > T3 such that ¢t > T, implies

lg(t, )] < b(e) (e + o))

(19)
\I(t,xﬁ)\ < c(t) (6 + HxH[TLt])
Let us first analyze the term (Poz)(t). If s > T > Ty, by (18) we get
||$||[T1’s} < €. (20)

By definition of S, [|z¢|| < L for all t > tp, € S, and using the first inequality in (19)
and inequality (20), we obtain that for ¢ > Tb:

10
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t
(Pa) (1) = / B(t, 5)g(s, 2.)ds

to

t

T>
< / Bt s)g(s, za)lds + [ |B(t, s)g(s,z.)|ds
to 1>

Ty t

< / 1©(t,5)llg(s, z)|ds + /T 10(t, 9)lllg(s, ) ds
Ts t

< [ sl liedds+ [ s (e o] 00) ds 2

b

Ts t
< / b(s) 1B (. 5) |ds + /T b(s) 1B (, 5)]](2€)ds

T
— Lo, T)| / b(s) [ B(Ty, 5)|ds + 2¢ / b(s) | B(t, 5)]|ds

T>

< aL|®(t, T)| + 20e

Since we have assumed that ||®(¢,0)|| — oo as ¢ — oo, we see that given e we can
find T > Ty such that
aL||®(t, T7)|| <e for t=>T.

Substituting this last inequality into (21), we get that for ¢ > T
|(Pax)(t)| < €4 2ce = €(1 + 2a)

This proves that (Paz)(t) — 0 as t — 00. We now prove (Pix)(t) — 0 as t — oo. It
is similar to the way we proved this for P». Notice that using (19), (20) and (iv) we have
that for ¢t > Ts:

Z O(t, )1 (Tk, LL‘Tk—)

to<Ti <t

< Y et (se, ) 1+ Y el (roe, )|

to<tp<T2 To<t <t

< Y et e )+ 3 cmlewmll (e+ ™)

to<tp<T> To<tp <t

o@D Y cmle@mlle |+ > el )l (e + o))

to<Tp<T2 To<t <t

L@t D) Y em(To,m)| +2¢ Y e(m)| @7l

to<Tp<T2 To<ti<t
<aL||®(t,Ts)| + 2ce

In a similar way as we did for (P»x), we can find some T > T, such that ¢t > T*
implies, adding the ®(¢,%9)¢(0) term, that

1 (2, t0) [|$(0)] + L[| (2, T2)[| < e.

This proves (Piz)(t) — 0 as t — oo. Therefore choosing max{7T,7*} we have
(Pz)(t) — 0 as t — 0.

Thus P : S — &. We now prove that P is a contraction. For this, let z,y € S. By
definition of & we have that (Pz)(t) — (Py)(t) =0 for t € [ty — r,to]. For t >ty we get:

((Pz)(t) — (Py)(t)| =

11
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/ttq)(t, s)g(s,zs) — g(s,ys)|ds + Z O(t, 1) [I (Tk,ka—) —1TI (Tk,yﬁ;ﬂ

0 to<t <t

t
S/ b(s)|@(t, 8)lllzs —ysllds + D e, m)ll|lz, — v, ||

to to<Ti <t

s%@w>/"<wwuww+ S ()8t )| | < ads,y)

to<Tp <t

where recall that ds(7,y) = SuDscp, o0) [2(5) — y(s)]-

Thus P is a contraction on S. Therefore, by the Banach fixed point theorem, we have
found a solution to the impulsive delayed system. Moreover, the solution found through
the Banach contraction principle is the unique solution to (1) with initial condition (2).?

To prove uniform stability, assume that we are given an € > 0. Choose § < € such that
0K + ae < €, in other words, § < min{e, (1 — a)e/K}. Notice that K as defined in (i) is
independent of tg, thus so is §. This will give us uniform stability.

For ||¢|| < 0, we claim that |z(t)] < e for all ¢ > t5. Note that if x is the unique
solution corresponding to the initial condition ¢, then |z(to)| = |¢(0)| < e. For the sake
of contradiction suppose that there exists a # > tq such that |z()] > €. Let

= inf{t : |z(f)] > €}.

