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Abstract

We study the Chebyshev-Halley family of root finding algorithms from the point of
view of holomorphic dynamics. Numerical experiments show that the speed of convergence
to the roots may be slower when the basins of attraction are not simply connected. In
this paper we provide a criterion which guarantees the simple connectivity of the basins of
attraction of the roots. We use the criterion for the Chebyshev-Halley methods applied to
the degree n polynomials zn + c, obtaining a characterization of the parameters for which
all Fatou components are simply connected and, therefore, the Julia set is connected. We
also study how increasing n affects the dynamics.

1 Introduction

Most of the problems faced by scientists and engineers involve equations that do not have a
known analytical solution. Numerical methods are a good option to tackle and solve real world
problems. In particular, iterative methods are used to find approximations of the solutions of
f(z) = 0.

The best-known root-finding algorithm is Newton’s method, which has order of convergence
2. Many numerical methods of order three or more are derived from Newton’s scheme: Cheby-
shev method, also known as super-Newton method (see [15], for example), Halley’s method and
super-Halley method. A more detailed study of the construction and evolution of these numer-
ical methods can be seen in [13]. These methods belong to a family of numerical algorithms
called the Chebyshev-Halley family, which is given by

xn+1 = xn −
(

1 +
1

2

Lf (xn)

1− αLf (xn)

)
f (xn)

f ′ (xn)
, (1)

where

Lf (xn) =
f (xn) f ′′ (xn)

(f ′ (xn))2

∗Instituto de Matemáticas y Aplicaciones de Castellón (IMAC), Universitat Jaume I. Spain
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and α ∈ C. Within this family, Chebyshev method is obtained for α = 0, Halley’s method is
obtained for α = 1

2
and super-Halley method is obtained for α = 1. Moreover, as α tends to∞

these algorithms converge to Newton’s method.
Failures in intermediate calculations made by a computer are very difficult to detect. Con-

sequently, one of the common aims of numerical analysis is to select robust algorithms, that is,
algorithms with a good numerical stability in a wide range of situations. Therefore, it is usual
to consider iterative methods with high order of convergence. However, the radii of conver-
gence which ensure that the solution of the method is correct may decrease when we increase
the order of the method. One way to address this issue is to study the numerical method from
a dynamical point of view, i.e., to consider the iterative method as a discrete dynamical system
and to study its stability. This is a line of work that has proven to be especially fruitful in
recent years (see, for example, the papers [1], [2], [3], [6], [7], [9], [14]).

In this paper we study the Chebyshev-Halley family from a dynamical point of view in order
to find which members of the family have better stability. To carry out this dynamical study,
the root-finding algorithm is applied to a polynomial P . By doing so, we obtain a rational map
Q : Ĉ → Ĉ, where Ĉ denotes de Riemann sphere, whose dynamics describes how behaves the
method when applied to the polynomial P . Indeed, the points which converge to the roots of
P when applying to the numerical method are exactly those which converge to the roots of P
when iterating the map Q.

We shall give a short introduction to the concepts used in holomorphic dynamics. A more
detailed description of the topic can be found in [4] and [17]. We consider the discrete dynamical

system given by the iterates of a rational map Q : Ĉ → Ĉ. A point z0 ∈ Ĉ is called fixed if
Q (z0) = z0 and periodic of period p > 1 if Qp (z0) = z0 and Qk (z0) 6= z0 for k < p. In the later
case, we say that 〈z0〉 = {z0, Q(z0), · · · , Qp−1(z0)} is a p-cycle. A point is preperiodic if it is
eventually mapped under iteration of Q onto a periodic point. The multiplier of a fixed point
z0 is given by λ = Q′(z0). Analogously, the multiplier of a p-cycle 〈z0〉 is given by (Qp)′ (z0).
We say that a fixed point or a cycle is attracting if |λ| < 1 (superattracting if λ = 0), repelling
if |λ| > 1, and indifferent if |λ| = 1. In the later case λ = e2πiθ, where θ ∈ [0, 1). We say
that an indifferent point or cycle is rationally indifferent or parabolic if θ ∈ Q. Any attracting
or parabolic point z0 has a basin of attraction, an open set of points which converge under
iteration of Q to z0, related to it. We denote it by

A (z0) = {z ∈ Ĉ : Qk (z)→z0 when k→∞}.

The basin of attraction of an attracting (or parabolic) p-cycle can be defined analogously using
that all elements of 〈z0〉 are attracting (or parabolic) fixed points of Qp.

The dynamics of rational map Q splits the Riemann sphere into two totally invariant sub-
sets. The Fatou set, F (Q), consists of the z ∈ Ĉ such that the family of iterates of Q,
{Q(z), Q2(z), . . . , Qk(z), . . .}, is normal, or equivalently equicontinuous, in some open neigh-
bourhood U of z. The Fatou set is open and corresponds to the set of points with stable
dynamics. Its complement, the Julia set J (Q), is closed and corresponds to the set of points
which present chaotic behaviour. The connected components of the Fatou set, called Fatou
components, are mapped among themselves under iteration. All Fatou components of a ra-
tional map are either periodic or preperiodic ([19]). By the Classification Theorem (see e.g.
[17]), all periodic Fatou components are either basins of attraction of attracting or parabolic
cycles, or simply connected rotation domains (Siegel disks) or doubly connected rotation do-
mains (Herman rings). Moreover, all periodic Fatou components are related to a critical point,

that is, a point z ∈ Ĉ such that Q′(z) = 0. Indeed, the basin of attraction of an attracting or
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a parabolic cycle contains, at least, a critical point. Also, the orbit of, at least, a critical point
accumulates on the boundary of a Siegel disk or a Herman ring.

When a root-finding algorithm is studied from the point of view of holomorphic dynamics,
it is usual to apply the method to low degree polynomials (see for instance [11], [6], [7], [9]).
The reason is that when the degree of the polynomial increases, the number of critical points
of the rational map obtained also increases. This is a serious drawback when analysing the
parameter spaces of the methods applied to high degree polynomials, since the orbits of the
critical points are crucial to establish the existence of basins of attraction which do not come
from the roots.

In the paper [5], we consider the Chebyshev-Halley family of numerical methods applied to
the degree n polynomials zn + c, where z ∈ C and c ∈ C \ {0}. As far as we know, this is the
first time that a study of a family of root-finding algorithms applied to degree n polynomials
is considered from the point of view of dynamical systems and the corresponding parameter
spaces are provided. In Figure 1 we show the parameter spaces of this family for different values
of n. Despite of the increase in the number of critical points, we use the symmetries of the
dynamical system obtained to justify that it is enough to follow the orbit of a single critical
point to determine the existence of basins of attraction other than the ones provided by the
roots. This property allows us to obtain pictures of the parameter spaces for polynomials of this
family. We use these numerical studies together with some theoretical results to provide a first
analysis of how the sets of parameters with good dynamical behaviour vary as n increases. For
fixed n, we show that there exists a unique parameter α for which the Chebyshev-Halley method
has order of convergence 4. However, the dynamics of such points may vary when we increase
n. For instance, for α = 1 (super-Halley method) the algorithm has order of convergence 4 for
n = 2, but it presents bad dynamical behaviour for big n (see Figures 9, 10 and 11).

