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Abstract. The supporting vectors of a matrix A are the solutions of max
∥x∥2=1

∥Ax∥22. The

generalized supporting vectors of matrices A1, . . . , Ak are the solutions of the problem
max

∥x∥2=1
∥A1x∥22 + · · ·+ ∥Akx∥22. Notice that the previous optimization problem is also a

boundary element problem since the maximum is attained on the unit sphere. Many
problems in Physics, Statistics and Engineering can be modeled by using generalized
supporting vectors. In this manuscript we first raise the generalized supporting vectors

to the infinite dimensional case by solving the optimization problem max
∥x∥=1

∞∑
i=1

∥Ti(x)∥2

where (Ti)i∈N is a sequence of bounded linear operators between Hilbert spaces H and K
of any dimension. Observe that the previous optimization problem generalizes the first
two. Then a unified MATLAB code is presented for computing generalized supporting
vectors of a finite number of matrices. Some particular cases are considered and three
novel examples are provided to which our technique applies: optimized observable mag-
nitudes by a pure state in a quantum mechanical system, a TMS optimized coil and an
optimal location problem using statistics multivariate analysis. These three examples
show the wide applicability of our theoretical and computational model.

1. Introduction

Many problems in different disciplines like Physics, Statistics, Economics or Engineering
can be modeled by using matrices and their norms (see for instance [9, 12]). These real-life
problems usually look like:

(1.1)

{
max ∥Ti(x)∥ i ∈ N
min ∥x∥
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where Ti : H → K is a continuous or bounded linear operator between real or complex
Hilbert spaces H and K for every i ∈ N. In most situations, H and K are both finite
dimensional real Hilbert spaces and we have a finite number of operators (matrices), that
is, there existsm ∈ N such that Ti = 0 if i ⩾ m. However, there still are real-life situations
where H = K is an infinite dimensional complex Hilbert space (see Subsection 6.1).

The first aspect to take into consideration about Problem (1.1) is the fact that it has
no solution unless Ti = 0 for every i ∈ N. Indeed, it is a multiobjective optimization
problem with the only constraint that x ∈ H, so if x0 ∈ H solves (1.1), then in particular
x0 minimizes ∥x∥ so x0 = 0. Since x0 maximizes ∥Ti(x)∥ for every i ∈ N, this forces that
Ti = 0 for every i ∈ N, which in general does not occur. Furthermore, it is also useful
to bear in mind that max ∥T (x)∥, for T a nonzero bounded operator from H to K, is an
optimization problem with no solution at all, since if x0 ∈ H is a solution of max ∥T (x)∥,
then it is clear that x0 /∈ ker(T ) and thus kx0, k ∈ N, gives greater values of ∥T (•)∥ than
x0. In fact, ∥T (kx0)∥ = k∥T (x0)∥ → ∞ as k → ∞.

The above reasons imply that Problem (1.1) must be appropriately reformulated in such
a way that the following conditions must be met:

(1) The reformulation must be consistent with the real-life problem.
(2) The set of solutions of the reformulation must be nonempty.
(3) In the finite dimensional case with a finite number of matrices, finding the solution

must be computationally affordable.

In the following section, we will recall some basic concepts of Optimization Theory that
will help us reformulate Problem (1.1). However, it seems clear that in order to meet
the above conditions we will have to introduce a constraint and gather all the objective
functions to maximize into a single objective function to maximize.

2. Preliminaries

A multiobjective optimization problem has the form

P :=

{
min fj(x), 1 ⩽ j ⩽ l
gi(x) ⩽ bi, 1 ⩽ i ⩽ k

where f1, . . . , fl, g1, . . . , gk : X → R are functions defined on a nonempty set X. Two
special sets are associated to P , the feasible solutions of P

fea(P ) := {x ∈ X : gi(x) ⩽ bi ∀ 1 ⩽ i ⩽ k}

and the set of optimal solutions of P

sol(P ) := {x ∈ fea(P ) : fj(x) ⩽ fj(y) ∀y ∈ fea(P ) ∀ 1 ⩽ j ⩽ l}.
2



Any multiobjective optimization problem can be rewritten as the intersection of optimiza-
tion problems, that is, if

Pj :=

{
min fj(x)
gi(x) ⩽ bi, 1 ⩽ i ⩽ k

for 1 ⩽ j ⩽ l, then P = P1 ∧ · · · ∧ Pl, fea(P ) = fea(Pj) for all 1 ⩽ j ⩽ l, and sol(P ) =
sol(P1)∩· · ·∩ sol(Pl). In case that sol(P ) = sol(P1)∩· · ·∩ sol(Pl) = ∅, the multiobjective
optimization problem must be reformulated. A typical reformulation is

(2.1)

{
min fj(x), 1 ⩽ j ⩽ l
gi(x) ⩽ bi, 1 ⩽ i ⩽ k

reform−→

 min fj0(x)
fj(x) ⩽ cj, 1 ⩽ j ⩽ l, j ̸= j0
gi(x) ⩽ bi, 1 ⩽ i ⩽ k

Another typical reformulation is

(2.2)

{
min fj(x), 1 ⩽ j ⩽ l
gi(x) ⩽ bi, 1 ⩽ i ⩽ k

reform−→
{

minh (f1(x), . . . , fl(x))
gi(x) ⩽ bi, 1 ⩽ i ⩽ k

where h : Rl → R is a function conveniently chosen (usually an increasing function on
each coordinate).