By right continuity, either |2(¢*)| = € if there is no impulsive moment at t*, or |z(t*)| > €
as a consequence of a jump at t*. Whatever the case, we have |z(s)| < e for s € [t —r, t¥),
where |z(t*)| = € if this occurs at a non-impulsive moment. By the integral representation
of z(t), we have that

t*
)] < o w)ll6@)] + [ 10 gt wlds+ 3 12wl (o, )|
to to<Tp<t*
t*
<ol@(t* to)| 4 . bR, o) llxsllds + > c(m) @, )l -]
to to<Tp<t*
t*
<6K+ sup |x(0)] ()@, s)lds + Y ()R, )|

96[t0—7’7t*) to to< Ty <t*

<K+ ae<e

and this gives us the desired contradiction, by the definition of t*, where |z(t*)| > .
Therefore the solution is uniformly stable, and since x(t) converges to zero as t — oo, we
get uniform stability and asymptotic stability of trajectories. O

Remark 3.2. Perhaps condition (14) in Theorem 3.1 may seem somewhat contrived and
difficult to identify in a system. Nonetheless, this aforementioned condition is what R. D.
Driver in [11] comments about infinitely delayed FDEs requiring fading memory conditions
in order to achieve asymptotic stability. Also, B. Zhang [39] on page 5 denotes this type
of requirement as a fading memory condition. In an earlier work by Seifert [33] it is
pointed out that some sort of decaying condition is required for the asymptotic stability
of a general delay equation. For a physical system this can be interpreted as a system
remembering its past (through the delay), but the influence of the past as time increases
should diminish, which can be interpreted as “the memory fades with time”. Intuitively,
for finitely delayed systems, or bounded delays, a fading memory condition such as (14)
should be satisfied, since after a finite time length, in this case, the maximum bound on
the delay, the information from the past is left out. We quickly prove this in the following
lemma.

3See the comments on uniqueness in Section 4.

12
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Lemma 3.1. Under the conditions of Theorem 3.1, if the delay r < oo is finite, then
conditions (i) and (iii) of Theorem 3.1 imply condition (v), namely, the fading memory
requirement (14) is satisfied for finite delays.

Proof. Let € > 0 and T} be given. Then if 75 = T} + r (which is finite, so well defined)
then for any ¢t > T5, condition (i) along with g(¢,0) = 0 implies

90t 20)| < b)) = b(0) ( sup_|aa(s)])

s€[—r,0]

=) s Ja(s)])

s€[t—r,t]

<o) sw fa(s)]) = b(t) |l

s€[To—r,t]
O

Thus fading memory conditions on systems are not so rare, and in fact we can easily
find large groups of systems that satisfy this requirement. In this manner, finite delays are
included in the following main result, with conditions in (v) being redundant for finitely
delayed systems.

Remark 3.3. Notice that the fact that the solutions of the impulsive FDE remain bounded
by L, is independent of the contraction mapping being restricted to S. It is a property
that depends solely on the variation or parameters formula, which necessarily any solution
satisfies. This can be seen similar to the way we proved stability. When proving that
|(Pz)(t)| < L above, we did assume that |z(¢)| < L for all t and = € S so that we could
apply the Lipschitz conditions (ii) and (iii), but we can still modify this.

Lemma 3.2. Under the hypotheses stated in Theorem 3.1, we have that if supg,~, (|[®(s2,51)[]) <

1—
K < oo then the solutions of (1) with initial condition ||¢| < do < (1-a)

bounded* by L, i.e., |x(t)| < L for every t where x is defined .

L remain

Proof. The proof is completely similar to the way in which we prove stability of the solu-
tion in Theorem 3.1, with the role of € played by L this time.

For ||¢|| < &g, we claim that the solution x(t) satisfies |z(t)] < L for all ¢ > t.
Note that if x solves the impulsive FDE corresponding to the initial condition ¢, then
|x(to)| = |#(0)] < L (remember that there is no impulsive moment at ). For the sake of
contradiction suppose that there exists a £ > to such that |z()| > L. Let

t* = inf{t : |2(f)] > L}.