The goal of this paper is to continue the research began in [5]. We focus on the study
of pathological dynamical behaviour which appears both in the dynamical and the parameter
planes. First, we study the dynamical conditions which lead to non-simply connected basins of
attraction of the roots. It has been numerically observed that the basins of attraction may have
holes, which seem to lead to slower speed of convergence. In Section 3 we provide a dynamical
condition (Proposition 3.1) which can be applied to any holomorphic family of rational maps
with a single free critical point (modulo symmetries). Using this condition, we prove that the
basins of attractions of the roots for the Chebyshev-Halley family are multiply connected if
and only if the immediate basin of attraction of the root z = 1 contains another critical point
c 6= 1, and no preimage of z = 1 other than himself. This characterization is used to study the
connectivity of their Julia sets. In Theorem 3.9 we prove that the Julia set of the Chebyshev-
Halley operator is disconnected if and only if the previous condition holds. These results allow
us to locate the values of the parameter for which the Julia set is disconnected, and therefore,
the numerical methods are more unstable.

Afterwards, we study the parameters which present bad behaviour when drawing the pa-
rameter planes. Parameter planes of the Chebyshev-Halley family applied to zn − 1 are shown
in Figure 1, for several values of n. The drawings are obtained as follows. For each parameter
α we iterate a critical point up to 150 times. If the orbit of the critical point converges to a
root (that is, the iterate w satisfies |w − ξ| < 10−4 for some nth-root of the unity ξ) in less
than 150 iterates, we plot the corresponding point using a scale from red (fast convergence) to
green to purple and to grey (slow convergence). If after 150 iterates the critical orbit has not
converged to a root, we plot the point in black. See Section 5.1 for a more detailed explanation
on how the images of parameter planes are produced. We observe in red parameters for which
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Figure 1: Parameter spaces of the Chebyshev-Halley family applied to zn − 1.
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the corresponding critical points converge fast to the roots. We can also observe the Cat set,
the set of parameters for which the critical points do not belong to the basins of attraction of
the roots. In all the figures we can distinguish two big disks called the head an the body of
the Cat. These sets correspond to parameters for which strange fixed points are attracting (see
Proposition 2.3 and Proposition 2.4). The Cat set consists of the head and the body (with their
decorations) and a necklace-like structure which surrounds the head, that we call the Collar.
For n small, we observe the Collar coloured in yellow. However, for n ∈ {25, 100} there appear
some black disks which do not correspond to stable behaviour, as is the case for the head and
the body. In this paper we analyse around which bifurcation parameters these regions appear
(see Section 4 and 5.1), and study the associated operators from a numerical point of view
(Section 5.2).

The paper is structured as follows. In Section 2 we recall the main properties of the operators
obtained applying the Chebyshev-Halley methods to the polynomials zn + c and analyse the
stability of the strange fixed points. In Section 3 we provide a dynamical condition for the
simple connectivity of the basins of attraction of the roots and the connectivity of the Julia
set. In Section 4 we study different bifurcation parameters within the Collar of the Cat set.
Finally, in Section 5 we study the parameter and the dynamical planes of the family from a
numerical point of view.

2 Dynamical study on degree n polynomials

We study is the Chebyshev-Halley family of numerical methods applied on the polynomials
zn + c. Results of this family applied on polynomials of degree two can be seen in [11], [10],
[12].

In [5] we show that the operator obtained for f (z) = zn−1 is conjugate to the one obtained
when applying the Chebyshev-Halley method to f (z) = zn + c, c ∈ C − {0}. Therefore, it is
enough to study the Chebyshev-Halley methods for zn − 1 to understand them for all zn + c,
where c ∈ C− {0}.

We denote by On,α(z) the fixed point operator obtained for zn − 1. By substituting f (z) =
zn − 1 in (1) we have:

On,α(z) = z − (zn − 1)((−1 + 2α + n− 2αn) + (1− 2α− 3n+ 2αn)zn)

2nzn−1(α(n− 1)(zn − 1)− nzn)
=

=
(1− 2α)(n− 1) + (2− 4α− 4n+ 6αn− 2αn2)zn + (n− 1)(1− 2α− 2n+ 2αn)z2n

2nzn−1(α(1− n) + (−α− n+ αn)zn)
. (2)

Except for degenerate cases studied in Section 4, the degree of this operator is 2n. Therefore,
it has 2n+ 1 fixed points and 4n− 2 critical points.

The fixed points are obtained by solving On,α(z) = z. On one hand, we obtain the nth -roots
of the unity, corresponding to the zeros of the polynomial zn − 1, which are superattracting
fixed points. The other n+ 1 fixed points are z =∞ and the n solutions of the equation

− 1 + 2α + n− 2αn+ (1− 2α− 3n+ 2αn)zn = 0. (3)

These points are called strange fixed points, because they do not match with the solutions of
the polynomial. The critical points of the operator On,α are the solutions of O′n,α(z) = 0, where

O′n,α(z) =
(zn−1)2(n− 1)(α(1− 2α)(n− 1)2 + (1− 2n− 2α + 2αn) (−α− n+ αn) zn)

2nzn(α (n− 1) + (α + n− αn) zn)2
. (4)

5



The nth-roots of the unity are double critical points and, hence, are superattracting fixed points
of local degree 3. The point z = 0 is a critical point of multiplicity n − 2 since it is mapped
with degree n− 1 to z =∞. This assertion follows from the term 1/zn−1 on Equation (2). The
remaining n critical points are given by

cn,α,ξ = cξ = ξ

(
α(n− 1)2(2α− 1)

n(2n− 1)− α(4n− 1)(n− 1) + 2α2(n− 1)2

)1/n

, (5)

where ξ denotes an nth-root of the unity, ı.e. ξn = 1. The existence of any stable behaviour of
the dynamical system other than the basins of attraction of the zeros of zn− 1 is controlled by
the orbits of these n free critical points.

The order of convergence to the roots for all members the Chebyshev-Halley family is at
least 3. The next result, which corresponds to [5, Proposition 6.3], states that there is a single
parameter for which the order of convergence increases to 4. In this case, the nth-roots of the
unity are critical points of multiplicity three and are superattracting fixed points of local degree
4.

Proposition 2.1. For n ≥ 2, the operator On,α has order of convergence 4 if and only if

α =
2n− 1

3n− 3
.

The following lemma, which corresponds to [5, Lemma 6.2], states that the dynamics of the
maps On,α is symmetric with respect to the nth-root of the unity. It follows from the lemma
that the n free critical orbits are symmetric and, therefore, it is enough to control one of them.

Lemma 2.2. Let n ∈ N and let ξ be an nth-root of the unity, i.e. ξn = 1. Then Iξ(z) = ξz
conjugates On,α(z) with itself, i.e.

Iξ ◦On,α(z) = On,α ◦ Iξ(z).

The stability of the fixed point z = ∞ was studied in [5], where we proved the following
proposition.

Proposition 2.3. The fixed point z =∞ satisfies the following statements.

1. If
∣∣∣α− 1−4n+5n2

2(n−1)(2n−1)

∣∣∣ < n
2(2n−1) , then z = ∞ is an attractor. In particular, it is a superat-

tracting fixed point if its multiplier is equal to 0, i.e. α = n
n−1 .

2. If
∣∣∣α− 1−4n+5n2

2(n−1)(2n−1)

∣∣∣ = n
2(2n−1) , then z =∞ is an indifferent fixed point.

