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Abstract

The study of the synchronization patterns of small neuron networks that control different biological
processes has become a growing discipline. This paper is focused on numerical techniques to detect
patterns in Central Pattern Generators (CPGs). We develop two techniques that can be used directly
in general CPG models: a lateral phase lag analysis based on a graphic representation of some Poincaré
maps, and a quasi-Monte Carlo sweeping with an optimized classification of the different patterns.

As test example we consider a CPG of insect movement consisting of six coupled neurons following the
model developed by Ghigliazza and Holmes (2004) for motoneurons in cockroaches. Previous studies in
literature analyzed reduced models of dimension two obtained using phase resetting curves and averaging
theory. This approach introduces a lot of simplifications that do not cover numerous non-symmetric
patterns. We present an analysis of the complete model developed by combining the two proposed
techniques, showing symmetric and non-symmetric patterns coexisting for different parameter values,
and how the dominant patterns evolve to the tripod movement.
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1. Introduction1

Last few years the study of small networks of oscillators and neurons has been an active research2

subject due to the very large number of applications in several fields [1, 2, 3, 4, 5, 6, 7, 8, 9].3

The production of coordinated and rhythmic behaviors in organisms, such as chewing, respira-4

tion, walking, crawling and swimming, is a fundamental question in the study of motor control and5

neuroscience. Many of these behaviors are driven by Central Pattern Generators (CPGs), which are6

groups of neurons (small biological neuron networks) whose interactions can output rhythmic pat-7

terns [10, 11, 12, 13] resembling normal “rhythmic motor pattern production” (like in locomotive pat-8

terns [14, 15, 16] or in the direct-reverse flow of the circulatory system in leeches [17, 18]) even in isolation9

from motor and sensory feedback from limbs and other muscle targets. Although anatomical details of10

CPGs are only known in few cases, they have been shown to originate from the spinal cord of various11

vertebrates and to depend on relatively small and autonomous neuron networks. The classical view of12
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CPGs, as specific networks of neurons dedicated to this function alone, has been supported by numerous13

experiments with invertebrates. In these cases, it is possible to identify many of the key neuronal elements14

(mostly interneurons) composing a CPG, leading to an easier analysis. Besides, it is possible to record15

and to biophysically analyze these neurons and their synaptic interactions. There is a growing interest16

in the analysis of basic CPG structures for different animal motion [19], like biped [20], quadruped [6]17

and hexapod motion [21]. In the case of insect movement, the basic CPGs models use a set of six con-18

nected motoneurons [21, 22, 23, 24], but more complex models have been developed that also take into19

account the biomechanics of the legs [25, 26, 27]. Moreover, these studies have applications in robotics20

[28, 29, 30, 31].21

Different animals have different gaits in their locomotion characterized by the number of legs they22

use. In the case of insects, hexapods, the basic observed movement patterns are slow metachronal gait,23

where the hind, middle and front legs on one side swing in succession followed by those on the other side24

(one leg is in swing at any time), tetrapod gait (four legs on the ground every time) and tripod gait (three25

legs on the floor). The use of one or another gait is mainly due to the locomotion speed of the animal26

[22]. Figure 1 illustrates tetrapod and tripod theoretical patterns [21], and experimental data analysis27

for the tripod case (taken from Figure 1 of [23]).28
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Figure 1: Panels A and B illustrate the schematic tetrapod and tripod movement gaits [21], and boxes indicate times when
each leg is in swing. Panel C (taken from Figure 1 of [23]) shows experimentally the tripod gait pattern for a cockroach on
a tether.

In this paper we propose numerical techniques to detect patterns in CPGs, focusing on locating gait29

patterns in insect locomotion. The two proposed techniques are applied to a particular CPG model but30

it can be used as well in generic small networks. In the description of the numerical methods we provide31

some comments on possible generalizations. The test example is a CPG with six coupled neurons, where32

each neuron follows the model of Ghigliazza and Holmes [24] for motoneurons in cockroaches. Note that33

this model develops a bursting behavior for the interesting parametric region [24], but in literature, for34

other insects, models that do not generate a bursting regime are used [32]. Since this model is four35

dimensional for connected neurons, the complete CPG model is a 24-dimensional ODE system. We36

use an inhibitory nearest neighbor coupling. In order to analyze insect locomotion, several simplification37

approaches are commonly used. For instance, in [30, 33] a basic CPG consisting of 6 oscillators was studied38

using symmetries and algebraic techniques. More recently, several studies in literature [24, 32, 34] focus39

on the analysis of reduced two dimensional models obtained using infinitesimal Phase Resetting Curves40

(iPRC) [35, 36] and averaging theory. These small reduced models allow several analytical studies. The41
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main limitations of these approaches are that they introduce simplifications that do not cover numerous42

non-symmetric patterns, shown, for example, in [37], and it is difficult to introduce complicated models.43

Therefore, the aim of this paper is to develop techniques to study the complete CPG without any44

simplification. For that purpose, a previous study of the dynamics of an isolated neuron allows us to45

develop a “roadmap” that guides the changes in the different gaits. Later, we present two techniques that46

can be used directly in the complete model. The first one (an extension of the technique introduced in47

[51] for 3-cell CPGs), lateral phase lag analysis, is based on a graphic representation of Poincaré maps for48

suitable 2D sets of initial conditions. The second one, a quasi-Monte Carlo sweeping, uses an optimized49

classification of the different patterns of the complete problem. The combined use of both techniques50

shows symmetric and non-symmetric patterns that coexist for different parameter values and how the51

dominant patterns evolve towards the tripod movement. In addition, the techniques introduced in this52

document also allow to study heterogeneous CPGs in future works, and also to consider other CPGs.53

Recently, a small heterogeneity has been considered in [38, 39], where it is shown that the introduction54

of heterogeneities eliminates several patterns in CPGs.55

This paper is organized as follows. In Section 2, we introduce the ion-channel model for bursting56

motoneurons in cockroaches developed in [24] and we study the different parametric behaviors and bifur-57

cations. In Section 3, we describe the insect movement CPG, and different reductions used in references58

[24, 32, 34]. In Section 4, we introduce a technique based on the phase lag analysis of the two sides of the59

insect and on the coupled middle legs. The potential of this technique is illustrated on the test problem.60

In Section 5, we describe a technique based on a quasi-Monte Carlo method to study the complete model61

in order to detect non-symmetric patterns as well. With this technique we develop a transition panel62

that shows the dominant patterns along a selected parametric line (which represents a generic situation).63

Finally, some conclusions are presented.64

2. Isolated neuron dynamics65

In this paper, we consider as test example the mathematical neuron burster of Ghigliazza and66