We have |z(s)| < L for s € [tp — r,t*). By the integral representation of z(¢), which all
solutions to (1) satisfy with initial condition ¢, we have that, since before t* the paths are
bounded by L, we can apply the Lipschitz conditions (ii) and (iii), so that

)] < 0 )| + [ 19 Dllas.zlds+ 3D 190 I (o)

to<Tp <t*
t*
<ol to)| 4+ [ bR, ) lxsllds + > () [ @, ) [l
to to<T <t*

"
< 0K +  sup )|3:(0)| /tb(s)||<b(t*,s)||d5+ > cmlle, )|

96[750—7’775* t0<‘l’kSt*

<6K +aL <L

4Note that (a I_(_a)L < L, so that §p < L.

13
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and this gives us the desired contradiction, since we have proved |z(t*)] < L, and we
assumed |z(t*)| = L if ¢t* is a continuity point, or |z(t*)] > L if t* is a discontinuity
point. ]

Remark 3.4. We could have replaced L in the previous proof, by an ¢ < L, so that even
stability is independent of the Banach contraction principle. What we obtain through the
fixed point method in the proof of Theorem 3.1 above is, the asymptotic convergence to
zero of trajectories. We address this further in the next section.

4 An Observation on Uniqueness

The Banach Contraction Principle, when applied to a mapping P : § — S, where
S is a complete metric space, gives a unique solution only within S, the space where
the mapping is restricted to. The space S used in the proof of Theorem 3.1 is such that
S cC PCB([tQ —7,00), D) (strict inclusion of sets), so one might argue that there might be
a solution to (1) with initial condition ¢, for instance, xa(t; to, ¢) € PCB([to—r, 00), D) \S,
say, that does not converge to zero. Now, by definition, when speaking of “uniqueness”,
one must take note of where is this uniqueness statement being held. For impulsive FDEs,
the definition of what a solution to an impulsive delayed system is, uses PC B-spaces,
this can be seen in the theoretical background in of [23, 26], where solutions must be
unique within the respective PC B-space, the space from which solution trajectories are
taken to be. Further examination of definitions of what uniqueness means, point out that
we must be specific about uniqueness. We do not ask for uniqueness in an LP-space, for
instance, as in Caratheodory solutions, since this space is too big. And uniqueness within
S C PCB([to — r,00),D) (strict inclusion) is obviously not satisfactory, because this
space is too small to be useful to guarantee uniqueness in a PC B-space. Thus we see here
a caveat about what uniqueness by the Banach fixed point theorem really means, when
applied to a subset of a PC B-space, such as S defined above in the proof. One must be
careful in this sense.

Remark 4.1. The same argument applies to previous results in [9, 39], since they simi-
larly define a complete metric space strictly contained in a space of bounded continuous
mappings. In classical theory of delayed functional differential equations, uniqueness is de-
fined within the space of bounded continuous mappings, not within the subset of functions
that also converge to zero. The Banach fixed point theorem, as applied in the aforemen-
tioned papers, guarantees uniqueness within the latter space, not within the former, where
uniqueness is required. Nevertheless, said vector fields in these papers mentioned satisfy
classical existence-uniqueness theory such as that of [11]. Therefore, the Banach fixed
point method for stability is useful specifically for obtaining the asymptotic convergence
to zero of solution trajectories, through the use of the complete metric space implicit in
this method. The solution obtained through the Banach contraction principle is unique by
agreeing with the unique solution obtained through general existence-uniqueness theory.

We can argue that the hypotheses supposed on the vector field are sufficient to establish
uniqueness by other uniqueness results, such as that in a known result given in [26]. For
the purpose of this, let us introduce terminology from the existence-uniqueness theory
developed in [26].

Definition 4.1. (Locally Lipschitz) A functional f : J x PCB([-r,0],D) — R" is
said to be locally Lipschitz in its second variable if for each to € J and S > 0 such
that [to,to + 8] C J, and for each compact set F' C D there exists some constant L =
L(to, 8, F') > 0 such that |f(t,v1) — f(t,12)| < L|jt1 — s, for all t € [to,to + ] and
wl,lbg S PCB([—T,O],F).