3. If
∣∣∣α− 1−4n+5n2

2(n−1)(2n−1)

∣∣∣ > n
2(2n−1) , then z =∞ is a repelling fixed point.

We finish this section studying the stability of the other strange fixed points, which are
given by the solutions of (3).

Proposition 2.4. The n strange fixed points are given by

z∗ξ = ξ

(
1− 2α− n+ 2αn

1− 2α− 3n+ 2αn

)1/n

, (6)

where ξ denotes an nth-root of the unity, and satisfy the following statements.
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1. If
∣∣α− 2n−1

n−1

∣∣ < 1
2
, then they are attracting fixed points. In particular, they are superat-

tracting fixed points if α = 2n−1
n−1 .

2. If
∣∣α− 2n−1

n−1

∣∣ = 1
2
, then they are indifferent fixed points.

3. If
∣∣α− 2n−1

n−1

∣∣ > 1
2
, then they are repelling fixed points.

Proof. The derivative of the operator is given in Equation (4). Substituting zn = 1−2α−n+2αn
(1−2α−3n+2αn)

in (4), we have that

O′n,α(z∗ξ ) =
−2− 2α (n− 1) + 4n

n− 1
.

Writing α = a+ ib and developing the equation
∣∣O′n,α(z∗ξ )

∣∣ = 1 we obtain(
a− 2n− 1

n− 1

)2

+ b2 =
1

4
,

which is the equation of the circle centred at 2n−1
n−1 with radius 1/2. The strange fixed points are

attracting inside this circle, since
∣∣O′n,α(z∗ξ )

∣∣ < 1. They are superattracting ifO′n,α(z∗ξ ) = 0, which

is satisfied for α = 2n−1
n−1 . Outside this circle they satisfy

∣∣O′n,α(z∗)
∣∣ > 1, so they are repelling.

Finally, on the circle they satisfy
∣∣O′n,α(z∗ξ )

∣∣ = 1, so they are indifferent fixed points.

Proposition 2.3 explains the evolution of the location and size of the head of the Cat set.
In particular, it shows that the radius of the corresponding disk decreases to 1

4
as n→∞. On

the other hand, in Proposition 2.4 we show that the body of the Cat set is a disk of radius 1
2
,

which does not depend on n.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a) n = 3

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

(b) n = 10

Figure 2: Dynamical planes of On,α for α = 2n−1
n−1 .

In Figure 2 we show the dynamical planes of On,α for n ∈ {3, 10} and α = 2n−1
n−1 , which

correspond to the superattracting case in Proposition 2.4. We observe with a scaling from red
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to green to purple and to grey the points which converge to the the roots in 75 iterates, that
is, the iterate w satisfies |w − ξ| < 10−4 for some nth-root of the unity ξ. We observe in black
the points which have not converged to the roots after 75 iterates. The basins of attraction of
the strange fixed points appear as black fingers coming from infinity. Notice that the strange
fixed points, and the corresponding basins of attraction, are symmetrically located. We refer
to Section 5.2 for a more detailed explanation on how the images are produced.

3 Simple connectivity of Fatou components

Numerical experiments show that the speed of convergence to the roots may be slower when
the basins of attraction are not simply connected, that is, there are connected components of
the basins of attraction which have holes. In this section we give a dynamical condition which
characterizes whether the immediate basins of attraction for the operators On,α are simply
connected. We also prove that the operators On,α can not have Herman rings, that is, doubly
connected rotation domains. The existence of such domains would lead to a positive measure
set of initial conditions not converging to the roots. For completeness, we end this section
showing how the previous results lead to a dynamical characterization of the connectivity of
the corresponding Julia sets.

3.1 Simple connectivity of immediate basins of attraction of super-
attracting fixed points

In this subsection we give a characterization of the simple connectivity of the immediate basin
of attraction of a supperattracting fixed point in the case that it can contain at most one critical
point besides the supperattracting fixed point itself. This result is stated for a general rational
map f . For simplicity, we assume that it has a supperattracting fixed point at z = 0. We
denote by Af (0) its basin of attraction and by A∗f (0) its immediate basin of attraction, that is,
the connected component of Af (0) which contains z = 0.

Proposition 3.1. Let f : Ĉ → Ĉ be a rational map and let z = 0 be a superattracting fixed
point of f . Assume that Af (0) contains at most one critical point other than z = 0. Then,
exactly one of the following statements holds.

1. The set A∗f (0) contains no critical point other than z = 0. Then, A∗f (0) is simply con-
nected.

2. The set A∗f (0) contains a critical point c 6= 0 and a preimage z0 of z = 0, z0 6= 0. Then,
A∗f (0) is simply connected.

3. The set A∗f (0) contains a critical point c 6= 0 and no preimage of z = 0 other than z = 0
itself. Then, A∗f (0) is multiply connected.

The proof of Proposition 3.1 uses the Riemann-Hurwitz formula (see [4]). Given a proper
map f : U → V , this formula relates the connectivities of U and V . The connectivity of an
open set U ⊂ Ĉ is given by the number of connected components of ∂U . A map f is proper if
the preimages of compact sets are compact sets. Given a rational map f , an open set V and a
connected component U of f−1(V ), the map f : U → V is proper.

8



Theorem 3.2 (Riemann-Hurwitz Formula). Let U and V be two connected domains of Ĉ of
finite connectivity mU and mV and let f : U → V be a degree k proper map branched over c
critical points counted with multiplicity. Then

mU − 2 = k(mV − 2) + c.

Proof of Proposition 3.1. We consider the Böttcher coordinate of the superattracting fixed
point z = 0 (see [17, Theorem 9.1]). The Böttcher coordinate is a conformal map φ : U → Dr,
where U is a simply connected neighbourhood of z = 0, 0 < r ≤ 1, and Dr is the open disk
of center 0 and radius r. This map conjugates f with z → zd, where d is the local degree
of the supearattracting fixed point z = 0. More specifically, for all z with |z| < r we have
φ ◦ f ◦ φ−(z) = zn. In particular, φ(0) = 0.

We now assume that U is the maximal domain of definition of the Böttcher coordinate
and, hence, r is maximal. If A∗f (0) does not contain any extra critical point, then r = 1 and
U = A∗f (0) (see [17, Theorem 9.3]). In particular, A∗f (0) is simply connected. On the other
hand, if A∗f (0) contains an extra critical point c 6= 0, then r < 1, U ⊆ A∗f (0), and c ∈ ∂U (see
[17, Theorem 9.3]). Let V = f(U). Then, γ0 := ∂V is a simple closed curve (it is the preimage
under φ of the circle or radius rd). Denote by γ1 the connected component of f−1(γ0) which
contains ∂U . Then, γ1 is the union of two simple closed curves which intersect at the critical
point c, say γ11 , and γ21 . Furthermore, either ∂U = γ11 or ∂U = γ11 ∪ γ21 = γ1 (see Figure 3).

0 γ0

γ21

γ11

z0

γ21
γ11

0
γ0

U

V VU

Figure 3: The two possibilities for the configuration of γ1 = γ11 ∪ γ21 .