Holmes [24]. It models the neurons of the local network driving the movement of a cockroach. This67

model takes into account a fast nonlinear calcium current, ICa, a slower potassium current IK , an ad-68

ditional very slow current IKS , a linear leakage current IL and an external current Iext. The system is69

described by an ODE system of dimension three:70 
Cv̇ = −[ICa + IK + IL + IKS ] + Iext,

ṁ =
ε

τm(v)
[m∞(v)−m],

ẇ =
δ

τw(v)
[w∞(v)− w],

(1)

with the auxiliary ionic current functions defined by

ICa = gCa n∞(v) (v − ECa), IK = gK m (v − EK),
IL = gL (v − EL), IKS = gKS w (v − EK)

and where the different time scales and steady state gating variables are

τm(v) = sech
(
k0K (v − vthK )/2

)
, τw(v) = sech

(
k0KS

(v − vthKS)/2
)
,

m∞(v) =
(
1 + e−2k0K

(v−vth
K )
)−1

, w∞(v) =
(
1 + e−2k0KS

(v−vth
KS)
)−1

,

n∞(v) =
(
1 + e−2k0Ca

(v−vth
Ca)
)−1

.

In Section 3, we will add an extra variable s(t) to take into account the synapsis of the CPG. In our71

analysis, we will fix all the parameters except Iext and vthKS , which we will leave free as bifurcation72
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parameters. Other parameters depend mainly on the kind of insect. We use along the paper the values73

of the fixed parameters taken from [24]:74

C = 1.2, ECa = 120.0, EK = −80.0, EL = −60.0, δ = 0.005,
ε = 4.9, gCa = 4.4, gK = 8.0, gKS = 0.15, gL = 2.0,
k0Ca

= 0.055, k0K = 0.1, k0KS
= 0.4, vthCa = −1.2, vthK = 2.0.

(2)

We begin to study the model (1) of an isolated neuron because it will give us a “roadmap” to know75

where to analyze the complete model of the CPG. Moreover, it provides dynamical information used to76

calibrate the numerical tools of the next sections. To find out which region to start studying, we use77

numerical techniques for detection and continuation of bifurcations (the software AUTO [40]).78
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Figure 2: Different regions of the biparametric space based on the number of equilibria and their stability. Such regions
are bounded by bifurcation curves in which some equilibrium point changes its stability (Hopf) or collides with another one
and disappear (fold). In the upper right corner picture (plot (B)) a larger region of the parametric space is shown, and it
can be observed how a new Hopf bifurcation curve appears for large values of the parameter Iext.

Figure 2 presents a biparametric plot showing together the number of equilibria, their stability and79

several bifurcation lines. Note how the curves for Hopf and fold bifurcations of equilibria delimit regions80

with different number of equilibria or with different stability. There is a stable equilibrium point in the81

green, orange and gray regions, while in the others all are unstable. On the other hand, we can see that82

there is a region (marked in cyan) around which there are different changes in the number and type of83

equilibria. This region and the adjacent one in blue are the areas in which all equilibria are unstable. This84

fact explains why the bursting and spiking regions are in the cyan and blue areas. These areas constitute85

the most interesting region for us, since bursting behavior is the dynamic considered for cockroaches in86

[24, 34]. Therefore, we will study this region in detail. The upper right plot presents a larger region of87

the parametric space to show that, for larger values of the external current Iext, a new Hopf bifurcation88

curve appears (note that most of the fold/hom burster models have two Hopf bifurcations).89

Figure 3 shows the slow-fast decomposition (first developed in [41]) of the model (1) taking the small90

parameter δ = 0, vthKS = −25 and for two values of Iext (Iext = 35.5 and 100), located in the bursting91

and spiking regions, respectively. The spiking (or fast) manifold,Mfast (formed by stable limit cycles of92

the limit case), is shown in blue; the slow manifold, Mslow (formed by the equilibria of the limit case),93

is shown in green. The stable periodic orbit of the complete model is shown in red, and we can observe94

the well-known phenomenon, explained by singular perturbation theory and Fenichel’s theorems, that95
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Figure 4: Different bifurcation curves and bifurcation points of codimension two superimposed on the spike-counting plate.
Different colors mark different number of spikes in the attracting orbit (up to 15 spikes). We can see how some parts of
different bifurcation curves delimit the region of bursting.

the orbit (for small enough parameter δ) follows both manifolds on some parts of its trajectory. On the96

first case, Iext = 35.5, the orbit is a classical bursting orbit of fold/homoclinic type [42] because the97

termination of the fast subregime is due to the existence of a homoclinic bifurcation in the phase space of98

the fast subsystem. This point is marked in the Figure 3. Note that, for this value of the external current,99

there is just one supercritical Hopf bifurcation on the upper depolarized branch of Mfast. If Iext grows,100

the neutral-saddle point crosses the fold bifurcation becoming another supercritical Hopf bifurcation, as101

the picture for Iext = 100 shows. Now the orbit presents a depolarized spiking state rotating around the102

spiking manifold.103

In the following, since we are only interested in the fold/hom bursting region, we will focus on that104

part of the parametric phase space. That is why, in Figure 4, we represent in the area of interest, along105
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with some bifurcation curves, the number of spikes of the limit cycle of the system on each point of the106

biparametric plane when starting from fixed initial conditions. This figure shows how some parts of the107

bifurcation curves delimit the fold/hom bursting region. Other bifurcation curves, in particular a curve of108

homoclinic bifurcations, are represented, as well as some codimension two bifurcation points. Note that109

recently several codimension two homoclinic bifurcation points have been linked with the spike-adding110

process [43, 44].111
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Figure 5: Analysis of the bursting region using different techniques: (A) spike-counting, (B) duty cycle and (C) Lyapunov
exponents (λ1 and λ2). All of them provide similar information but with a different point of view. Small zoom on plot (C)
shows the narrow chaotic band and a period-doubling (PD) bifurcation curve. In plot (D) different stable periodic orbits
are represented. These orbits are attractors for the pointed values of parameters in the figure of the spike-counting (A),
by the circle of the corresponding color. Some of the limit cycles show a period-doubling bifurcation that finally leads to
chaotic behavior.

From previous studies in literature, it has been shown that the main characteristics of the model, that112

is, the bursting frequency, spiking frequency and the duty cycle can be easily modulated by changing113

most of the parameters. We have observed that we can use Iext or vthKS as our main parameters in our114

neuron model. Note, as indicated in [24], that the bursting frequency and duty cycle of CPG interneurons115

are the main responsible for speed adjustment, while spiking frequencies are involved in force production.116
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Figure 6: Analysis of the line Iext = 35.5 on the region of bursting using different techniques: (A) spike-counting in a band
around this value and (B) the first two Lyapunov exponents (λ1 and λ2). The small chaotic interval is pointed as well as
two period-doubling (PD) bifurcation points.