Now we can apply standard existence-uniqueness theory, as follows:

14
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Proposition 4.1. Under the hypotheses of Theorem 3.1, then the solution to the IVP
(1-a)
K

induced by (1) with initial condition ¢ is unique, if ||¢]| < do < L =46k, and

solutions remain bounded by L.

Proof. 1f L < 00, by hypothesis we have a local Lipschitz condition according to Definition
4.1, with B (0) =: D, the Euclidean open ball of size L. This is because any closed subset
F of Br,(0) would give us a compact subset as required in the definition of a local Lipschitz
condition. If ¢ is in a compact set, then b(t) is bounded and gives us the necessary Lipschitz
constants for the use of Definition 4.1. Since we assumed ¢(s, ) is composite-PCB, we
are actually satisfying the hypotheses required in the local existence-uniqueness result of
[26]. This guarantees uniqueness of solutions, even for infinite delay. As shown in Lemma
3.2, using the variation of parameter formula with the bounds stated in Theorem 3.1,
solutions with initial conditions ||¢| < do, cannot leave a ball of size L, on their maximal
interval of existence. If L = oo, we have a global Lipschitz condition, and the previous
analysis holds, taking compact subsets F' C R", to satisfy Definition 4.1 of a local Lipschitz
condition. O

We thus have local existence and uniqueness by the previous result. The result in
Lemma 3.2 guarantees us that, given the differential equation (1), the solution x(¢) with
initial condition ¢ satisfying

o]l < do < L=:0rK,

(1-a)
K
will remain in a ball of size L. The Banach fixed point theorem guarantees that the solu-
tions are asymptotically stable. The solution found by the contraction mapping principle
is unique in a satisfactory way, and whatever we achieve through the contraction method,

must hold for each unique solution:

Thus 07, x clearly gives an upper threshold on the initial conditions for an initial value
problem. Below the upper threshold, we can guarantee the conclusions of Theorem 3.1.
The additional information that we are obtaining from using the contraction mapping is
the asymptotic stability of the unique solutions to each initial value problem.

5 Particular Cases of Main Result

Notice that the condition

t
/0 b(s)|(t,s)llds + D clm)ll®(t, )| < a <1 (22)

0<T <t

is not easy to evaluate, unless we know some bounds. For the scalar case, let us
concentrate on guaranteeing

Z c(mp)e J, tw)du < % (23)

0<, <t
for a given a < 1. We already know, from examples in [39], how to make the first
contribution in (22) from the integral less than «/2, by a simple rescaling by the 1/2
factor. Notice that if ¢t € [r,—1,7y), for n > 2 (since for n = 1, t € [r9,71), SO nO jumps
have occurred, we do not even need to worry about this contribution at n = 1) we have
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that®

> clmge o

0< <t

‘ —rt alu)au a(uw)du
= ¢(m)e — [}, a(w)du +C(T2)6—J;2 AW Ly (e 7, a(wd b e(rar)e —J! a(wyd

n—2 t
_an L a(u)du Z S H - Jor =l a(w)du ¥ e(Tat)e” A a(u)du7
m=1

(24)
where we have used that for each m:

I el He T jatwdn | _ L elwde

Suppose that we allow sufficient time between jumps so that the “good” behavior of a(t)

. . . — fT.H'l a(u)du 1 .
dominates on each continuous subinterval so that e /7 < B < 3. Now, notice
how we always obtain a left over term

) _f‘:n—l a(u)du

+c(th-1)e ) (25)

ot

and that e Sy ) might be relatively large, at least not smaller than 3, for example,
if a(u) is negative at the beginning of the impulse at 7,,_;. Maybe there still has not been
enough time for the good behavior of a(u) to have the good effects that allow for asymptotic

stability. Suppose that the worst that can happen is captured as e Jsy alwdu < K for every
51 < s €[0,00).

Remark 5.1. Notice that K > 1, since e Jsy atde _ 1 In case that a(u) > 0 always,
then K = 1 automatically.