Assume that ∂U = γ11 and denote by U ′ the connected component of Ĉ \ γ21 which does not
contain z = 0. Since f(γ11) = f(γ21) = γ0, it follows that f(U ′) = f(U) = V . In particular U ′

contains a preimage z0 of 0. Moreover, U ∪ U ′ ⊂ A∗f (0) and we can take a simply connected

neighbourhood U ⊂ A∗f (0) of U ∪ U ′. Denote by W the connected component of f−1(U) that
contains 0. Since f does not have any critical point in A∗f (0) other than c and 0, it follows
from the Riemann-Hurwitz formula (Theorem 3.2) that f |W :W → U has degree d+ 1 and W
is simply connected. Notice that the degree of f |W is at least d + 1 since z = 0 is a preimage
of multiplicity d of itself and W contains an extra preimage z0 of 0. Repeating the process,
we obtain a sequence of simply connected domains U = U0 ⊂ U1 ⊂ · · · ⊂ Un ⊂ · · · , where
Un is a connected component of f−1(Un−1) and Un−1 ⊂ Un. Moreover, A∗f (0) =

⋃∞
n=0 Un, from

which we conclude that A∗f (0) is a simply connected set containing a preimage z0 of z = 0 and
a critical point c 6= 0.

Now assume that ∂U = γ11 ∪γ21 = γ1. Then, the connected components W1 and W2 of Ĉ\γ11
and Ĉ \ γ21 , respectively, which do not contain z = 0 are mapped under f onto open sets which

contain Ĉ\V . In particular, both W1 and W2 contain part of the Julia set J (f) and, therefore,

9



A∗f (0) is not simply connected. To finish the proof we have to see that, in this last case, A∗f (0)
does not contain an extra preimage z0 of z = 0. Assume that this z0 exists. Then, z0 ∈ W1∪W2.
Denote by A0 the doubly connected set bounded by γ0 and γ1. Define recursively An as the
union of all connected components of f−1(An−1) whose boundary has non-empty intersection
with ∂An−1. In particular, A1 consists of 2 connected components (see Figure 4). Since A∗f (0)
has no critical point other than c and z = 0, it follows from the Riemann-Hurwitz formula
(Theorem 3.2) that all connected components of An are doubly connected.

γ0

γ21

γ11

A0

A1

0

z0 A′1

Figure 4: Configuration of A0 and its preimage set A1.

For n small enough we can define A′n as the connected component of An such that both
connected components of ∂A′n separate z0 from z = 0 (see Figure 4). If this component is well
defined, it is unique. By construction, these components satisfy ∂A′n∩∂A′n−1 6= ∅. Indeed, there
is a connected component ζn of ∂A′n which is a simple closed curve and satisfies ζn ⊂ ∂A′n−1
(see Figure 4). Since the sets An accumulate on ∂A∗f (0), the sets A′n are not well defined
for n large enough. Let N be the smallest such n. Then, there exists a unique connected
component A′N of AN such that one connected component of ∂A′ separates z0 from z = 0
while the other connected component of ∂A′N does not separate them. As before, there is a
connected component ζN of ∂A′N which is a simple closed curve and satisfies ζN ⊂ ∂A′N−1. This
component ζN is precisely the one that separates z0 from z = 0. It follows that z0 belongs to
the doubly connected domain A′N . This is a contradiction since fN(A′N) ⊂ A0 and fN(z0) = 0
(f(z0) = 0).

Remark 3.3. The immediate basin of attraction of an attracting or parabolic cycle can only
have connectivity 1 or∞ (see [4]). Therefore, when it is multiply connected it has connectivity
∞.

3.2 Application to the Chebyshev-Halley family: Connectivity of
the Julia set

In this subsection we apply Proposition 3.1 to the operators On,α. All the proofs of this section
rely on the symmetry property of the operators On,α introduced in Lemma 2.2. This lemma
tells us that if ξ is an nth-root of the unity and Iξ(z) = ξz, then Iξ conjugates On,α with itself.
By using this symmetry, any property which holds for the basin of attraction of the root 1 of
zn − 1 also holds for the basins of attractions of all the other nth-roots of the unity.
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Recall that the roots of the unity are superattracting fixed points of the operators On,α,
which corresponds to the roots of the polynomial zn − 1. For simplicity, all results regarding
the basins of attraction of the roots are stated for z = 1. We denote by An,α(1) the basin of
attraction of z = 1 under On,α and by A∗n,α(1) its immediate basin of attraction, that is, the
connected component of An,α(1) which contains z = 1.

Lemma 3.4. For all α ∈ C and n ≥ 2, An,α(1) contains at most one critical point other than
z = 1.

Proof. The operators On,α have only n free critical points given by cn,α,ξ (see Equation (5)).
Given an nth-root of the unity ξ, it follows from Lemma 2.2 that the map Iξ(z) conjugates
On,α with itself. In particular, if A∗n,α(1) contains a critical point c, then the critical point ξ · c
belongs to A∗n,α(ξ ·1). Therefore, for all j ∈ {0, 1, · · · , n−1}, the immediate basin of attraction
A∗n,α(ξj) of ξj · 1 contains the critical point ξj · c. Since there are only n different free critical
points and for all j, k ∈ {0, 1, · · · , n− 1}, j 6= k, we have ξj 6= ξk, we can conclude that A∗n,α(1)
contains at most one critical point.

The next result follows directly from Lemma 3.4 and Proposition 3.1. We use the fact that
An,α(1) can contain at most one critical point (Lemma 3.4) to apply Proposition 3.1, obtaining
a characterization of the simple connectivity of the basins of attraction of the roots for the
operator On,α.

Corollary 3.5. For fixed n ≥ 2 and α ∈ C, the immediate basins of attraction of the roots of
zn − 1 under On,α are multiply connected if and only if A∗n,α(1) contains a critical point c 6= 1
and no preimage of z = 1 other than z = 1 itself.

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

w1

w2

w3

Figure 5: Dynamical plane of O3,α for α = 0.2 + 1.592i.
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In Figure 5 we show the dynamical plane of the operator O3,α for α = 0.2 + 1.592i. The
parameter is chosen so that the immediate basins of attraction of the roots are not simply
connected. Since n = 3, the map has degree 6 and all points have 6 preimages. The roots
are superattracting fixed points of local degree 3, so they are triple preimages of themselves.
Therefore, each root has 3 preimages other than itself. In Figure 5 we show with a scaling from
red to green the basins of attraction of the roots. We mark with black dots the locations of
the three free critical points, and with a blue dot the location of the root z = 1. We also mark
the location of the 3 preimages of the root z = 1, indicating them by w1 (a white dot), w2,
and w3. We observe that A∗3,α(1) contains one critical point and no preimage of z = 1. Hence,
by Corollary 3.5, we know that the immediate basins of attraction of the roots are not simply
connected. See Section 5.2 for a detailed description of how this picture has been produced.

The Julia set of a rational map is connected if and only if all Fatou components of the
map are simply connected. We finish this section proving that only the Fatou components
corresponding to the basins of attraction of the roots can have connectivity greater than one
for the operators On,α. We first prove that the operators On,α do not have Herman rings, that
is, doubly connected rotation domains.

Proposition 3.6. The maps On,α(z), where n ≥ 2 and α ∈ C, do not have Herman rings.

Proof. A cycle of Herman rings has, at least, two different infinite orbits of critical points which
accumulate on its boundary (see [18]). The idea of the proof is the following: we show that
a map On,α is semiconjugate to a rational map S of the same degree which has a single free
critical orbit and, therefore, cannot have Herman rings.