Therefore, we will focus on the changes of bursting frequency and duty cycle since our aim is to study117

the different gait patterns.118

Once we have fixed our parametric plane (vthKS , Iext) and the region of the “roadmap” that we want119

to study, we use different techniques to analyze the dynamics existing there. Thus, Figure 5 shows the120

results obtained with different brute force techniques: in the upper left corner (A), the spike-counting121

technique; in the upper right corner (B) the value of the duty cycle (quotient between the time in which122

the neuron is active and the period of the orbit, so this value will always be between 0 and 1); in the lower123

left corner (C) the first (in the chaotic region) and the second (in the regular region) Lyapunov exponents124

(λ1 and λ2, respectively). Note that there is a narrow band of chaotic behavior (orange color) close to125

the edge of the bursting region, and curves of period-doubling bifurcations in the spiking area (see the126

zoom on the bottom-left part of plot (C)). The color circles that appear in the picture corresponding to127

the spike-counting technique, plot (A), indicate the values of the parameters for the orbits shown in (D),128

which are the attractors of the system. If we move along the horizontal line, from left to right, we observe129

an increase in the number of spikes due to the spike-adding process (and, if we see the corresponding130

duty cycle picture, an increase in its value). For the region with depolarized spiking state (on the right131

part) we present four orbits showing a period-doubling bifurcation. We can see that the three techniques132

mark bands in the bursting region corresponding to bursters with the same number of spikes. The plotted133

orbits show that the behavior within each strip is qualitatively identical, being different from one band134

to another.135

Note that although the global image in Figure 5 provided by the three sweeping techniques is similar,136

each one has its own peculiarities. For example, the spike-counting technique unambiguously marks each137

of the bands. The other two techniques mark the edges of the bands, but it is difficult to distinguish138

one band from another. On the contrary, although the duty cycle increases with the number of spikes,139

points with the same number of spikes appear with different duty cycle values. The Lyapunov exponents140

detect both the spike-adding and period-doubling (the reason is that in the spike-adding process fold141

and period-doubling bifurcations of periodic orbits are involved) and the existence of chaos. However,142

its value is not unique along a strip, nor necessarily different between different bands. Figure 6 shows143
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an analysis of the line Iext = 35.5 for the bursting region. This study points the existence of a narrow144

chaotic region close to vthKS = −22, at the limit between bursting and spiking behavior (Terman [45]145

studied this chaotic behavior in the change from spiking to bursting). Moreover, we can observe a chain146

of period-doubling bifurcations leading to this chaotic region. In the plots of Figure 5(D) there are some147

examples of the limit cycles before and after the first period-doubling bifurcation, and on Figure 6 the148

Lyapunov exponents curve also marks this bifurcation (note that for the period-doubling bifurcation the149

second Lyapunov exponent reaches the value 0 and goes down [46, 47]).150

3. Insect movement CPG: complete model and reductions151

After studying in some detail the dynamics of one isolated motoneuron, we study now a CPG (we
follow the formalism of [24]) modelling the insect movement: a network of six mutually inhibiting iden-
tical neurons (see the left picture of Figure 7). The inhibitory coupling can be achieved via synapses
that produce negative postsynaptic currents, or presynaptically by depressing a synapse. In our case
we consider negative postsynaptic currents generated via the additional term, (Isyn)i, in the potential
differential equation for each neuron

Cv̇i = −[(ICa)i + (IK)i + (IL)i + (IKS)i] + Iext − (Isyn)i.

The current −(Isyn)i can be positive (depolarizing) giving excitatory synapses, or negative (hyperpolariz-152

ing) giving inhibitory synapses. The different values of the extra current (Isyn)i for each neuron potential153

vi are:154

(Isyn)1 = c1 gsyn s4(v1 − Epost
s ) + c5 gsyn s2(v1 − Epost

s ),
(Isyn)2 = c2 gsyn s5(v2 − Epost

s ) + c4 gsyn s1(v2 − Epost
s ) + c7 gsyn s3(v2 − Epost

s ),
(Isyn)3 = c3 gsyn s6(v3 − Epost

s ) + c6 gsyn s2(v3 − Epost
s ),

(Isyn)4 = c1 gsyn s1(v4 − Epost
s ) + c5 gsyn s5(v4 − Epost

s ),
(Isyn)5 = c2 gsyn s2(v5 − Epost

s ) + c4 gsyn s4(v5 − Epost
s ) + c7 gsyn s6(v5 − Epost

s ),
(Isyn)6 = c3 gsyn s3(v6 − Epost

s ) + c6 gsyn s5(v6 − Epost
s ),

using the additional synapse variables si defined by the differential equation

ṡi = αs∞(vi)(1− si)− βsi,

where

s∞(v) =
Tmax

1 + e−ks(v−Epre
s )

.

The parameter gsyn denotes the synaptic strength, and we have considered a voltage based synapse model155

as in [24, 32, 34].156

Along all the paper we have used the same parameter values as in [24]:

gsyn = 0.015, Epre
s = 2.0, Epost

s = −70.0, Tmax = 0.002, α = 5000.0, β = 0.18, ks = 0.22.

In the selection of the network parameters {ci}, we assume contralateral symmetry (between left and157

right side) and the balance conditions158

c1 + c5 = c2 + c4 + c7 = c3 + c6,

and159

c4 = c7, c5 = c6, c1 = c3.
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Figure 8: Phase space evolution showing phase differences of the reduced model for the values vthKS = −28 and −24 in the
line Iext = 35.5. Left phases diagram (A) contains two attracting points (triangles) corresponding with tetrapod gait (in
addition to the equilibrium point represented in blue); while plot (B) shows a single attracting point in blue corresponding
with tripod gait. Note that both blue patterns satisfy θ1 = θ2, but with different delay with respect to the middle leg.

So, by symmetry, we do not differentiate forward and backward movements in our tests. On the other160

hand, we have set their values as161

c4 = c7 =
1

2
, c1 = c2 = c3 = c5 = c6 = 1.