Thus we have that if, say, ¢(7,,) < /%, and f < %, then

n—2

1t ot
e ffn_la(U)duZ ATn1—m) He Tn {_; a(u)du Fe(mn1)e [, alwdu
m=1
n—2
SE Y eltuo1-m)B" + Ke(rno1)
m=1 (26)
a — o
< — m —
<52 AT
m=1
<2 B o _a
—41-p5 4 2

where we have used that iﬁ < 1 because < . So we have shown that

t
> clm)e” Jr et %,

0<T <t

_f";f—l a(u)du <

as long as the intervals [7_1, %) between jumps allow sufficient time for e
8 < %, the condition e JE awydu < K holds for every s; < sy € [0,00) and the Lipschitz

weighting function of the jumps satisfies ¢(7,,) < ;% for all m > 1.

7‘[:1 a(u)du .

For n = 2, we use as notational convention Y 0 _, (-) = 0, so that only the term c(71)e is

left for this special case.
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Remark 5.2. Through a similar analysis to the one we did in the previous chapter for
continuous delayed functions, we can have an idea of how to calculate the maximum bound
K. As can be remembered from the previous chapter, such as in Example 3.1 and ensuing
remarks there, a good candidate to finding K to obtain a uniform bound in ¢y is to look
for the longest interval where a(t) is negative.

The previous example motivates the following corollary, which could serve as a criterion
to determine if the hypotheses of Theorem 3.1 hold. Of course, different criteria can be
obtained, this is just one of many possible that give sufficient conditions for the application
of Theorem 3.1.

Corollary 5.1. Suppose that the conditions of Theorem 3.1 hold, except that instead of
condition (13), we have that there exists an o € (0,1) such that

sup ([ st s <

and the following conditions hold. The intervals [Ti_1, 7)) between impulses satisfy that
for every k >1

(27)

| o

|2 m )l < 5 < 5, (28)

|®(s2,s1)|| < K holds for every s1 < sg € [0,00), and the Lipschitz weighting function
of the impulses satisfies c(7) < 45 for all m > 1. Then the trivial solution of (1) is
uniformly stable and asymptotically stable.

Proof. We just need to prove that the hypotheses of this proposition imply that

3 emlle )l < 5,

2
0<7, <t

so that, along with (27) we have that condition (13) of Theorem 3.1 holds. If t € [1,—1,T»),

then
> )@t )|
0< <t
n—2 m
ZCTn 1— m (t Tn— 1 H Tn s Tn—1— ]) +C(7-n—1)H(I)(t;7-n—1)”
m=1 j=1
n—2 m
<@t 1l Y elma1om) [ [TI®Tn—ss ma1- gl | + c(ma) Bt mn)|
m=1 j=1
n—2
<K C(Tn—l—m)ﬁm +KC(T77,—1)
m=1
O — a o pf a o«
< — my < - 4+ — —.
SO S —5 1S3

3
1§

The rest follows from the main result, Theorem 3.1.

Example 5.1. Let us have

2 (t) = —a(t)x(t) + q(t)2*(t —ri(t))  t# Tt >0
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with a(t),q(t) continuous real-valued functions on R*, ¢t — r;(t) — oo as t — oo, for
i=1,2,0 <ri(t) <r < oco. Remember z;- as defined in (4) above. Suppose we are
interested in a ball of size L around the origin, where we will specify certain conditions on
L. We will see that the larger L is, the more difficult it is to obtain stability conclusions.
The point of this example is to understand the role of L and how it can be chosen for
certain cases. Let the following conditions hold:

(i) a(t) > ¢ > 0 for ¢ constant, for all t > 0.

(ii) The impulsive moments satisfy ming>1{m; — 71} > 1n(2)

(iii) There is a 2 < J < 3 such that a(t) > 2LJ|q(t)| for all ¢ > 0.5
Then the origin is uniformly stable and asymptotically stable.