Let n ≥ 2 and α ∈ C be fixed. Let Qn(z) = zn. It is not difficult to see that there exists
a rational map Sn,α such that Qn ◦ On,α(z) = Sn,α ◦ Qn(z). Therefore, the maps On,α and
Sn,α are semiconjugate. Two points z1 and z2 and mapped to the same point under Qn(z)
if and only if z1 = ξz2, where ξn = 1, and therefore the dynamics of z1 and z2 under On,α

are conjugate (see Lemma 2.2). It follows that Qn sends periodic points to periodic points
(possibly of different period) and preperiodic points to preperiodic points. Moreover, a rational
semiconjugacy between rational maps sends (periodic) Fatou components onto (periodic) Fatou
components. In particular, if H is a Herman ring of On,α, then Qn(H) is a Herman ring of Sn,α.

To finish the proof we show that Sn,α can not have Herman rings. Deriving the equation
Qn ◦On,α(z) = Sn,α ◦Qn(z) we obtain

n(On,α(z))n−1 ·O′n,α(z) = S ′n,α(zn) · (nzn−1).

Therefore, the critical points of Sn,α are given by:

• the points 0 and ∞;

• the images under Qn(z) of the zeros and poles of On,α (notice that the only critical points
of Qn(z) are z = 0 and z =∞);

• points of the form cn where c is a critical point of On,α(z).

Since Qn sends periodic points to periodic points and preperiodic points to preperiodic
points, the point ∞ is fixed under Sn,α while 0 is a preperiodic point (it is mapped to ∞).
Therefore, all free critical points of Sn,α are of the form cn where c is a critical point of On,α(z).

There is a cn,α ∈ Ĉ such that all free critical points of On,α(z) have the form ξ ·cn,α, where ξn = 1
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(see Equation (5)). In particular, Sn,α has a single free critical point given by cnn,α. Therefore,
Sn,α cannot have Herman rings since a cycle of Herman rings has, at least, two different infinite
orbits of critical points accumulating on its boundary (see [18]).

The next proposition deals with the simple connectivity of periodic basins of attraction.
Notice that a cycle of Fatou components is considered to be simply connected if all its connected
components are simply connected. The proof is analogous to the one of [8, Proposition 3.6]
using the symmetry in the dynamics described in Lemma 2.2.

Proposition 3.7. Given a map On,α, where n ≥ 2 and α ∈ C, the immediate basin of attraction
of any attracting, superattracting or parabolic cycle other than the nth-roots of the unity is simply
connected.

Together with the fact that Siegel disks are always simply connected, Proposition 3.7 finishes
the description of the connectivity of periodic Fatou components ofOn,α. In the next proposition
we characterize the simple connectivity of all preperiodic Fatou components.

Proposition 3.8. Let U be a preperiodic Fatou component of On,α, where n ≥ 2 and α ∈ C.
Then, U is simply connected if and only if it is eventually mapped under On,α onto a simply
connected periodic Fatou component of On,α .

Proof. The preimage of a multiply connected Fatou component under a rational map is also
multiply connected. Therefore, if U is eventually mapped onto a multiply connected periodic
Fatou component, then U is multiply connected.

We know from the Riemann-Hurwitz formula (Theorem 3.2) that if a rational map f maps
a multiply connected Fatou component U onto a simply connected Fatou component V , then
U contains, at least, two distinct critical points. It follows that the preimages of all simply
connected periodic Fatou components of On,α are simply connected. Indeed, from Lemma 3.4
we know that the basins of attraction of the roots of zn− 1 contain, at most, one critical point
and, therefore, if the immediate basin of attraction of the root is simply connected, then so
are its preimages. On the other hand, any periodic Fatou component other than the basins
of attraction of the roots are related to the free critical points. Attracting, superattracting
and parabolic cycles contain, at least, one critical point while Siegel disks have the orbit of, at
least, a critical point accumulating on its boundary (see, for instance [4, 17]). By Lemma 2.2,
if one free critical point is related to a periodic Fatou component, then so are all of them.
In particular, no preimage of a periodic Fatou component other than the immediate basin of
attraction of a root can contain a critical point and, hence, all preperiodic Fatou components
which do not belong to the basin of attraction of a root are simply connected.

The next result follows directly from Corollary 3.5, Proposition 3.6, Proposition 3.7, and
Proposition 3.8 since the Julia set of a rational map is connected if and only if all its Fatou
components are simply connected.

Theorem 3.9. For fixed n ≥ 2 and α ∈ C, the the Julia set J (On,α) of On,α is disconnected if
and only if A∗n,α(1) contains a critical point c 6= 1 and no preimage of z = 1 other than z = 1
itself.

It follows directly from the previous theorem that the parameters of the Cat set correspond
to operators with a connected Julia set. Recall that the Cat set is defined as the set of
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parameters for which the free critical points of the operator do not belong to the basins of
attraction of the roots. In particular, we obtain the next result.

Corollary 3.10. Let On,α be an operator with a parabolic cycle, a Siegel disk, or an attracting
cycle other than the nth-roots of the unity. Then, its Julia set is connected.

Proof. Every attracting or parabolic cycle has a critical point on its basin of attraction. Also,
given a Siegel disk there exists a critical point whose orbit accumulates on its boundary (see
[4]). Therefore, if there is an stable domain different from the basins of attraction of the roots,
at least one free critical point is related to the domain and, hence, cannot lie inside the basin
of attraction of any of the roots. It follows from the symmetry of the family (see Lemma 2.2)
that no critical point belongs to the basin of attraction of a root and, by Theorem 3.9, the Julia
set is connected.

The head and the body of the Cat set are examples of sets of parameters for which we can

apply Corollary 3.10. If
∣∣∣α− 1−4n+5n2

2(n−1)(2n−1)

∣∣∣ < n
2(2n−1) , the fixed point z =∞ is an attracting fixed

point (Proposition 2.3). So, at least one free critical point must be in its basin of attraction.
As the symmetry of the problem is preserved, all the free critical points must be in this basin
of attraction and there are no free critical points in the basins of the roots. Similarly, if∣∣α− 2n−1

n−1

∣∣ < 1
2

the n strange fixed points are attracting (Proposition 2.4) and, hence, each of
them has a critical point in its basin of attraction. Therefore, each free critical point belongs to
the basin of attraction of one of the strange fixed points and there are no extra critical points
in the basins of the roots.

We can analyse the connectivity of the Julia set for the hyperbolic component which contains
the parameter α = 2n−1

3n−3 . Recall that this parameter corresponds to an operator On,α with order
of convergence 4 (see Proposition 2.1). A hyperbolic component in the parameter plane is an
open set of parameters for which the orbits of all critical points converge to attracting or
superattracting cycles.

Corollary 3.11. For fixed n ≥ 2, the Julia set of the operator On,α is connected for all the
parameters in the hyperbolic component which contains α = 2n−1

3n−3 .

Proof. The Julia set is connected for one parameter of a hyperbolic component if and only if
it is connected for all the parameters of the component (see [16]). Hence, it is enough to prove
that the Julia set is connected for α = 2n−1

3n−3 .

By Proposition 2.1, the local degree of the roots for the operator On,α is 4 for α = 2n−1
3n−3 .

In particular, for α = 2n−1
3n−3 the free critical points coincide with the roots and the basins of

attraction cannot contain any critical point other than the roots. Therefore, the Julia set is
connected by Theorem 3.9.