In order to simplify the study of the insect movement CPG, different approaches have been adopted162

in the literature, such as the use of symmetries to obtain the basic patterns of the CPG [30, 33]. More163

recently, several studies [24, 32, 34] use infinitesimal Phase Resetting Curves (iPRC) [35, 36] and averaging164

theory to analyze reduced models of the complete CPG. It allows us to perform several analytical studies,165

to detect most of the main patterns in the system, and to study the transitions between them. Using166

iPRC, they reduce the problem of dimension 24 to 6 oscillators and, later, using symmetries, to just 3167

oscillators with phases φi (and therefore only 2 equations for the phase differences, θ1 = φ1 − φ2 and168
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θ2 = φ3 − φ2, and so the problem is reduced to the dynamics in a torus):169 {
θ̇1 = (c1 − c2)H

(
2
3 − η; ξ

)
+ c5H(−θ1; ξ)− c4H(θ1; ξ)− c7H(θ2; ξ),

θ̇2 = (c3 − c2)H
(
2
3 − η; ξ

)
+ c6H(−θ2; ξ)− c4H(θ1; ξ)− c7H(θ2; ξ).

For details of these reductions and the coupling function H see [34]. In this case, moving in the line170

defined by Iext = 35.5 in the parametric plane of Figure 5 we obtain, with the above phase differences171

model, the results of Figure 8. This figure shows that, increasing the value of vthKS , the reduced model has172

different gait patterns (associated with the attracting points on the phase diagrams). Note that the time173

evolution of the voltages shows that at the points marked with a triangle on plot (A), and considering174

the complete network and the symmetries used to reduce the system, we have a tetrapod movement with175

two legs moving at the same time. The point marked with a square on plot (B) will develop a tripod176

movement with three legs moving simultaneously. Similar results can be observed in Figures 10, 13 and177

14 of [34] with different values of δ and Iext. The main limitation of this approach is that it introduces178

a lot of simplifications that do not cover numerous non-symmetric patterns. Therefore, the main goal179

of this paper is to develop numerical techniques to study the complete network without simplifications.180

This will allow, in subsequent works, to perform studies breaking any symmetry or homogeneity in the181

complete CPG, or to study different CPGs.182

4. Lateral phase lag analysis: basic patterns183

To obtain an analysis similar to the one developed in [34] but for the complete model, we have184

to overcome two difficulties. First of all, we want to work with the original neuron model, without185

approaching it by an oscillator. Secondly, we are going to work with the model of six neurons, so that we186

can later analyze models of the CPG eliminating symmetries or with different neurons within the CPG.187

To solve the first point, we follow the techniques described in [5] to study a CPG of three neurons. For188

the second point, we can decompose the CPG dynamics of 6 neurons into two blocks, the left and the189

right side of the animal.190

4.1. Numerical method: lateral phase lag analysis191

In the case of having oscillators, one may obtain directly the equations of the delays of the different192

oscillators with respect to a leading one, providing an easy representation in terms of the phase space193

directly (as commented briefly in the previous section using the iPRC approach for small CPGs). When194

using neurons, detailed studies of rhythms generated by neuronal circuits show that they can be reduced195

to the analysis of fixed points (FPs) and invariant circles (ICs) of Poincaré return maps for phase lags196

between constituent bursters [5].197

The case of 3-neuron CPGs has been studied in detail in [4, 5] and their approach is the following198

(we include it for completeness): by choosing the second neuron (in our case) as the reference one, we199

introduce the absolute phase lags {φ(n)12 , φ
(n)
32 }, as shown in Figure 9(A). Note that the main difference of200

this approach to the one of the network of oscillators of Figure 8 is that now we do not plot the phase201

space but a set of discrete points (giving a polygonal line once connected) corresponding to the Poincaré202

return map at a selected value of the voltage variable. Once obtained the phase lags, we normalize them,203

d
(n)
12 = φ

(n)
12 /P (n) and d

(n)
32 = φ

(n)
32 /P (n), with P (n) the period or recurrent time of the reference burster204

on the n-bursting cycle, giving the relative phase lags. The resulting curves, using enough initial phase205

lags, give us the desired 2D return map showing time evolutions of phase lags transitioning toward stable206

FPs corresponding to phase-locked rhythms (the patterns) produced by the network under consideration.207

Left plot of Figure 9(C) shows the relative phase lags corresponding to the three neurons of the left side208

of the insect, studying in this case the delays with respect to the middle-leg neuron (neuron 2). The209
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Figure 9: (A): 3-cell network (left side of the CPG) voltage waveforms with one recurrent time P and absolute phase lags
φ12, φ32 relative to the reference burster 2 at a selected value of the voltage variable for this recurrent time. (B) Color code
identifying the 2D area of the convergence of the 2D return map generated by the Poincaré map. (C) Lateral phase lag
analysis of the complete model of CPG with 6 neurons (Iext = 35.5 and vthKS = −28). This representation is composed
by three pictures: two lateral phase lags transitions and one central picture with the temporal evolution of the phase lag
between both central neurons. We use different colors to identify the final point using different initial conditions and their
relation with the evolution in the other two pictures. Therefore, the color of a point in the left picture is determined
(according to the color code represented in the square of colors of plot (B)) by the final position of its transition. For the
other two pictures, the color of a point corresponds with the color of delays represented in left picture. (D): Six neurons
voltage corresponding to the gait pattern marked by the star, square and circle, respectively, in the three pictures of plot
(C). (E): Hexagram corresponding with the same gait pattern. Black rectangles mark time and duration of activation
period for each neuron. All the initial conditions taken for this figure belong to the subset d52 = 0.8, with d12 = d45 and
d32 = d65.
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color code of the polygonal lines is shown in Figure 9(B) corresponding to the color of the point where210

each simulated curve ends. But this corresponds to the analysis of just 3-cells of the network (CPG),211

and therefore, in order to study the rest of cells, we add two extra plots. The right plot of Figure 9(C)212

takes the same approach as the one on the left, computing the 2D return map showing time evolutions213

of phase lags of the neurons 4 and 6 with respect to the neuron 5 (right side middle-leg). Now we use the214

same initial phase lags and the same color representation as provided by the analysis of the left side (that215

is, we have just the freedom to choose a 2D set of initial conditions, the rest is determined by this set).216

This complementary study provides us the evolution of the right side of the network. Finally, we just217

need to connect both sides, and this is done in Figure 9(C) on the middle plot, showing the evolution of218

the phase lag between the two middle neurons (note that all the delays have been computed with respect219

to the middle neurons). That is, the set of three plots provides us with the complete study of all the220

possible situations for the 2D set of initial conditions used in the phase lag plot on the left.221