On the other hand, observe that if ϕ : Y → X is a bijection, then it is easy to check that
fea(P ) = ϕ(fea(Q)) and sol(P ) = ϕ(sol(Q)) where

(2.3) Q :=

{
min(fj ◦ ϕ)(y), 1 ⩽ j ⩽ l
(gi ◦ ϕ)(y) ⩽ bi, 1 ⩽ i ⩽ k

Also note that fea(P ) = fea(R) and sol(P ) = sol(R) where

(2.4) R :=

{
min(ϕj ◦ fj)(x), 1 ⩽ j ⩽ l
(χi ◦ gi)(x) ⩽ χi(bi), 1 ⩽ i ⩽ k

and ϕj, χi : R → R are strictly increasing for 1 ⩽ j ⩽ l and 1 ⩽ i ⩽ k.

3. Reformulation of Problem (1.1)

Let us get back to Problem (1.1). Like we have previously mentioned in the first section,
it is convenient to gather all the objective functions to maximize into a single objective
function to maximize. This means that we have to come up with a bounded linear operator
T that involves in some sense the Ti’s. Note that we are working in a Hilbert space setting,
and since

ℓ2(K) :=

{
(yi)i∈N ∈ KN :

∞∑
i=1

∥yi∥2 <∞

}
endowed with ∥(yi)i∈N∥2 := (

∑∞
i=1 ∥yi∥2)

1
2 is a Hilbert space, the sequence (Ti(x))i∈N

should verify that (Ti(x))i∈N ∈ ℓ2(K), in other words,
∑∞

i=1 ∥Ti(x)∥2 < ∞. The idea is
3



not to fall out of the Hilbert space setting. This leads us to the following reformulation

(3.1)

 max
∞∑
i=1

∥Ti(x)∥2

∥x∥ = 1.

Here we have applied the first typical reformulation (2.1) to min ∥x∥ and we have obtained
the constraint ∥x∥ ⩽ 1. The homogeneous character of the norm together with the
linearity of the operators make irrelevant the choice of any other constant a > 0 in
∥x∥ ⩽ a since we can normalize. For the same reason, the maximum on ∥x∥ ⩽ 1 is
attained on ∥x∥ = 1. This is why the constraint ∥x∥ = 1 appears in (3.1). In the
reformulation (3.1) we have also applied the second typical reformulation (2.2) to the
max ∥Ti(x)∥’s and we have obtained max

∑∞
i=1 ∥Ti(x)∥2 taking into consideration that

the sequence (Ti(x))i∈N ∈ ℓ2(K). Now, if we consider the operator

(3.2)
T : H → ℓ2(K)

x 7→ T (x) := (Ti(x))i∈N ,

then the reformulation (3.1) can be rewritten as

(3.3)

{
max ∥T (x)∥2
∥x∥ = 1.

However, the operator T given in (3.2) involves the Hilbert space ℓ2(K), which can be
hard to handle computationally in the finite dimensional case with a large finite number
of matrices, simply because we might have to compute many Cholesky decompositions.
In our main theorem (Theorem 4.2), we solve exactly the reformulation (3.1) and show
that its solutions also solve

(3.4)

{
max ∥R(x)∥
∥x∥ = 1.

where now R :=
∑∞

i=1 T
′
i ◦ Ti, being T ′

i : K → H the adjoint operator of Ti.

To conclude this section, in order to reinforce the choice of the reformulation (3.1), we
will prove the following theorem, which states that (3.1) is equivalent to

(3.5)



min
∥x∥2

∞∑
i=1

∥Ti(x)∥2

x /∈
⋂
i∈N

ker(Ti).
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Note that the function

∥x∥2
∞∑
i=1

∥Ti(x)∥2

is homogeneous of degree 0, which implies that if x0 is a solution of (3.5), then λx0 is also
a solution for every λ ̸= 0.

Theorem 3.1. Let H and K be Hilbert spaces. Let (Ti)i∈N be a sequence of bounded linear
operators from H to K, not all zero, such that

∑∞
i=1 ∥Ti∥2 <∞. Then

arg max
∥x∥=1

∞∑
i=1

∥Ti(x)∥2 = SH ∩

arg min
x/∈

⋂
i∈N ker(Ti)

∥x∥2
∞∑
i=1

∥Ti(x)∥2

 .

Proof. Let

x0 ∈ arg max
∥x∥=1

∞∑
i=1

∥Ti(x)∥2.

We will first show that x0 /∈
⋂

i∈N ker(Ti). Suppose to the contrary that x0 ∈
⋂

i∈N ker(Ti).
Then

∑∞
i=1 ∥Ti(x0)∥2 = 0. Since not all the Ti’s are zero, we can find x1 ∈ H and i1 ∈ N

such that Ti1(x1) ̸= 0, which gives us the following contradiction:

∞∑
i=1

∥Ti(x0)∥2 = 0 <
∞∑
i=1

∥Ti(x1)∥2.

Thus x0 /∈
⋂

i∈N ker(Ti). Fix an arbitrary y ∈ H such that y /∈
⋂

i∈N ker(Ti). We will show
that

(3.6)
∥x0∥2

∞∑
i=1

∥Ti(x0)∥2
⩽

∥y∥2
∞∑
i=1

∥Ti(y)∥2
.

By hypothesis,

(3.7)
∞∑
i=1

∥∥∥∥Ti( y

∥y∥

)∥∥∥∥2 ⩽ ∞∑
i=1

∥Ti(x0)∥2.

5



By rearranging terms in Equation (3.7) and by bearing in mind that ∥x0∥ = 1, we obtain
(3.6). Conversely, let

x0 ∈ SH ∩

arg min
x/∈

⋂
i∈N ker(Ti)

∥x∥2
∞∑
i=1

∥Ti(x)∥2

 .

Fix an arbitrary y ∈ SH . We will show that

(3.8)
∞∑
i=1

∥Ti (y)∥2 ⩽
∞∑
i=1

∥Ti (x0)∥2 .