Proof. We verify that the hypotheses of the scalar version of Corollary 5.1 are satisfied.
We have g(t, ;) := q(t)x?(t — r1(t)), and so, if ||¢||, [[1|l» < L, we have that

l9(t, ) — g(t, )| = la@®)||¢*(—r1(1)) — ¥*(—r1 (1))l
< 2L[q(t)[|p(—r1(t)) — ¥(=r1(D))]
< 2Llg®)ll¢ = Pllr,

so that if b(t) = 2L|q(t)|, we have the necessary weighted Lipschitz-type condition. Clearly
the impulsive operator is linear in x;, so we have a Lipschitz condition as well, with
c(t) = ¢. The fading memory conditions (14) are satisfied, since divergence to infinity of
t —r1(t) implies that given € > 0 and 77 > 0, there exists T > T} such that ¢t —r(t) > T}
for all ¢ > T%. Given that r(t) > 0, this implies that for T3 as defined, it is true that
t —ri(t) € [11,t] for every t > T5. Putting together the information we have so far, we
have that given € > 0 and 77 > 0, it is true that there exists a T5 > 77 such that using

|41 = suppery 4 [2(6):

oo (=1 ()] = et = r0))] < o < e+ [l for ¢ > T3,
because t — ri(t) € [T1,t] for every t > Ti. Thus, if t > Ty
l9(t, 20| < blae(=r (1) < bt) (e + | 1)
Similarly, for the impulsive operator, there exists, given the same ¢ > 0, T3, a Ty > T,
such that using r4(t) this time,
- (=r2(0))] < [l < e+ 2| for t > T,

because t — r3(t) € [T1, ] for every t > Ty. And this gives similarly the fading memory
condition for I(t,z;-) = gz (—72(t)). Let Tb = max{Ty,T>}, to obtain condition (14).
Clearly e~ Ja®)ds 5 0 as ¢ — 00, because of (i). We must only verify condition (13),

using Corollary 5.1. By (iii), we have
L et Lt L [f e
/ e~ Jo alwdupg)ds =/ e~ Js aWduaria(s)|ds < —/ e Joalwdug(g)gs
0 0 J Jo
1 t s=t 1 t
_ = —fs a(u)du _ = _ = Jya(uw)du
Je s=0 J <1 e ) '
Thus sup;g { fo alwdu|p(s)|ds} < 1 =2 with % 1, and condition (27) of

o =
Corollary 5.1 is satlsﬁed. We have K = 1, since a(t) > 0, and c¢(t) = % < % = 1%
because J < 3 For condition (28), we have that using (i

), (i), we get that for every k:

6_ f:,f_l a(s)ds < e_c(q-k—q-k,l) < Sup{e—c(‘f‘k—rk,l)} _ ﬂ < 1
k

5"

5This is how we realize that the larger L is, the harder it is to satisfy this condition.
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Thus all of the conditions of Corollary 5.1 are satisfied, so that we have uniform stability,
and asymptotic stability of the trivial solution. Notice that by (15), the initial conditions
must be less than §p < LI_TC“ = L%.

O

Example 5.2. Let us have in the previous Example 5.1, a(t) =t + %, q(t) = f—G, ri(t) =
%, ro(t) = % Thus we have the impulsive delayed differential equation

Z(t) = — (t+ %) x(t) + 1%%(%) t# Tt >0

(30)

1 /2t
Ax(t)=6x<§), t=r,=2k keN={1,23 1

We take that we are interested in a ball of radius . = 3 around the origin. Here, we
see from the definition of a(t), ¢ = 1/2. We can directly verify the hypotheses of the

main result, or use the previous nonlinear general model of (29), with ¢(t) = f—G, with
J = g Notice that o = % = %, with this value of J. We need initial functions ¢ less than
dp < @ = 2 in norm. Also, notice that we have min{r, ~74_1} =2 > @ = 2In(2).

Numerical simulation is illustrated in Figure 1.

t

3

19



Journal Pre-proof

A Particular Linear Impulsive System

Suppose that we have the following particular linear case of (1):

() = At)z(t) + M(t)x(t —r(t), t#Tkt>0

Az(t) = I(H)z(t7), t =14t >0 (1)

with M(¢) a continuous time-varying matrix of dimension n x n.