An adequate selection of initial phase lags (for the complete CPG) let us generate the desired 2D222

return map showing time evolutions of phase lags transitioning towards stable fixed points corresponding223

to phase-locked rhythms produced by the subset under consideration. In all the examples of lateral phase224

lag analysis shown in this paper the initial conditions consider a fixed value of d52, with the symmetry225

conditions d12 = d45 and d32 = d65 (therefore our free variables are d12 and d32), but note that these226

particular restrictions are not a requirement of this technique.227

Summarizing, we display two planes of phase differences, one for each side, and we connect both sides228

through a representation of the phase difference over time between the two central neurons. In this way,229

we can compute the lag of any neuron with respect to any other. So, we can represent any phase lags230

pattern by combining the three pictures. Remember that these plots are not continuous functions but231

discrete points joined by segments (in Figure 8 the representation was simply the continuous phase space232

evolution), and therefore if the convergence is fast the picture can be quite sharp. In Figure 9 we show an233

example of this lateral phase lag analysis (with initial central delay d52 = 0.8), together with the signal234

of the pattern corresponding to one of the “equilibrium points” detected, in particular the pattern on the235

dark blue region. In addition to this pattern, at least two extra stable patterns appear, located on the236

green and purple regions. The green pattern is analogous to the blue one, but exchanging the front and237

rear legs of each side. In the purple pattern, located on the diagonal of both side panels, front and rear238

legs move simultaneously. It can be seen that the three patterns have the same lag between the central239

legs. Note that there are also a few lines in light blue color, which correspond to points that remain240

long time in the surroundings of a saddle pattern and therefore it takes a longer integration time of the241

network to converge to the corresponding stable pattern. In any case, the insect will be moving for a242

significant time following the pattern represented by the light blue point.243

The bottom plots of Figure 9 give two representations of the voltage waveforms. In plot (D) the244

brackets define subsets of the six neurons voltages corresponding to the gait pattern marked by the star,245

square and circle, respectively, in the three pictures of plot (C). And plot (E) shows the “hexagram”246

corresponding with the same gait pattern. Black rectangles mark time and duration of activation period247

for each neuron.248

The power of the lateral phase lag analysis is that it allows to detect stable, saddle and repulsor249

patterns in a similar way as in [4, 5, 48], and therefore it will help to locate some bifurcations of the250

system [38, 48] and other situations like quasi-periodic lag jitter [48] or other oscillatory behaviors (shown251

as limit cycles in the 2D maps instead of fixed-points that correspond to periodic patterns).252

We have several remarks on the methodology, first one is that it provides a complete study for the253

selected 2D set of initial conditions, and at this point we have a large freedom, as we have a high254

dimensional differential system (in our case we use as initial conditions the delays on the voltages of the255

neurons 1 and 3 with respect to the neuron 2). Therefore, it gives an analysis of part of all the possible256

situations of the network. On the second hand, and summarizing, for each block of three neurons, we257
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performed Poincaré return maps for phase lags between the central neuron (taken as reference neuron)258

and the other two neurons. This methodology can be easily extended to larger networks by performing259

the same approach to small groups of 3 neurons using in each set one reference neuron, and studying260

also the delays among the control reference neurons. Obviously, if the number of neurons grows, the261

approach is more and more cumbersome, but for small CPGs it can provide with some interesting studies262

of the dominant patterns. Note that the case of 4-neuron models has been studied in [7] giving a 3D263

return map. Finally, although in this paper we have focused on a bursting model, the methodology can264

be applied to just active-inactive excitable models like the FitzHugh-Nagumo model (as in [4]) because265

we only have to select the voltage value for the Poincaré maps.266

4.2. Test examples in the insect movement CPG267

Once the technique is fine-tuned, we can use it to analyze what happens with different values of the268

parameters (the integration time for all the figures in this section is 10,000 ms and the initial central269

phase lag is 0.8, unless other value is indicated). In Figure 10 we show the lateral phase lag analysis270

for different values of vthKS within the line Iext = 35.5, analyzed for the isolated neuron in Section 2. In271

this figure it can be seen how, as the value of vthKS increases, the three dominant patterns approach each272

other until they end up coinciding and forming the tripod gait. Apart from these dominant patterns, on273

this representation we can see patterns with a low number of attracting lines and also more regions with274

saddle or repulsor patterns.275

In the pictures, as the value of the synaptic strength of the network gsyn = 0.015 is not too small,276

the convergence speed is high, and therefore, the trajectories are abrupt because sometimes in just two277

or three steps they reach the attracting point. On the other hand, there are some initial conditions for278

which the phase lag between the central neurons ends far from the initial value. Finally, note that the279

three dominant patterns follow the same subpattern on both sides of the network because the colors on280

the right picture are located in similar positions as on the left one. However, some lines on the right281

picture have a color that does not correspond to their position on the left one. Those lines are ending in282

points that represent a pattern in which the left side of the network follows a different movement than283

the one on the right side (and the color is assigned from the left side as commented in Figure 9). We will284

see more clearly some of those patterns in the next section as they are non-symmetric gaits.285

One of the advantages of this graphical representation of the lateral phase lag patterns is that it is286

also possible to visualize which patterns generate overlapping of active periods (see [32] for a detailed287

study on the iPRC reduced model) on the same side of the network. Figure 11 shows, for two different288

values of vthKS , the overlapping regions of the neurons 1 and 3 (red lines) and of neuron 1 (or 3) with the289

neuron 2 (blue lines). We plot some dashed lines for different values of vthKS in order to show how the290

overlapping area grows as the parameter does, due to the increment of the duty cycle of the neurons, also291

related with the number of spikes of the neurons. For instance, in both pictures the pattern in purple292

has an overlapping among the extreme neurons on the same side (since the lag of both with the central293

neuron is the same). In contrast, the other two dominant patterns do not show any overlapping (between294

neurons on the same side), although in the case of vthKS = −26 they are closer to the region of overlapping295

between neurons 1 and 3. Taking into account that the duty cycle increases and the three equilibrium296

points approach the center of the square as the value of vthKS increases, there will be a value of vthKS from297

which the three dominant patterns will show overlapping between neurons on the same side.298

Figure 10 was obtained for an integration time of 10,000ms. One remaining question is to analyze if299

some observed phenomena are due to some transient dynamics. Figure 12 shows the analysis of the phase300

lags on the left side for Iext = 35.5 and vthKS = −28 using two integration times: 10,000ms and 100,000ms.301

From the pictures, it is evident that the light blue region is originated from a saddle point that generates302

a long transient dynamics region. In any case, note that this transient dynamics may have interest from303

the biological point of view as its time duration can be significant, and so that dynamics can be observed304
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Figure 12: Phase lags on the left side for Iext = 35.5 and vthKS = −28 using two integration times: 10,000ms and 100,000ms.