By hypothesis,

(3.9)
∥x0∥2

∞∑
i=1

∥Ti(x0)∥2
⩽

∥y∥2
∞∑
i=1

∥Ti(y)∥2
.

By rearranging terms in Equation (3.9) and by bearing in mind that ∥y∥ = ∥x0∥ = 1, we
obtain (3.8). □

Reformulations of the form given in (3.5) have been widely considered in the finite dimen-
sional case with a finite number of matrices (see, for instance, [13, 14]) simply because it is
easy to apply an heuristic method to approximate a solution. Our main result (Theorem
4.2) solves (3.1) exactly and thus (3.5) exactly too with no need of applying heuristic
methods which many times are not proven to converge to the solution.

4. Generalized supporting vectors

Supporting vectors are widely known in the literature of Geometry of Banach Spaces and
Operator Theory. They are commonly known as the unit vectors at which an operator
attains the maximum of its norm. In the matrix setting, the supporting vectors of a
matrix A are the solutions of

max
∥x∥2=1

∥Ax∥22.

In [4, 7] supporting vectors are topologically and geometrically studied. In fact, the
first relevant papers where supporting vectors of a given fixed operator are studied for
the first time are [4, 7, 3]. In these papers, the approach is completely different as the
ones given in [?, ?, ?, ?], since in the latter papers the focus is given on the density
of the norm-attaining functionals or operators in the dual space whereas in [4, 7, 3] the
density of those functionals/operators is disregarded and the spotlight is occupied by the
supporting vectors instead. The reason why we concentrate on the supporting vectors
is because many real-life problems are formulated in terms of maximizing the norm of a

6



given fixed matrix, therefore to solve those optimization problems we need the supporting
vectors. As far as we know, no real-life problem is formulated in terms of the density of
norm-attaining matrices nor such density is involved at all in solving or setting applied
optimization problems.

In addition, in [4] generalized supporting vectors are defined and studied. Again in the
matrix setting, the generalized supporting vectors of a sequence of matrices (Ai)i∈N are
the solutions of

max
∥x∥2=1

∞∑
i=1

∥Aix∥22.

This optimization problem clearly generalizes the previous one.

Let us go over these concepts with the formalism proper from Functional Analysis.

Let X be a complex Banach space. By B(X) we denote the Banach space of continuous
or bounded linear operators on X. Notice that in virtue of the Open Mapping Theorem,
the group of invertibles of B(X) is

U(B(X)) := {T ∈ B(X) : ker(T ) = {0} and T (X) = X} .

The spectrum of an operator TB(X) is defined as

σ(T ) := {λ ∈ C : T − λI /∈ U(B(X))} .

The spectral decomposition theorem states that the the spectrum is the disjoint union of
the point spectrum, the continuous spectrum and the residual spectrum, in other words,
σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ), where the point spectrum is

σp(T ) := {λ ∈ C : ker(T − λI) ̸= {0}},

the continuous spectrum is

σc(T ) := {λ ∈ C : ker(T − λI) = {0} and T (X) ⊊ T (X) = X}

and the residual spectrum is

σp(T ) := {λ ∈ C : ker(T − λI) = {0} and T (X) ̸= X}.

The elements of the point spectrum are called the eigenvalues of T . If λ ∈ σp(T ), then

V (λ) := ker(T − λI) = {x ∈ X : T (x) = λx}

is called the subspace of eigenvectors associated to the eigenvalue λ.

It is trivial that if λ ∈ σp(T ), then |λ| ⩽ ∥T∥. Therefore, if ∥T∥ ∈ σp(T ), then it
is the largest eigenvalue, which is denoted as λmax(T ). In this case, SX ∩ V (∥T∥) ⊆
suppv(T ), where SX is the unit sphere of X, that is, the set of unit vectors of X, and
suppv(T ) := {x ∈ SX : ∥T (x)∥ = ∥T∥} is the set of supporting vectors of T (see [4, 7]). If
(Tn)n∈N ⊂ B(X, Y ) (the Banach space of continuous or bounded linear operators from X

7



to Y ), then the set of generalized supporting vectors (see [4, Definition 3.1]) of (Tn)n∈N is
defined as

gsuppv ((Tn)n∈N) := arg max
∥x∥=1

∞∑
n=1

∥Tn(x)∥2.

It is not hard to check that gsuppv ((Tn)n∈N) = suppv (S) where

S : X → ℓ2(Y )
x 7→ S(x) := (Tn(x))n∈N

and ℓ2(Y ) :=
{
(yn)n∈N ∈ XN :

∑∞
n=1 ∥yn∥2 <∞

}
. For the operator S to be well defined

is sufficient that
∑∞

n=1 ∥Tn∥2 <∞.

In [4, Theorem 3.3] it was shown that

max
∥x∥2=1

k∑
i=1

∥Aix∥22 = λmax

(
k∑

i=1

AT
i Ai

)

arg max
∥x∥2=1

k∑
i=1

∥Aix∥22 = V

(
λmax

( k∑
i=1

AT
i Ai

))
∩ Sℓn2

where A1, . . . , Ak are m × n real matrices. In this section we intend to generalize this
result to the infinite dimensional case.

Recall that if H is a Hilbert space, then the dual map of H is defined as

JH : H 7→ H∗

h 7→ JH(h) := h∗ = (•|h)

This identification JH is in fact a surjective linear isometry between H and H∗ and in the
setting of the Geometry of Banach Spaces is also known as the duality mapping.