Corollary 5.2. Suppose that in the linear FDE (31), t — r(t) — o0 as t — oo, that
there exists a positive constant o, and a continuous function b : R™ — RT such that the
following conditions hold:

(i) For all sy > s1 € [0,00), let us have on the fundamental matriz ® of the time-varying
system (8) induced by A(t), the uniform bound ||®(s2,s1)| < K < oo, in other words
let supg, >, >0 ([|P(s2,1)]]) < K < o0

(ii) M(t) has its operator norm bounded ||M(t)|| < b(t), for all t > 0, and similarly
1) < e(t), for all t > 0,7 such that for all t > 0:

/0 @ s)lds + 3 elmllem) <o <1. (32)

0<m <t

(iii) | ®(t,0)] — 0 as t — oco.

Then zero solution of (31) is uniformly stable and asymptotically stable, with initial con-
dition arbitrarily large, so that the stability conclusions are global.

Proof. Notice that the dp in (15) depends on L proportionally, and L is where the Lipschitz
conditions (i), (7i7) hold. But in this case, we do not have a nonlinearity that forces a local
Lipschitz condition, so L can be arbitrarily large. Thus asymptotic convergence holds, no
matter how large the initial condition is.

We now just need to prove that the fading memory condition holds in case of infinite
delay. For finite delays, if 0 < r(f) < r then t — r(t) — oo. The proof that condition
(14) holds is similar to how we did in Lemma 3.1, as we illustrate: By hypothesis, we have
that ¢ — r(t) — oo as t — oo. This divergence to infinity implies that given € > 0 and
T > 0, there exists T» > T3 such that t — r(¢t) > Ty for all t > T,. Given that r(t) > 0,
this implies that for 7 as defined, it is true that ¢t —r(t) € [T1,t] for every t > T5. Putting
together the information we have so far, we have that given ¢ > 0 and 77 > 0, it is true
that there exists a T > T} such that using ||z||7+ = SUpgerr, 4 [2(0)]:

jwe(—r()] = Ja(t = r()] < 2T < e+ |2 for ¢ > T,

because t — r(t) € [11,t] for every t > T5. Thus

lg(t, 20| < M@ [a(=r(£))] < 1b(@)]22(—r(2))]
< [b(t)| (e + 1] ™).

Example 5.3. Suppose we have

"Notice that b(t) := ||M(t)||, c(t) := ||I(t)|| also work, but perhaps knowing this exactly is too difficult,
so using matrix bounds one can settle for an upper estimate.
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k—1
2'(t) = —a(t)z(t) + b(t)z(t/6), t>0, t7é7k=3+T
L (33)
Az(t) = g52(t7), t=m =3+ Lren,
as well as 79 = 0, with
~1 if ¢ 1
oft) = if t € [0,1]
—142(t—1) ift>1.
b) — = if t € [0, 53]
pta(t-3) ift>3%

Let us define ¢; = 5z, to shorten notation. Notice that for ¢ € [0, ¢1], since a(t) > —1:

25’

t t
/ e e Wdup(s)ds < / els p(s)ds < i(et1 —1) tel0,ty].

Now, for ¢ > 1, notice that at tq, % = a(t) = 3b(t). Afterwards, it is true that for t > t;,
a(t) > 3b(t). Therefore, the following inequality holds, for t > {;:

t
/ e~ Js alwdup(gygs < i( h —1)+/ e Jeo@dup(g)gg
0 25 t1
1 - a(s)
< (et _ 1 —fs a(u)du “\°)
< 25(6 )—i—/t1 e 3 ds
Lol (1 e et ) (t > t1)
25 3 -
1 1 o
< —(efr — - ==
25( 1+ 3 2’

with a = 2 (%(etl -1+ %) 0.96737 < 1, since t; = %. We will use Corollary 5.1 to
verify the hypothesis

/b Y s)lds + 3 e(m|e(t )] < a <1

0<T <t

in order to apply Corollary 5.2. We already have, from the previous calculation,

¢ ¢,
sup (/ b(s)||P(¢, s)||ds) = sup (/ e~ Js alwdup ) ds ) <
>0 \Jo >0 \Jo

Notice that the negative contribution of a(t) on the interval [O, 2] makes the value of the
2 a(s)ds