in real systems. The use of two different final times permits to detect some of the transient phenomena305

in the lateral phase lag analysis.306

The delay between the central neurons is crucial in some patterns. Figure 13 shows the lags between307

the central neurons starting from different initial central phase lags for the two integration times (10,000ms308

and 100,000ms) of Figure 12. The use of a larger integration time permits to eliminate some transient309

dynamics, and so we see more clearly the attracting central patterns. In cases with vthKS = −28 and −27,310

we observe a large number of initial conditions with different final central lag. We see that for vthKS = −28311

and −27 the value of central phase lag equal to 0.5 is not part of any stable pattern. This is most clearly312

seen in the longest time integration interval. On the other hand, for vthKS = −25, that value of central313

delay, 0.5, is the most common one and for vthKS = −24 it is the only attractor that appears. Note that314

the value 0.5 of the central delay is the one of the perfect tripod gait.315

Another conclusion that can be drawn from Figure 13 is that, depending on the initial values (in316
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our case, the lag between the central neurons), the stable patterns that are detected may be different.317

In addition, we are considering initial symmetries that can prevent us from detecting non-symmetric318

patterns if these symmetries are not broken in the temporal evolution. These facts are limitations of this319

technique, since, although we work with the complete model of dimension 24, we must restrict ourselves to320

a 2-dimensional set of initial conditions in order to get an adequate plane representation. And, although321

we can select any set of dimension two as initial conditions, the possible combinations are so high that322

they make it impossible to encompass all of them. That is why, in the next section, we will develop a323

different, less graphic, but more general technique that takes into account the complete space of possible324

initial conditions.325

5. Quasi-Monte Carlo pattern sweeping: complete model analysis326

The previous section has introduced a two-side analysis of the complete insect movement CPG model.327

In this section we develop a numerical technique to deal with the complete model without any restriction328

on the initial conditions.329

5.1. Numerical method: quasi-Monte Carlo pattern sweeping330

In order to detect all kind of patterns, we develop a strategy (quasi-Monte Carlo pattern sweeping331

method) that does not consider any reduction to the system. Therefore, we have to do a large number of332

simulations for each parametric value and to develop methodologies to classify the different patterns in333

an automatic way considering 24 dimensional sets of initial conditions.334

For a given set of initial conditions, if we observe the variable corresponding to voltage of each335

neuron, we can appreciate that in most cases their bursts tend to synchronize to a certain pattern, that336

is, a periodic orbit. To identify this pattern, we need to determine the status of the network at any337

instant, that is, which neurons are active (bursting) and which ones are inactive (quiet). Once we have338

established the state for the six neurons, we define the status of the network at any instant with all the339

states of each neuron. We use an integer number, and in particular its binary representation, in order to340

reduce at minimum the memory size to store the status of the network at a given instant. Since we are341

dealing with a six neuron network, a six bit integer suffices to represent its status, assigning each neuron342

with each position bit, and setting it to 0 when the neuron is relaxed and 1 when it is bursting, that is,343

the i-th status si is given by:344

si =
6∑

k=1

αk2k−1, αk =

{
1 if neuron k is active

0 otherwise

For example, the number 21 (010101 in binary) indicates that neurons 1, 3 and 5 are active. If this status345

si is different from the one si−1 on previous integration step, we can infer that at least one neuron has346

changed its behavior. In that case, we store the previous status si−1 and the time it has lasted ti−1 into347

two output vectors to be analyzed in a post-processing stage. Each integration outputs a sequence of348

integer numbers representing the status of the neuron using the previous scheme, and a sequence of times349

at which those status are achieved.350

As illustration, Figure 14 shows three different patterns, each represented by a sequence of status.351

The red lines show the limits of the different status. For example, in plot (A) the sequence of status is352

given by353

P 1 = {s11, . . . , s110} = {1, 0, 32, 0, 4, 20, 16, 0, 10, 0}.
The other two patterns are represented by the sequences of status354

P 2 = {s21, . . . , s210} = {1, 33, 32, 0, 4, 20, 16, 0, 10, 0},
P 3 = {s31, . . . , s38} = {33, 0, 4, 20, 16, 0, 10, 0}.
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Figure 14: Illustration of the description of three patterns using a finite sequence of status representing the active states
among different legs using binary representation (see text for details). The number of status of each sequence is determined
by the different active configurations of the pattern shown with the different intervals of time limited by vertical red lines.

Note that the length of each sequence can be different due to the different overlapping situations. This355

representation, apart from being quite natural, provides us with a formulation quite useful for comparisons356

among the different patterns (something extremely important if we perform a large number of simulations357

and we want to have an automatic tool to study all the different patterns).358

We remark that in the integration time of the network we have to begin the analysis once the system359

has converged to a pattern (a limit cycle of the system) or in the negative case to mark as non-convergent360

(due to a very slow convergence or chaotic behavior). After a transient time of 106ms (long enough for our361

network as our preliminary tests reveal), we start computing the pattern produced by the network. Note362

that for other networks or systems this transient time has to be set previously in a preliminary analysis of363

the corresponding problem. When the integration for a particular set of initial conditions is finished, we364

have output two lists (status and time lapses) that represent the complete signal the network is producing.365

However, the network may generate other kind of signals starting from other initial conditions. Since366

we are dealing with a 24 dimension differential system, it is infeasible to perform a systematic sweep367

among all dimensions. Therefore a Monte Carlo approach is the only reasonable one. Instead of using368

classical pseudorandom number generation (like the Mersenne Twister), we sacrifice the entropy of the369

numbers in favor to low discrepancy (they can be used as pseudorandom for many purposes). Hence, we370

use 24-dimensional Halton sequences [49], that cover a hypercube uniformly, to generate up to M (in our371

case M = 200) initial conditions of the network for a fixed set of parameters. In case of being interested372

in a much more detailed analysis of a particular set of parameters, the number of initial conditions M can373

be raised in order to locate pattern gaits with a small basin of attraction. In this process we have also374

taken into account the range of each variable in order to consider the complete space where the model375

evolves. For a neuron in our particular model, the initial condition of its first variable is chosen to be in376

[−40, 10] that covers all the possible values (when decoupled), since it represents a voltage. For the other377

variables the initial value is set in the interval [0, 1] as they are gating variables.378

Now, after one Monte Carlo simulation for a fixed set of parameters, we have M = 200 simulations of379

the network. Once the status sequence for each one is obtained, the next task is to extract the periodic380

pattern (if any) from each simulation and keep it in a final list, if it is different from those in the list. So,381

we have to determine if two patterns are the same or symmetric ones. This is a post-processing stage,382

where we analyze each sequence.383

In more detail, the extraction of periodic patterns from a sequence is done as follows:384

(1) Delete from both output lists all status that last less than tsmall in order to consider only significant385

changes (in our case we consider tsmall = 0.03ms). The vector of time lapses is used in this stage.386