4 Bifurcation parameters

The goal of this section is to study parameters which are in the bifurcation locus of the pa-
rameter planes of the Chebyshev-Halley family operator On,α. We focus on two types of such
parameters. On one hand, we study the degeneracy parameters for which the operator de-
creases its degree. On the other hand, we search parameters for which the free critical points
are eventually map to the fixed point z =∞ and, hence, they are preperiodic.
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We first study the parameters for which the operator On,α decreases its degree.

Lemma 4.1. For α = 1
2

and α = 2n−1
2n−2 , the family On,α(z) degenerates to a rational function

of lower degree.

Proof. Consider the rational function On,α(z) given in (2):

On,α(z) =
(1− 2α)(n− 1) + (2− 4α− 4n+ 6αn− 2αn2)zn + (n− 1)(1− 2α− 2n+ 2αn)z2n

zn−1 (2αn(1− n) + 2n(−α− n+ αn)zn)
.

The degree of a rational function decreases if the higher degree term vanishes or if the roots
of the numerator and denominator match. Making the higher degree term (1− 2α− 2n+ 2αn)
equal to to zero, we obtain the value

α =
2n− 1

2n− 2
.

For α 6= 2n−1
2n−2 , we calculate the roots of numerator and denominator. The roots of the

numerator are given by

z =

(2n− 1 + α (n− 1) (n− 2))± n
√

(α (n− 1)− 1)2 + 2 (n− 1)

(1− 2n+ 2α(n− 1))(n− 1)

1/n

. (7)

The roots of the denominator are z = 0 and

z =

(
(1− n)α

n+ α (1− n)

)1/n

, for α 6= n

n− 1
. (8)

The case α = n/(n− 1) is studied separately. The values of α for which the roots given in
(7) coincide with z = 0 are solutions of the equation

(2n− 1 + α (n− 1) (n− 2))± n
√

(α (n− 1)− 1)2 + 2 (n− 1) = 0.

Operating on the expression we obtain(
n

√
(α (n− 1)− 1)2 + 2 (n− 1)

)2

= (2n− 1 + α (n− 1) (n− 2))2 ,

and (2α− 1) (n− 1)2 (2n+ 2α− 2nα− 1) = 0. Thus, the solutions are

α =
1

2
and α =

2n− 1

2n− 2
.

Since we are considering the case α 6= 2n−1
2n−2 , we obtain α = 1

2
. Secondly, we look for values of

α so that roots given in (7) coincide with roots given in (8). They are solutions of the equation

(2n− 1 + α (n− 1) (n− 2))± n
√

(α (n− 1)− 1)2 + 2 (n− 1)

(1− 2n+ 2α(n− 1))(n− 1)
=

(1− n)α

n+ α (1− n)
.

Operating on the expression we obtain
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(
(1− n)α(1− 2n+ 2α(n− 1))(n− 1)

n+ α (1− n)
− (2n− 1 + α (n− 1) (n− 2))

)2

=

=

(
n

√
(α (n− 1)− 1)2 + 2 (n− 1)

)2

,

which implies
(1 + 2α (n− 1)− 2n) (n− 1)2 n2 = 0.

The root of the last equation is

α =
2n− 1

2n− 2
.

However, this is not a valid solution since we are considering the case α 6= 2n−1
2n−2 .

Finally, we consider the value α = n
n−1 discarded in Equation (8). In this case, the degree

of the operator remains 2n:

On, n
n−1

(z) =
(n+ 1) + 2(n2 − 1)zn − (n− 1) z2n

2n2zn−1
.

Then, the only values for which the operator degenerates to a rational function of lower
degree are α = 1

2
and α = 2n−1

2n−2 .

In the following we analyse the dynamical behaviour of the numerical methods corresponding
to the bifurcation parameters obtained above.

Lemma 4.2. For α = 1
2

the strange fixed points are z = 0 and z = ∞. Moreover, the only
critical points are the roots of the polynomial, which have multiplicity 2

Proof. The rational function for α = 1
2

is given by

On, 1
2
(z) =

(n+ 1)z + (n− 1)zn+1

(n− 1) + (n+ 1)zn
. (9)

The fixed points of On, 1
2
(z) are the roots, z = 0 (the n strange fixed points collide at 0) and

z =∞. The derivative is given by

O′
n, 1

2
(z) =

(n2 − 1) (zn − 1)2

((n− 1) + (n+ 1)zn)2
. (10)

The only critical points, which are the zeros of O′
n, 1

2

(z), are the roots of the polynomial zn − 1

and have multiplicity 2.

Lemma 4.3. For α = 2n−1
2n−2 , the roots of the polynomial are critical points of multiplicity 2.

Moreover, the points {0,∞} form a cycle of period 2, which is superattracting if n > 2.

Proof. The operator for α = 2n−1
2n−2 is

On, 2n−1
2n−2

(z) =
1 + (2n− 1)zn

(2n− 1 + zn) zn−1
. (11)
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The fixed points are the roots of the polynomial and the nth-roots of −1. The derivative is
given by

O′
n, 2n−1

2n−2
(z) = −(2n2 − 3n+ 1) (zn − 1)2

zn (2n− 1 + zn)2
. (12)

The roots of the polynomial are critical points with multiplicity 2. Since the numerator of
On, 2n−1

2n−2
(z) does not vanish at z = 0 and z = 0 is a root of multiplicity n−1 of the denominator,

we conclude that z = 0 is mapped to z = ∞ with degree n − 1. Therefore, z = 0 is a critical
point if n− 1 > 1, that is, n > 2. Similarly, z =∞ is mapped to z = 0 with degree n− 1 and
is a critical point if n > 2. In particular {0,∞} is a period two cycle. Since a periodic cycle
is superattracting when any of the points of the cycle is critical, we conclude that {0,∞} is a
superattracting cycle if n > 2.

Notice that the point z = ∞ is a fixed point for all α 6= 2n−1
2n−2 but it becomes a period 2

superattracting periodic point if n > 2 and α = 2n−1
2n−2 (see Lemma 4.3). This may lead to very

unstable dynamics (compare Figure 7).
We now look for bifurcation parameters for which the free critical points coincide with z = 0

or are mapped onto it. Notice that z = 0 is a preimage of the fixed point z =∞. In that case,
the free critical points are preperiodic and, therefore, there is no other stable behaviour than
the basins of attraction of the roots.

Lemma 4.4. The free critical points collapse with z = 0 if and only if α = 0.

Proof. In the expression of the critical points (Equation (5)) we observe that critical points
become equal to 0 for α = 0 and α = 1

2
. Nevertheless, α = 1

2
is a degenerate case; in this case,

as we have seen in Lemma 4.2, z = 0 is not a critical point. So, the only value for which free
critical points collapse with z = 0 is α = 0.

Now, we calculate the values of the parameter such that critical points are preimages of
z = 0. As before, for such parameters the critical points are preperiodic since z = 0 maps to
the fixed point z =∞.

Lemma 4.5. Critical points are preimages of z = 0 if and only if α =
1±
√

2(1−n)
n−1 .