N’|Q

constant K bigger, where K such that K > supg,sg >oie U }. This is because,

if a(t) > 0 always, then e —Jif als)ds < 1 for all s3 > s1, since the integral f s)ds is
nonnegative. Therefore K = 1 is good enough for nonnegative functions a(t). In case
a(t) < 0, as happens here, a good candidate to determine K is to search for the largest
interval where a(t) is negative. This largest interval is [0, 2] We have that

3/2 1 3/2 5
/0 a(s)ds = /0 (—1)ds +/1 [—1+2(s—1)]ds = 1

sup {e” o7 o5y = o= 7 al9)ds — (5/4 5 349,
$2>$1>0

so that

21



Journal Pre-proof

Thus K = % is good enough. Notice that we have for the impulsive operator that ¢(t) =
% < 4% Thus, we must just verify that the impulsive moments {7 }1>0 satisfy that

_ [Tk d 1
for every k. Notice that for k > 2, we have that 7, — 7,1 > % Also, for t > 7 = 3, we
have that a(t) > 3. Therefore, for every k > 2

e

e J alw)du < e 3mm-1) < e s < %
On the interval [rp,71] = [0,3], we have that f03 a(s)ds = 1, so that o S aluydu _
e‘fga(S)ds =1 1 Tettin B = 11 h L —f:}f_l a(u)du < f
~ e 2 gp = 5, we have that e < B for every

k > 1. Thus, we have verified, after applying Corollary 5.1 and Corollary 5.2, the uni-
form stability and asymptotic stability of the trivial solution, for arbitrarily large initial
conditions ¢. Numerical simulation is illustrated in Figure 2.

()

10 12 14 16 18 20

Figure 2: Simulation result for Example 5.3. with a(t), b(¢) piece-wisely defined.

Remark 5.3. In the previous example, notice the following. Suppose that we have the
non-impulsive version

2'(t) = —a(t)z(t) + b(t)z(t — r(t), t>0, (34)
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with
~1 ifte01
alt) = pre
1420t —1) ift>1.
b(t)_{% it e [0, 2]
- 1 1 39 : 39
3t (t—35) ift>32

Suppose t — r(t) — oo as t — oo. Then, by a similar calculation to the one done in
Example 5.3, we have that fg eI a(Wdup(s)ds < o < 1, and the rest of the hypotheses of
Theorem 2.1 in [39] are satisfied, so that we have asymptotic stability of the trivial solution.
Notice that this example has that for ¢ € [0, 1), a(t) < 0. Therefore, this example does not
satisfy the sufficient conditions for stability given through the Lyapunov stability result
given in [11]. In said result, using a Lyapunov function, it is determined that a sufficient
condition for asymptotic stability requires that a(t) > ¢ > 0, a(t) > J|b(t)| for every ¢t > 0,
for some J > 1 and ¢ > 0. The example illustrated here shows how the Banach contraction
method for stability can be used as a possible alternative to Lyapunov methods, which can
improve classical Lyapunov stability analysis. In Example 5.3, of course, we have added
impulses, and verified that these discontinuities still give asymptotic stability.

6 Conclusion

We have studied, in this paper, a class of quasi-linear impulsive systems of functional dif-
ferential equations with infinite time delays. We have adopted a new approach to overcome
the usual difficulties of constructing the Liyapunov function and Lyapunov functionals as
well as the estimate of their derivatives-along the solutions. By employing the contraction
principle, we have established some criteria on uniform stability and asymptotic stabil-
ity for impulsive system of FDEs. The proposed approach utilizes the idea of averaging
instead of the point-wise estimate in the Lyapunov method. Our results show that the
Banach contraction principle can be used as a possible alternative to Lyapunov methods
for stability analysis when the conditions of Lyapunov method fails to hold. Similar ap-
proaches by using other fixed point theorems may be employed for stability analysis of
impulsive systems of FDEs in the futre.
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