Now, if H and K are Hilbert spaces and T ∈ B(H,K), then the adjoint operator of T is
defined as T ′ := (JH)

−1 ◦T ∗ ◦JK ∈ B(K,H), where T ∗ : K∗ → H∗ is the dual operator of
T . Among all the properties verified by the adjoint T ′ we have that (T (x)|y) = (x|T ′(y))
for all x ∈ H and all y ∈ K and ∥T ′∥ = ∥T∥. An operator T ∈ B(H) is said to be a
selfadjoint operator provided that T = T ′. It is not hard to check that all the eigenvalues
of a selfadjoint operator are real. On the other hand, T is said to be positive provided
that (T (x)|x) ⩾ 0 for all x ∈ H. It is trivial that the eigenvalues of a positive operator
have to be positive. Finally, T is said to be normal provided that T = S ′ ◦ S for some
S ∈ B(H,K). Normal operators are examples of selfadjoint positive operators.

It is well known that if T ∈ B(H) is a selfadjoint, positive and compact operator on a
Hilbert space H, then ∥T∥ = λmax(T ).

Note that if (Ti)i∈N ⊂ B(H,K) is a sequence of bounded linear operators such that such
that

∑∞
i=1 ∥Ti∥2 < ∞, then

∑∞
i=1 T

′
i ◦ Ti ∈ B(H) is trivially selfadjoint and positive. If,

8



in addition, the Ti’s are compact, then
∑∞

i=1 T
′
i ◦ Ti is also compact. In fact, the compact

operators form a closed subalgebra of B(H) commonly denoted as K(H).

Lemma 4.1. Let H and K be Hilbert spaces and (Ti)i∈N ⊂ B(H,K) a sequence of bounded
linear operators such that

∑∞
i=1 ∥Ti∥2 <∞. Then

∞∑
i=1

∥Ti(x)∥2 = x∗

((
∞∑
i=1

T ′
i ◦ Ti

)
(x)

)
⩽

∥∥∥∥∥
(

∞∑
i=1

T ′
i ◦ Ti

)
(x)

∥∥∥∥∥ ⩽

∥∥∥∥∥
∞∑
i=1

T ′
i ◦ Ti

∥∥∥∥∥
for all x ∈ H.

Proof. Notice that
∑∞

i=1 T
′
i◦Ti is a well defined operator since it is an absolutely convergent

series. Indeed,
∞∑
i=1

∥T ′
i ◦ Ti∥ ⩽

∞∑
i=1

∥T ′
i∥∥Ti∥ =

∞∑
i=1

∥Ti∥2 <∞.

Also,
∑∞

i=1 ∥Ti(x)∥2 ⩽ ∥x∥2
∑∞

i=1 ∥Ti∥2 <∞ is well defined. Finally, it suffices to observe
that

∞∑
i=1

∥Ti(x)∥2 =
∞∑
i=1

(Ti(x)|Ti(x))

=
∞∑
i=1

(T ′
i (Ti(x))|x)

=
∞∑
i=1

x∗ (T ′
i (Ti(x)))

= x∗

((
∞∑
i=1

T ′
i ◦ Ti

)
(x)

)

⩽ ∥x∗∥

∥∥∥∥∥
(

∞∑
i=1

T ′
i ◦ Ti

)
(x)

∥∥∥∥∥
=

∥∥∥∥∥
(

∞∑
i=1

T ′
i ◦ Ti

)
(x)

∥∥∥∥∥
⩽

∥∥∥∥∥
∞∑
i=1

T ′
i ◦ Ti

∥∥∥∥∥ .
□

The following result is a generalization of [4, Theorem 3.3] to the infinite dimensional
case.
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Theorem 4.2. Let H and K be Hilbert spaces and (Ti)i∈N ⊂ B(H,K) a sequence of
compact operators such that

∑∞
i=1 ∥Ti∥2 <∞. Then

max
∥x∥=1

∞∑
i=1

∥Ti(x)∥2 = λmax

(
∞∑
i=1

T ′
i ◦ Ti

)
=

∥∥∥∥∥
∞∑
i=1

T ′
i ◦ Ti

∥∥∥∥∥
and

arg max
∥x∥=1

∞∑
i=1

∥Ti(x)∥2 = V

(
λmax

(
∞∑
i=1

T ′
i ◦ Ti

))
∩ SH ⊆ suppv

(
∞∑
i=1

T ′
i ◦ Ti

)
.

If v ∈ suppv (
∑∞

i=1 T
′
i ◦ Ti) and

(4.1)

∥∥∥∥∥
(

∞∑
i=1

T ′
i ◦ Ti

)
(v)

∥∥∥∥∥ ⩽
∞∑
i=1

∥Ti(v)∥2,

then v ∈ argmax∥x∥=1

∑∞
i=1 ∥Ti(x)∥2.

Proof. First off, since (Ti)i∈N is a sequence of compact operators, we have that their
adjoints are also compact and the composition T ′

i ◦ Ti is also compact. Since K(H) is a
closed subalgebra of B(H), we have that

∑∞
i=1 T

′
i ◦ Ti ∈ K(H). This means that

λmax

(
∞∑
i=1

T ′
i ◦ Ti

)
=

∥∥∥∥∥
∞∑
i=1

T ′
i ◦ Ti

∥∥∥∥∥ .
In virtue of Lemma 4.1, for any x ∈ H we have that

∞∑
i=1

∥Ti(x)∥2 = x∗

((
∞∑
i=1

T ′
i ◦ Ti

)
(x)

)

⩽ ∥x∗∥

∥∥∥∥∥
∞∑
i=1

T ′
i ◦ Ti

∥∥∥∥∥ ∥x∥
= λmax

(
∞∑
i=1

T ′
i ◦ Ti

)
∥x∥2.

Therefore

max
∥x∥=1

∞∑
i=1

∥Ti(x)∥2 ⩽ λmax

(
∞∑
i=1

T ′
i ◦ Ti

)
.