(2) Compute an auxiliary list containing the logarithm of the 6-bit status signals, so that we have small387

enough numbers. Small numbers perform better in Fast Fourier Transforms, since they are more388

balanced, and the magnitude of the numbers is meaningless in all this process.389
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(3) Compute the Fast Fourier Transform of the auxiliary logarithm list, and search for the best guess390

of the period (or quasi period) of the signal, read as number of status the signal is made of. We391

remark that we are counting the number of status for each period, not the time lapses (which are392

provided by the intervals of time list). For instance, in Figure 14(A) the pattern has a period of 10393

status.394

(4) Prune both the signal and time lapse lists to the last period, and compare it with all previous395

patterns to detect if it is the same pattern with a time shift (a rotational symmetry) or a symmetry396

of the network (left-right or front-back side of an insect in our case). That is, we check if it belongs397

to the same equivalence class as some previous pattern.398

(5) If a new equivalence class is found, it is added to the list of equivalence classes using a representative399

of it. In the opposite case, the corresponding equivalence class counter is incremented by one (this400

counter will give us the percentage of each equivalence class for a selected parameter).401

After this pruning, we have the dominant patterns for that network at fixed parameter values. Expe-402

rience has shown us that in a system there are some dominant patterns, and marginal ones with a small403

basin of attraction. Note that, for this reason, depending on the number of initial conditions in the quasi-404

Monte Carlo method, some of the marginal patterns may not be detected, but the most representative405

ones are always obtained.406

Up to this point, we have studied in detail the network for a particular value of its parameters. Now407

we finally can make a sweep varying uniformly the value of one parameter to observe the transition from408

one dominant pattern to another. Note that the different patterns evolve when a parameter changes. For409

instance, in Figure 14 we show some of the observed evolutions. In this case we illustrate changes on the410

neurons 1 and 6, and how the overlapping of their active states evolve from no overlapping to perfect411

synchronization (we allow small discrepancies). All these situations (and much more options taking into412

account that we have 6 neurons) can be detected with the proposed algorithm. To describe the parametric413

evolution we have to add a new extra final step to the algorithm after each parametric value has been414

analyzed and obtained a set of equivalence classes of the different patterns:415

Compare all the equivalence classes for the current value of parameters with the previously generated416

list with the former analyzed values of parameters. If a new equivalence class is found, it is added417

to the list of equivalence classes using a representative of its equivalence class.418

As a result we have a list with all the patterns found (equivalence classes) and, for each value of419

parameters, the percentage of its appearance.420

Due to the generic approach of this methodology, it can be applied to any small network, simply421

adapting the binary approach to the total number of neurons of the network. Obviously, increasing the422

dimension will also require an increase in the number of initial conditions to obtain a complete analysis.423

5.2. Test examples in the insect movement CPG424

In Figure 15 we show a summary of the results obtained by applying the technique described above425

(quasi-Monte Carlo pattern sweeping) in the bursting interval vthKS ∈ [−29.67,−22.54], with Iext =426

35.5, on the selected line indicated in Figure 5. The central panel summarizes the final result of the427

above numerical approach, a list with all the patterns found (equivalence classes) and, for each value of428

parameters, the percentage of their appearance. Note that each different color represents a particular429

equivalence class of patterns and some label numbers will show different patterns of the same class in430

order to illustrate the evolution inside each equivalence class. The sum of all the percentages shown at431

many points does not reach 100% because only those patterns with a minimum percentage of 5% in some432

value of the line are represented. We can see how the distance to 100% is greater at some points where433

a spike-adding process occurs for isolated neuron analysis (see the small band with the spike-counting434

technique showing the number of spikes of the attracting bursting periodic orbit for the isolated neuron).435
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Figure 15: Complete pattern radiography using the quasi-Monte Carlo pattern sweeping on the horizontal line Iext = 35.5.
The central panel shows the percentage of initial conditions that converge to a certain pattern. Each color identifies a
equivalence class of patterns (see the text for more details). A thin spike-counting band is also shown indicating the number
of spikes of the attractor orbit for an isolated neuron. At the top and bottom, some hexagrams corresponding to the main
movement patterns are shown.
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The reason for these “valleys” is that the isolated neuron undergoes a process of change in which two436

orbits with a different number of spikes coexist. This circumstance originates a large number of patterns437

with very little significance and low stability that are not represented in the figure. In fact, most of these438

patterns are unstable (saddles) but, during a long enough transient, the dynamics of the network starting439

at some initial conditions remains close to them.440

On the top and bottom part of the figure we plot the most representative hexagrams. In the lower441

part of the figure we represent the hexagrams of the dominant pattern. The length of the hexagrams442

is proportional to the period of the pattern (periodic orbit) in order to also observe the changes in the443

period. If we move from pattern number –10– to –15–, we can see how the period decreases as vthKS444

increases. This causes the active intervals of neurons 1 and 6 to approach, so that in pattern –13– they445

partially overlap (hence the color difference in the central panel), to synchronize exactly later in the446

pattern –15–, giving the perfect tetrapod gait. The relative displacement of the active intervals of neurons447

1 and 6 continues, so that neuron 1 starts to overtake neuron 6 beginning to overlap with the active448

intervals of neurons 3 and 5 that are simultaneous in all the dominant patterns. On the other hand, the449

active interval of the neuron 6 does the same with the simultaneous neurons 2 and 4. Both overlays are450

increasing (due to the increased duty cycle, see Figure 11) until, in pattern –21–, the active intervals451

of neurons 1, 3 and 5 on one hand and 2, 4 and 6 on the other, are simultaneous, reaching the perfect452

tripod gait. Note that along this paper we assimilate into the same equivalence class, due to the chosen453

symmetric coupling coefficients ci, two different patterns where one of them is the result of applying to454

the other a reflection of left-right and/or forward-backward. So, the patterns represented in blue and455

green areas in Figure 10 belong to the same equivalence class than the patterns from –10– to –20–.456

In the upper part of Figure 15, we show the evolution of non-dominant patterns, but with a significant457

percentage of initial conditions converging to these patterns. The second most represented pattern458

corresponds to the purple pattern of Figure 10 and it evolves, in Figure 15, along the patterns from459