Proof. For α 6= { n
n−1 ,

2n−1
2n−2}, the free critical points are given by

cn,α,ξ = ξ

(
(n− 1)2 (−1 + 2α)α

n (2n− 1)− (4n− 1) (n− 1)α + 2 (n− 1)2 α2

)1/n

, (13)

where ξ denotes an nth-root of the unity. We discard the parameter α = n
n−1 since the critical

points coincide with z =∞ (see Proposition 2.3). We also discard the parameter 2n−1
2n−2 since the

degree of On,α decreases and there are no free critical points (see Lemma 4.1 and Lemma 4.3).
Preimages of z = 0 are obtained from On,α (z) = 0, that is

(1− 2α)(n− 1) + (2− 4α− 4n+ 6αn− 2αn2)zn + (n− 1)(1− 2α− 2n+ 2αn)z2n = 0.

The solutions satisfy

zn =
−1 + 2n+ α (n− 1) (n− 2)± n

√
2 (n− 1) + (1 + α (1− n))2

(n− 1) (1− 2n+ 2α (n− 1))
.
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The solutions coincide with critical points if

−1 + 2n+ α (n− 1) (n− 2)± n
√

2 (n− 1) + (1 + α (1− n))2

(n− 1) (1− 2n+ 2α (n− 1))
=

=
(n− 1)2 (2α− 1)α

n (2n− 1)− (4n− 1) (n− 1)α + 2 (n− 1)2 α2
.

Operating and simplifying we obtain

(2α− 1) (1 + 2α (n− 1)− 2n)2 (n− 1)2
(
α2 (n− 1)2 − 2α (n− 1) + 2n− 1

)
= 0.

The solutions of the last equation are

α =
1

2
, α =

2n− 1

2 (n− 1)
, α =

1±
√

2 (1− n)

n− 1
.

The parameters α = 1
2

and α = 2n−1
2n−2 are degenerated cases with no free critical points (see

Lemma 4.1).

We conclude that critical points are the preimages of z = 0 if and only if α =
1±
√

2(1−n)
n−1 .

Notice that the values of α introduced in Lemma 4.5 coincide, in the parameter space, with
two symmetric points of the Collar of the Cat set, where the main ramifications appear (see
Figure 6).

5 Numerical studies and conclusions

The goal of this section is to perform a numerical study on the Chebyshev-Halley family.
We first analyse the parameter planes near the bifurcation parameters described in Section 4.
Afterwards we study the dynamical planes of the family. We focus on the dynamics of maps
with a disconnected Julia set and the evolution when n grows of the dynamics of some relevant
members of the Chebyshev-Halley family.

5.1 Parameter planes

The drawings of parameter planes of the operators On,α along the paper are done using a
program written in C which works as follows. We take a grid of points (1500 × 1000 points
for Figure 1, 1200 × 2000 points for Figure 6, and 1500 × 1500 points for Figure 7). Then,
we associate a parameter α ∈ C to each point of the grid. The range of the real and the
imaginary part of the parameters α is indicated in the horizontal and vertical axes of the
images, respectively. For fixed α we compute one of the n free critical points and iterate it up
to 150 times. At each iteration we verify if the iterated point w has converged to any of the
nth-roots of the unity (we verify if |w − ξ| < 10−4, for any nth-root of the unity ξ). If the
critical orbit converges to a root of the unity, we colour the corresponding point with an scaling
from red (fast convergence) to yellow, green, blue, purple and to grey (slow convergence). If
after 150 iterations the orbit of the critical point has not converged to a root, we plot the point
in black. In Figure 1 we show the parameter planes of the operator On,α for different values of
n.
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Figure 6: Zooms in on the parameter planes near the main bifurcation points of the Collar.

The aim of this subsection is to analyse the parameter planes of the family near the bi-
furcation parameters found in Section 4. In Figure 6 we show zooms in on the parameter
planes for several n. The ranges of α include the bifurcation parameters α = 0 (Lemma 4.4),

α = 1/2 (Lemma 4.1) and α± =
1±
√

2(1−n)
n−1 (Lemma 4.5). The parameter α = 1/2 (Halley’s

method) appears in the figures as a tip of an antenna which joins it with α = 0 (Chebyshev’s
method). We observe that the bifurcation structure at α = 1/2 is rather simple, which could
indicate stability of the family for parameters near Halley’s value. On the other hand, a more
complex bifurcation structure appears at Chebyshev’s parameter (α = 0). Recall that for this
parameter all critical points collide at z = 0, which is a preimage of the fixed point z = ∞.
Indeed, for n = 25 we observe a black disk of parameters for which the orbit of the critical
point has not converged to a root after 150 iterates. This black disk does not correspond to
any stable behaviour, but to parameters for which the critical orbit would require more iterates
to converge to a root. Indeed, this disk of parameters decreases when we increase the number
of iterations. A similar situation occurs near the parameters α±, which are marked with white
points in Figure 6. These parameters correspond to operators for which the critical points are
preimages of z = 0. Several of these black regions not corresponding to stable behaviour appear
when drawing the parameter planes for big n, being the bigger ones around α±. Numerical
experiments seem to indicate that the biggest black regions not related to stable behaviour ap-
pear around parameters for which the free critical points are eventually mapped under iteration
of the corresponding operator onto z = 0. In Section 5.2 we show the dynamics of On,α for all
the bifurcation parameters discussed in this paragraph in order to analyse if they have to be
avoided or if they present good dynamical behaviour.

In Figure 7 we show zooms in on the parameter plane near the parameter α = 2n−1
2n−2 . If

n > 2, this bifurcation parameter corresponds to a lower degree operator for which {0,∞} is
a superattracting cycle. Therefore, this is a parameter to be avoided. In Figure 7 we indicate
it with a small white point. We observe how, for n = 10 and n = 25, this parameter is the
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Figure 7: Zooms in on the parameter planes near the degeneracy parameter α = 2n−1
2n−2 .

center of a cascade of bifurcations. Similarly to what happens in the parameter plane near the
other bifurcation parameters, this cascade of bifurcations may lead to a black region which does
not correspond to stable behaviour (see Figure 7 (b)). This cascade of bifurcations takes place
in a rather small region which is adjacent to the hyperbolic component of parameters which
contains α = 2n−1

3n−3 . For fixed n, this parameter corresponds to the single operator On,α with
order of convergence 4 to the roots (see Proposition 2.1). Moreover, the parameters within this
hyperbolic component have connected Julia set (see Corollary 3.11), which a priori makes of
them desirable parameters. However, the hyperbolic component seems to become smaller and
to move slightly to the left when we increase n (see Figure 1). In particular, the parameter
α = 1, which has order of convergence 4 to the roots for n = 2, falls into the cascade of
bifurcations for n = 25 (see Figure 7). In Section 5.2 we show how the dynamics of α = 1
evolves when we increase n and it approaches and enters the cascade of bifurcations.

5.2 Dynamical planes

In this section we provide numerical drawings of dynamical planes of the operators On,α. The
drawings of dynamical planes are done using a program written in C which works as follows.
We take a grid of 1500 × 1500 and we associate a point z ∈ C to each point of the grid. The
range of the real and the imaginary part of the points z is indicated in the horizontal and
vertical axes of the images, respectively. Then, we iterate the point z up to 75 times. At each
iteration we verify if the iterated point w has converged to any of the nth-roots of the unity
(we verify if |w − ξ| < 10−4, for any nth-root of the unity ξ). If it converges to any root of the
unity, we colour the corresponding point in the grid with an scaling from red (fast convergence)
to yellow, green, blue, purple and to grey (slow convergence). If after 75 iterations the orbit
has not converged to a root, we plot the point in black.