10



Now, let w ∈ V (λmax (
∑∞

i=1 T
′
i ◦ Ti)) ∩ SH . Then by applying Lemma 4.1 again

∞∑
i=1

∥Ti(w)∥2 = w∗

((
∞∑
i=1

T ′
i ◦ Ti

)
(w)

)

= w∗

(
λmax

(
∞∑
i=1

T ′
i ◦ Ti

)
w

)

= λmax

(
∞∑
i=1

T ′
i ◦ Ti

)
.

This shows that

max
∥x∥=1

∞∑
i=1

∥Ti(x)∥2 = λmax

(
∞∑
i=1

T ′
i ◦ Ti

)
and

V

(
λmax

(
∞∑
i=1

T ′
i ◦ Ti

))
∩ SH ⊆ arg max

∥x∥=1

∞∑
i=1

∥Ti(x)∥2.

Let v ∈ arg max
∥x∥=1

∞∑
i=1

∥Ti(x)∥2. One the one hand,∥∥∥∥ (
∑∞

i=1 T
′
i ◦ Ti) (v)

λmax (
∑∞

i=1 T
′
i ◦ Ti)

∥∥∥∥ ⩽
∥
∑∞

i=1 T
′
i ◦ Ti∥

λmax (
∑∞

i=1 T
′
i ◦ Ti)

= 1.

On the other hand and by relying again on Lemma 4.1,

v∗
(

(
∑∞

i=1 T
′
i ◦ Ti) (v)

λmax (
∑∞

i=1 T
′
i ◦ Ti)

)
=

∑∞
i=1 ∥Ti(v)∥2

λmax (
∑∞

i=1 T
′
i ◦ Ti)

= 1,

which implies that ∥∥∥∥ (
∑∞

i=1 T
′
i ◦ Ti) (v)

λmax (
∑∞

i=1 T
′
i ◦ T )

∥∥∥∥ = 1.

The strict convexity of H allows us to deduce that

(
∑∞

i=1 T
′
i ◦ Ti) (v)

λmax (
∑∞

i=1 T
′
i ◦ Ti)

= v,

that is, (
∞∑
i=1

T ′
i ◦ Ti

)
(v) = λmax

(
∞∑
i=1

T ′
i ◦ Ti

)
v

and so v ∈ V (λmax (
∑∞

i=1 T
′
i ◦ Ti)) ∩ SH . Next, since

λmax

(
∞∑
i=1

T ′
i ◦ Ti

)
=

∥∥∥∥∥
∞∑
i=1

T ′
i ◦ Ti

∥∥∥∥∥ ,
11



by the observations made at the beginning of this section, we conclude that

V

(
λmax

(
∞∑
i=1

T ′
i ◦ Ti

))
∩ SH ⊆ suppv

(
∞∑
i=1

T ′
i ◦ Ti

)
.

Finally, if v ∈ suppv (
∑∞

i=1 T
′
i ◦ Ti) and Equation (4.1) holds, then

max
∥x∥=1

∞∑
i=1

∥Ti(x)∥2 = λmax

(
∞∑
i=1

T ′
i ◦ Ti

)

=

∥∥∥∥∥
∞∑
i=1

T ′
i ◦ Ti

∥∥∥∥∥
=

∥∥∥∥∥
(

∞∑
i=1

T ′
i ◦ Ti

)
(v)

∥∥∥∥∥
⩽

∞∑
i=1

∥Ti(v)∥2

⩽ max
∥x∥=1

∞∑
i=1

∥Ti(x)∥2,

which implies that v ∈ argmax∥x∥=1

∑∞
i=1 ∥Ti(x)∥2. □

In the previous theorem we cannot assure that

arg max
∥x∥=1

∞∑
i=1

∥Ti(x)∥2 = V

(
λmax

(
∞∑
i=1

T ′
i ◦ Ti

))
∩ SH = suppv

(
∞∑
i=1

T ′
i ◦ Ti

)
.

The last assertion of Theorem 4.2 states that if v ∈ suppv (
∑∞

i=1 T
′
i ◦ Ti) and Equation

(4.1) holds, then v ∈ argmax∥x∥=1

∑∞
i=1 ∥Ti(x)∥2. However, in virtue of Lemma 4.1,

∞∑
i=1

∥Ti(v)∥2 ⩽

∥∥∥∥∥
(

∞∑
i=1

T ′
i ◦ Ti

)
(v)

∥∥∥∥∥ ,
concluding that

∞∑
i=1

∥Ti(v)∥2 =

∥∥∥∥∥
(

∞∑
i=1

T ′
i ◦ Ti

)
(v)

∥∥∥∥∥ ,
which in general does not occur.

As a consequence, we cannot assure that the reformulations (3.1) and (3.4) are equivalent,
but at least we can state that the set of solutions of (3.1) is contained in the set of solutions
of (3.4). An schematic summary follows:

(3.1) ⇔ (3.3) ⇔ (3.5) ⇒ (3.4).
12



5. Supporting vectors of statistically-normalized operators

If x ∈ Rm, then

µx :=
1

m

m∑
i=1

xi

and

σ2
x :=

1

m

m∑
i=1

x2i −

(
1

m

m∑
i=1

xi

)2

.

A vector x ∈ Rm is said to be statistically normalized provided that µx = 0 and σx = 1.
Note that if Rm has an statistically normalized vector, then m ⩾ 2.

If x ∈ Rm is so that σx ̸= 0, then

xst :=
x− µx1

σx

is a statistically normalized vector, where 1 is the vector whose components are all equal
to 1. Statistically normalized vectors verify special properties.

Remark 5.1. Let x, y ∈ Rm be statistically normalized vectors. Then:

(1) ∥x∥22 = m.
(2) |x · y| ⩽ m.