–4– to –9–. If we observe these patterns, we can see that from patterns –4– to –7– there is a decrease460

in the period as the value of vthKS increases. This reduction of the period originates that, in pattern –8–,461

the active intervals of neurons 4 and 6 (which are simultaneous) begin to overlap with that of neuron 2462

until, finally, the perfect tripod gait is reached. This situation is similar to that previously described for463

the dominant pattern. In addition, we can see that the absorption of the three patterns by the tripod464

gait is detected simultaneously due to the symmetry in the coefficients ci.465

Finally, we discuss the evolution of the patterns from –1– to –3–. These patterns are very difficult466

to detect with the technique used in the previous Section 4 since, as d12 6= d45, they do not fulfil one of467

the restrictions imposed on the subset from which we took the initial conditions. These patterns may468

correspond to some of the “dislodged” color points observed in Figure 10, which represent a different kind469

of movement of the insect’s legs on one side and on the other. As in the previous cases, a reduction of470

the period is observed. The difference is that this pattern does not seem to converge to the tripod gait,471

but its basin of attraction decreases until it disappears.472

Therefore, Figure 15 explains the process by which the tripod becomes the only dominant pattern,473

either by convergence or disappearance of certain patterns.474

Note that the studied line crosses several spike-adding bands on the selected interval, and so we see475

how on these changes there are more strange (or slightly different) patterns due, in some circumstances,476

to very long transients. This is clearly seen, for instance, in the change from three to four spikes on477

the corresponding isolated neuron, where a lot of thin strips of pattern colors are present. From other478

numerical tests, it seems that the changes along the entire bursting region will be quite similar in all479

the parametric phase space and the differences will be mainly on low percentage patterns, being some of480

them quite strange.481

Although analyzing non-dominant patterns is beyond the scope of this paper, and just to show how482

some odd patterns are present, we show in Figure 16 the time signal of the five dominant stable patterns483
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Figure 16: Time signal of different patterns for Iext = 35.5 and vthKS = −28.784. The color circle identifies each signal with
the pattern marked in Figure 15 (see also the color band on the left side).

TRIPOD

TETRAPOD
0

1

0

1

100%

0%
0

1

-29 -27 -25-28
-23-26 -24

vthKS

d32d12 d12

d32

Figure 17: Graphic combination of sweeping techniques described in Sections 4 (lateral phase lag analysis) and 5 (quasi-
Monte Carlo pattern sweeping). Green points represent sinks (attractors); blue points represent saddle points and red
points sources (repulsors).
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detected for the value of the parameters: Iext = 35.5 and vthKS = −28.784. The color of the circle that484

accompanies each signal is the same as the color that identifies the different patterns in the central panel485

of Figure 15. On the left side we have extracted a color band from that central panel in order to locate486

the different patterns. The first two points correspond to the dominant patterns (also perfectly detected487

with the technique of lateral convergence). As previously mentioned, these patterns present the same488

movement in the legs of each side, simply with a lag between both sides. On the other hand, the other489

three patterns show a clear asymmetry between the movement of left and right legs. Note that these490

patterns cannot be detected with the methods that use several symmetry reductions. We also represent491

the periodic orbit of the model of an isolated neuron to show how, individually, each neuron within the492

network has a similar dynamical behavior to the one of the isolated neuron, both in the number of spikes493

and in the period of the orbit. In fact, in general, all patterns detected for a fixed set of parameters have494

a very similar duration, with maximum differences of less than 5% in most cases. Exceptions to this495

situation are some patterns that need two periods of activation of each neuron to close the orbit, and in496

the area near the appearance of the perfect tripod gait where differences close to 20% in the period can497

be reached.498

Finally, we note that Figure 15 explains in more detail than Figure 10 the evolution of the dominant499

patterns until they end up converging to the tripod gait. However, Figure 10 shows the stable and unstable500

equilibria of the phase lag maps of the model and its evolution by modifying the control parameter. In501

order to summarize all the results, in Figure 17 we combine both figures to show how in addition to502

the three stable equilibria of the return map, corresponding to the three dominant patterns, there are at503

least four other unstable equilibria (note that other points may be present). All these points seem to end504

up converging to the tripod gait in a very degenerate bifurcation where all the points apparently collide505

into the stable tripod gait point. This situation is analogous to that observed in [34, case α = 1/2] with506

the reduced 2D iPRC model for the symmetric case and using Matcont bifurcation software. In our case507

we detect that bifurcation for the complete model and without using any continuation software, just by508

computing a sweep (as in [48]) of the interval studied using the techniques described above. Also, it is509

important to remark that the mixture of techniques permits us to detect in a mathematical model most510

of the experimental patterns illustrated in classical references [37, 50].511

Conclusions512

In this paper we have adapted different numerical techniques and we have combined them to develop513

new tools to analyze small networks. As an important test problem, we have studied in some detail514

the particular case of the complete six neurons model of the CPG that controls the movement of some515

insects. As first step, we show how the previous study of the model of an isolated neuron provides us516

with valuable information to determine the parametric region of interest and some dynamical system517

information.518

Once we have obtained the “roadmap” that gives us the analysis of an isolated neuron, we have519

designed a tool (lateral phase lag analysis) that visualizes the evolution of the delay of one neuron with520

respect to the rest of the network. This tool is based on the analysis of the lateral phase lags on both sides521

of the network, complemented with the study of the delay of the two central neurons. This technique522

(an extension of the technique introduced in [51] for 3-cell CPGs) gives us information similar to that523

obtained in [34] for the reduced model of oscillators, but in our case working with the complete model524

of neurons. With this tool we can study the evolution of the dominant patterns and the equilibrium525

points that generate them. However, since we work with planar representations, for the result to be526

significant, we have to restrict the set of initial conditions to a space of dimension two. Since the model527

has dimension 24, the described limitation causes that we may miss patterns whose basin of attraction528

has empty intersection with the selected subset of initial conditions. Using a proper selection of groups529

of three neurons, this methodology can be used in different models than the CPG studied in this paper.530
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We have developed another algorithm (quasi-Monte Carlo pattern sweeping) to eliminate the limi-531

tations of the former technique. Now we use initial conditions covering the space of dimension 24 that532

controls the complete model of the network. This methodology allows to study the different patterns of533

the model and automatically classifies these patterns. With this algorithm we are able to perform a sweep534

leaving one of the system parameters free to study the changes produced. The sweep results permit us to535

understand much better how dominant patterns are evolving until they end up converging to the tripod536

gait in the case of insect movement. On the other hand, we have located different odd patterns that537

are difficult to locate by other means and that have interesting asymmetries. Since this methodology is538

based only on a selection of appropriate initial conditions and on an optimal automatic pattern analysis539

by using Fourier techniques and a binary representation of each pattern, it can be used in small networks540

in general.541

Besides, we have shown that the mixture of both techniques permits us to detect in a model most542

of the experimental patterns presented in classical papers [37], that also gives a hypothesis relating the543

various six-legged gaits.544

The combination of all the numerical techniques described in this paper opens a door to a deeper545

understanding of insect movement CPGs. In addition, it also allows to study any small CPG, without546

restriction on symmetries or heterogeneity between the neurons of the network that comprise it.547
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