The goal of this section is to analyse the dynamical behaviour of the operators On,α for sev-
eral parameters in order to have a better idea of which parameters provide a good dynamical
behaviour. We first investigate numerically for which parameters the Julia set is disconnected
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(c) n = 25, α = 0.2 + 1.4i
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(d) n = 25, α = 2i

Figure 8: Dynamical planes of several On,α(z) with a disconnected Julia set.

and we analyse their dynamics. Before doing so, we recall the concept of hyperbolic component
of parameters. A hyperbolic component is a connected set of parameters for which all critical
orbits accumulate on attracting or superattracting cycles. The Julia set is stable within hyper-
bolic components, i.e. the Julia set is connected for one parameter of the component if and only
if it is connected for all parameters of the component. Hyperbolic components of parameters
for which the free critical points belong to the basins of attraction of the roots appear in red in
Figure 1. In Corollary 3.11 we have proven that the operators corresponding to the hyperbolic
component which contains α = 2n−1

3n−3 have connected Julia set. Numerical simulations seem
to indicate that the other red hyperbolic components bounded by the Collar of the Cat set
correspond to parameters for which the free critical points belong to the basins of attraction of
the roots but not to their immediate basins of attraction and, hence, correspond to operators
with a connected Julia set (see Theorem 3.9). The only hyperbolic component corresponding
to operators with disconnected Julia set seems to be the red unbounded component on the
complement of the Collar (see Figure 1). In Figure 8, Figure 9 (f), and Figure 11 (f) we show
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the dynamical planes of several parameters within this hyperbolic component for n = 3 and
n = 25. We take the parameter α = 0.2 + 1.4i, which is close to the Collar, and the parameters
α = 2i and α = 4i, which are farther away from the Collar. For α = 0.2 + 1.4i the holes in
the basins of attraction are relatively big and are easy to observe. For the parameters α = 2i
and α = 4i these holes are much more difficult to see since they become smaller. However, the
convergence to the roots within this last parameters is slower. Indeed, for n = 3 we observe
how the basins of attractions to the roots have a more intense red tonality for α = 0.2 + 1.4i,
which indicates fast convergence. For n = 25 we can observe how the basins of attraction of
the roots acquire a blueish tonality for α = 2i and, particularly, for α = 4i, which indicates
slower convergence to the roots. We may conclude that, within this hyperbolic component,
parameters close to the Collar have bigger holes on the basins of attraction of the roots, but
the convergence to the roots is faster.

In Figure 9, Figure 10 and Figure 11 we show the dynamical planes of the operator On,α for
several of the most relevant parameters studied along the paper for n = 3, n = 10 and n = 25,
respectively. The parameters analysed are the following. Subfigure (a) corresponds to α = 2n−1

3n−3 ,
which provides the method with order of convergence 4 to the roots (see Proposition 2.1).
Subfigures (b), (c), and (d) correspond to α = 1/2 (Halley’s method), α = 0 (Chebyshev’s
method) and α = 1 (Super-Halley method), respectively. Subfigure (e) corresponds to α =
1+
√

2(1−n)
n−1 , which is a bifurcation parameter for which the free critical points are mapped to

z = 0 (see Lemma 4.5). Finally, subfigure (f) corresponds to α = 4i which is a parameter in the
unbounded component of the complement of the Collar for which the Julia set is disconnected.

A priori, the parameter that should provide a better dynamical behaviour is α = 2n−1
3n−3

(subfigure (a)), since the corresponding operators have order of convergence 4 to the roots.
We observe that, near the roots, it is the parameter with a fastest rate of convergence (it has
the most intense red near the roots). However, the global dynamics are complex. Indeed, for
n = 10 and n = 25 we observe how the Julia set becomes complicated and there appear black
disks of initial conditions which do not converge to the roots after 75 iterates. We want to
point out that if we increase the number of iterates we can make disappear this disk for n = 10.
Nevertheless, for n = 25 the disk decreases very slowly when we increase the number of iterates.
This is a kind of pathological behaviour which is not related to stable behaviour different from
the roots and can lead to big sets of initial conditions which do not converge to the roots.

The parameters α = 0 (Chebyshev’s method, subfigure (c)), α =
1+
√

2(1−n)
n−1 (subfigure (e))

and α = 4i (subfigure (f)) present a similar dynamical behaviour. From them, the one which
presents a larger black disk around z = 0 is α = 0. This indicates that Chebyshev’s method
may not be an outstanding root finding algorithm to apply to the family zn + c when n is

big. On the other hand, the parameter α =
1+
√

2(1−n)
n−1 , which is a bifurcation parameter in the

Collar, presents a better dynamical behaviour than the parameter α = 4i, which is a parameter
corresponding to an operator with a disconnected Julia set. Indeed, the speed of convergence

to the roots of the operators corresponding to Chebyshev’s method and α =
1+
√

2(1−n)
n−1 is much

faster than the one of α = 4i. We can conclude that the black regions which appear around
bifurcation parameters in the parameter plane (see Figure 1 and Figure 6) are not necessarily
related to particularly bad dynamical behaviour and they are preferable than the parameters
corresponding to disconnected Julia set.

The parameter α = 1 is particularly interesting. For n = 2 the corresponding operator
has order of convergence 4 to the roots. It still presents very good dynamical behaviour for
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(f) α = 4i

Figure 9: Dynamical planes of On,α(z) for n = 3 and different values of α.
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(a) α = 19/27
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(d) α = 1, Super-Halley method
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(f) α = 4i

Figure 10: Dynamical planes of On,α(z) for n = 10 and different values of α.
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(a) α = 49/72
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(c) α = 0, Chebyshev’s method
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(f) α = 4i

Figure 11: Dynamical planes of On,α(z) for n = 25 and different values of α.
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n = 3 (see Figure 9 (d)). However, when we increase n its dynamics get worse very fast. For
n = 10 the corresponding Julia is already quite complex (see Figure 10 (d)), even if there is no
pathological black disk around z = 0. Notice that for n = 10 this parameter still belongs to
the same hyperbolic component than α = 2n−1

3n−3 . Nevertheless, it is very close to the boundary
of the hyperbolic component (see Figure 7 (a)). For n = 25, the parameter α = 1 falls into a
cascade of bifurcations (see Figure 7 (b)). The corresponding dynamics are very bad in terms
of convergence to the roots. Indeed, the immediate basins of attraction of the roots are very
small for n = 25. We can conclude that parameters within the cascade of bifurcations which
appears around α = 2n−1

2n−2 (see Figure 7) present bad dynamical behaviour. This is not good

news since this bifurcation is very close to the parameter α = 2n−1
3n−3 , which corresponds to the

method of order of convergence 4. Hence, a small modification on the parameter may lead to
very good or very bad dynamics.

Finally, we want discuss about Halley’s method (α = 1/2). Even if α = 1/2 is a bifurcation
parameter, the structure of the bifurcations around it is very simple (see Figure 6). We can
observe how, for big n, this parameter is the one which provides a better dynamical behaviour.
Indeed, this is the only parameter with no black disk around z = 0 for n = 25. Despite that
the convergence to the roots is not as fast as for α = 2n−1

3n−3 , the stability of the dynamics makes
of Halley’s method a better root finding algorithm for the family zn + c. We conclude that
Halley’s method is the best member of the Chebyshev-Halley family when applied to zn + c.
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