(3) x · y =
∥x+y∥22−2m

2
.

An immediate corollary of Remark 5.1 establishes where to look for statistically normal-
ized vectors of Rm. The place to search within is the sphere of a certain ball centered at
0 of a subspace of Rm of codimension 1. We recall the reader that by · we refer to the
Euclidean scalar value and that ℓm2 stands for (Rm, ∥ • ∥2).

Corollary 5.2. The set of statistically normalized vectors of Rm equals

Sℓm2

(
0,
√
m
)
∩ ker(1∗).

Proof. Simply notice that the set of statistically normalized vectors coincide with the set
of solutions of the following nonlinear system:

(5.1)

{
x1 + · · ·+ xm = 0
x21 + · · ·+ x2m = m

□

Remark 5.3. The solutions to the system (5.1) can actually be explicitly expressed as
follows:

• If m = 2, then Sℓ22

(
0,
√
2
)
∩ ker(1∗) = {(1,−1) , (−1, 1)}.

13



• If m > 2, then Sℓm2
(0,

√
m) ∩ ker(1∗) is composed of all vectors x = (x1, . . . , xm)

such that

x1 =
−
∑m

i=3 xi
2

∓

√
m−

∑m
i=3 x

2
i

2
− (
∑m

i=3 xi)
2

4
,

x2 =
−
∑m

i=3 xi
2

±

√
m−

∑m
i=3 x

2
i

2
− (
∑m

i=3 xi)
2

4

and

2m− 2
m∑
i=3

x2i −

(
m∑
i=3

xi

)2

⩾ 0.

A matrix is said to be statistically normalized if all of its column vectors are statisti-
cally normalized. According to Remark 5.1(1), all the column vectors of an statistically
normalized matrix have the same Euclidean norm.

Definition 5.4. Let X be a Banach space with a normalized Schauder basis (en)n∈N ⊆ SX .
A bounded operator T : X → X is called basic-normalized if ∥T (en)∥ = 1 for every n ∈ N.

Statistically normalized matrices are in fact basic-normalized matrices. Computing the
supporting vectors of those matrices of order m× 2 is easier than in the general case.

5.1. Basic-normalized matrices of Rm×2. Even though the proof of the following
lemma is nearly trivial, we will include it for the sake of completeness.

Lemma 5.5. Let a, b ∈ R and consider the function f(x, y) = a + bxy for (x, y) ∈ Sℓ22
.

Then max(f) = a+ |b|
2
. In addition:

(1) If b > 0, then argmax(f) =
{(√

2
2
,
√
2
2

)
,
(
−

√
2
2
,−

√
2
2

)}
.

(2) If b < 0, then argmax(f) =
{(

−
√
2
2
,
√
2
2

)
,
(√

2
2
,−

√
2
2

)}
.

Proof. We will consider the case of b > 0. The other case is similar. We will assume
without loss of generality that y =

√
1− x2 and then we obtain the function of one

variable f(x) = a+ bx
√
1− x2 for x ∈ [−1, 1], whose derivative is

f ′(x) = b
√
1− x2 − bx2√

1− x2
=
b(1− 2x2)√

1− x2

for x ∈ (−1, 1). Note that f ′(x) = 0 means that x = ±
√
2
2
. We spare the rest of the

details of the proof to the reader. □

Theorem 5.6. Let A ∈ Rm×2 be a matrix whose column vectors a1 and a2 have the same
Euclidean norm. Then ∥A∥22 = ∥a1∥22 +

∣∣aT1 · aT2
∣∣. In addition:
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(1) If aT1 · aT2 = 0, then suppv(A) = Sℓ22
.

(2) If aT1 · aT2 > 0, then suppv(A) =

{(√
2
2
,
√
2
2

)T
,
(
−

√
2
2
,−

√
2
2

)T}
.

(3) If aT1 · aT2 < 0, then suppv(A) =

{(
−

√
2
2
,
√
2
2

)T
,
(√

2
2
,−

√
2
2

)T}
.

Proof. Let xT = (x1, x2) ∈ Sℓ22
and let us write A = (aij) for 1 ⩽ i ⩽ m and j = 1, 2 where

aj = (a1j, a2j, . . . amj)
T for j = 1, 2. Notice that

Ax =


a11x1 + a12x2
a21x1 + a22x2

...
am1x1 + am2x2


and

∥Ax∥22 =
m∑
i=1

(ai1x1 + ai2x2)
2

= x21

m∑
i=1

a2i1 + x22

m∑
i=1

a2i2 + 2x1x2

m∑
i=1

ai1ai2

= (x21 + x22)
m∑
i=1

a2i1 + 2x1x2

m∑
i=1

ai1ai2

= ∥a1∥22 + 2x1x2a
T
1 · aT2 .

At this stage, it only suffices to apply Lemma 5.5. □

5.2. Basic-normalized matrices of Rm×n. The general case of basic-normalized ma-
trices is more complex than the previous one as we will show next. Except for particular
cases, it is not worth solving the general case in a straight forward way as before.

Lemma 5.7. Let A ∈ Rm×n be a matrix whose column vectors a1, . . . , an have the same
Euclidean norm. Then

∥Ax∥22 = ∥a1∥22 + 2
∑
j ̸=k

xjxka
T
j · aTk

for every xT = (x1, . . . , xn) ∈ Sℓn2
.
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Proof. Let xT = (x1, x2, . . . , xn) ∈ Sℓn2
and let us write A = (aij) for 1 ⩽ i ⩽ m and

1 ⩽ j ⩽ n where aj = (a11, a21, . . . amj)
T for j = 1, 2, . . . , n. Notice that

Ax =


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn


and

∥Ax∥22 =
m∑
i=1

(
n∑

j=1

aijxj

)2

=
m∑
i=1

n∑
j=1

a2ijx
2
j + 2

m∑
i=1

∑
j ̸=k

aijxjaikxk

=
n∑

j=1

x2j

m∑
i=1

a2ij + 2
∑
j ̸=k

xjxk

m∑
i=1

aijaik

= ∥a1∥22 + 2
∑
j ̸=k

xjxka
T
j · aTk .

□

As we can see from the proof of the previous theorem, in order to find the supporting
vectors of a matrix A ∈ Rm×n whose column vectors a1, . . . , an have the same Euclidean
norm, all we need to do is maximize a function of the form f(x1, . . . , xn) = a+

∑
j ̸=k cjkxjxk

for (x1, . . . , xk) ∈ Sℓn2
where a > 0 and cjk ∈ R for j ̸= k ∈ {1, . . . , n} satisfying that

cjk = ckj. If we apply the Lagrange multiplier technique to f , then we obtain the function

L(x1, . . . , xn, λ) := a+
∑
j ̸=k

cjkxjxk − λ

(
1−

n∑
j=1

x2j

)
whose partial derivatives are

∂L

∂xj
=
∑
k ̸=j

cjkxk + 2λxj

for all j ∈ {1, . . . , n}. The critical points of L verify the following nonlinear system

(5.2)




2λ c12 · · · c1n
c21 2λ · · · c2n
...

...
. . .

...
cn1 cn2 · · · 2λ




x1
x2
...
xn

 =


0
0
...
0


x21 + x22 + · · ·+ x2n = 1
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Notice that if the coefficient matrix above is invertible, then the previous nonlinear system
has no solution, so λ must be found to verify that∣∣∣∣∣∣∣∣

2λ c12 · · · c1n
c21 2λ · · · c2n
...

...
. . .

...
cn1 cn2 · · · 2λ

∣∣∣∣∣∣∣∣ = 0.

Bear in mind that the above matrix is symmetric. If the coefficients cjk verify special
properties, then we can throw some light into the critical point of L. The following
lemma deals with the case where all the cjk’s are equal to each other.

Lemma 5.8. Let f(x1, . . . , xn) = a+ c
∑

j ̸=k xjxk for (x1, . . . , xk) ∈ Sℓn2
where a > 0 and

c ∈ R \ {0}. Then the norm-1 multiples of the statistically normalized vectors of Rn are
critical points of the Lagrangian function

L(x1, . . . , xn, λ) := a+ c
∑
j ̸=k

xjxk − λ

(
1−

n∑
j=1

x2j

)
.

Proof. We just need to go back to the nonlinear system (5.2) and adapt it to our hypothesis
to obtain

(5.3)




2λ c · · · c
c 2λ · · · c
...

...
. . .

...
c c · · · 2λ




x1
x2
...
xn

 =


0
0
...
0


x21 + x22 + · · ·+ x2n = 1

and to realize that λ = c
2
turns the previous system into{

x1 + · · ·+ xn = 0
x21 + · · ·+ x2n = 1

which gives us the desired result (see Corollary 5.2 together with Equation (5.1)). □

The following remark shows that, in the settings of Lemma 5.8, not all the critical points
of the Lagrangian function are norm-1 multiples of the statistically normalized vectors of
Rn.

Remark 5.9. Observe that∣∣∣∣∣∣
2λ c c
c 2λ c
c c 2λ

∣∣∣∣∣∣ = 2(2λ− c)2(λ+ c)
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so λ = −c also provides critical points whose mean is not null. Indeed, if λ = −c, then
system (5.3) turns into

 −2c c c
c −2c c
c c −2c

 x1
x2
x3

 =

 0
0
0


x21 + x22 + x23 = 1

whose set of solutions is {(
1√
3
,
1√
3
,
1√
3

)
,

(
−1√
3
,
−1√
3
,
−1√
3

)}
.

After this remark we can state without proof the following lemma.

Lemma 5.10. Let f(x1, x2, x3) = a + c
∑

j ̸=k xjxk for (x1, x2, x3) ∈ Sℓ32
where a > 0 and

c ∈ R \ {0}. Then the critical points of the Lagrangian function

L(x1, x2, x3, λ) := a+ c
∑
j ̸=k

xjxk − λ

(
1−

3∑
j=1

x2j

)
consist exactly of the norm-1 multiples of the statistically normalized vectors of R3 together

with
{(

1√
3
, 1√

3
, 1√

3

)
,
(

−1√
3
, −1√

3
, −1√

3

)}
.

To summarize, except for particular cases where the coefficients cjk verify special prop-
erties like in Lemma 5.8, in order to find the supporting vectors of a matrix A like in
Lemma 5.7 it is more efficient to rely on Theorem 4.2.

6. Applications of the proposed model (Theorem 4.2)

6.1. Pure state that jointly maximizes the modulus of observable magnitudes
in a quantum mechanical system, with special attention to the probability den-
sity operator. Let us begin by recalling the first two postulates of Quantum Mechanics
(see [10]). We will not follow the classical Quantum Mechanics notation (the Bra-Ket
notation), but the classical Functional Analysis notation to keep consistency with the
notation in the rest of the paper:

(1) The First Postulate of Quantum Mechanics establishes that to every quantum
mechanical system an infinite dimensional separable complex Hilbert space H
corresponds. A pure state of this system in a fixed instant of time t is represented
by a unit ray SCx with ∥x∥ = 1. An element of the previous ray is called a state
vector or a ket.

18



(2) The Second Postulate of Quantum Mechanics establishes that every observable
magnitude of the quantum mechanical system H is represented by a selfadjoint
linear operator T : H → H. This correspondence between observable magnitudes
and selfadjoint linear operators is not in general bijective, that is, not all selfadjoint
linear operators represent an observable magnitude. The existence of observable
magnitudes represented by a selfadjoint unbounded operators implies that the
Hilbert space representing the quantum mechanical system is infinite dimensional,
since every linear operator on a finite dimensional Banach space is compact and
thus bounded. If an observable magnitude is represented by a selfadjoint bounded
operator T : H → H, then ∥T∥ measures the intensity of the observable magni-
tude. Since T is sefladjoint, the residual spectrum of T , σr(T ), is empty and thus
the spectrum of T is the disjoint union of the point spectrum and the continuous
spectrum, σ(T ) = σp(T ) ∪ σc(T ). Also, σ(T ) ⊆ R and if λ ̸= γ ∈ σp(T ), then
V (λ) ⊆ V (γ)⊥. By

(
e(λ,n)

)
n∈I(λ) we denote an orthonormal basis of V (λ) and

I(λ) := dim (V (λ)). Thus
(
e(λ,n)

)
(λ,n)∈σp(T )×I(λ)

is an orthonormal system in H.

A probability density matrix represents a partial state of knowledge of a (finite-dimensional)
system (see [8, Section 6]):

ρ(•) =
n∑

i=1

wi(•|ψi)ψi.

Based on that information we conclude that with probability wi the system may be in a
pure state ψi.

For quantum systems represented by infinite dimensional complex separable Hilbert spaces
(for instance, those with unbounded observable magnitudes), the probability density ma-
trix is in fact an operator, which we describe next.

Let H be an infinite dimensional separable complex Hilbert space representing a quantum
mechanical system. In the first place, if the system is in a mixed state given by the
following states (xn)n∈N ⊆ SH , where SCxn ∩ SCxm = ∅ if n ̸= m, then the probability
density operator is given by

(6.1)

D : H → H

x 7→ D(x) :=
∞∑
n=1

ρnx
∗
n(x)xn =

∞∑
n=1

ρn(x|xn)xn

where
∑∞

n=1 ρn is a convex series, that is, ρn ⩾ 0 for all n ∈ N and
∑∞

n=1 ρn = 1. Note
that ρn indicates the probability that the system H is at the state xn. The probability
density operator D clearly satisfies the following properties:

• D is clearly bounded. Indeed, for every x ∈ H,

∥D(x)∥ ⩽
∞∑
n=1

ρn|(x|xn)|∥xn∥ ⩽
∞∑
n=1

ρn∥x∥∥xn∥2 = ∥x∥
∞∑
n=1

ρn = ∥x∥,
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which implies that D is continuous and ∥D∥ ⩽ 1.
• D is clearly selfadjoint. Indeed, for every x, y ∈ H

(D(x)|y) =

(
∞∑
n=1

ρn(x|xn)xn
∣∣∣y)

=
∞∑
n=1

ρn(x|xn)(xn|y)

=
∞∑
n=1

ρn(y|xn)(x|xn)

=

(
x
∣∣∣ ∞∑
n=1

ρn(y|xn)xn

)
= (x|D(y)).

• D is clearly compact. Indeed, D is compact because it can approximated in
the operator norm of B(H) by the sequence (Dk)k∈N of finite-rank selfadjoint
operators, where

Dk : H → span{x1, . . . , xk}

x 7→ D(x) :=
k∑

n=1

ρnx
∗
n(x)xn =

k∑
n=1

ρn(x|xn)xn.

Indeed, for every x ∈ BH we have that

∥D(x)−Dk(x)∥ =

∥∥∥∥∥
∞∑

n=k+1

ρnx
∗
n(x)xn

∥∥∥∥∥ ⩽
∞∑

n=k+1

ρn → 0

as k → ∞ because
∑∞

n=k+1 ρn is the rest of a convergent series.
• D is clearly positive, in fact, D ⩾ D2 ⩾ 0. Indeed,

(D(x)|x) =
∞∑
n=1

ρn(x|xn)(xn|x) =
∞∑
n=1

ρn|(x|xn)|2 ⩾ 0

for all x ∈ X. Note that D2 is a normal operator (positive and selfadjoint). Let
us prove now that D ⩾ D2. Fix an arbitrary x ∈ H. On the one hand,

(
D2(x)|x

)
=

∞∑
n=1

ρn(D(x)|xn)(xn|x) =
∞∑
n=1

ρn

∞∑
k=1

ρk(x|xk)(xk|xn)(xn|x).
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On the other hand, since D is selfadjoint, (D2(x)|x) = (D(x)|D(x)) = ∥D(x)∥2,
so (D2(x)|x) is real and positive. Then, Hölder’s inequality allows that

(
D2(x)|x

)
= ℜ

((
D2(x)|x

))
=

∞∑
n=1

ρn

∞∑
k=1

ρkℜ ((x|xk)(xk|xn)(xn|x))

⩽
∞∑
n=1

ρn

∞∑
k=1

ρk |(x|xk)(xk|xn)(xn|x)|

⩽
∞∑
n=1

ρn|(xn|x)|
∞∑
k=1

ρk|(x|xk)|

=

(
∞∑
n=1

ρn|(xn|x)|

)2

=

(
∞∑
n=1

√
ρn
√
ρn|(xn|x)|

)2

⩽

(
∞∑
n=1

ρn

)(
∞∑
n=1

ρn|(xn|x)|2
)

= (D(x)|x).

• tr(D) = 1. Indeed, let (ek)k∈N be an orthonormal basis of H, then

tr(D) =
∞∑
k=1

e∗k(D(ek)) =
∞∑
k=1

(D(ek)|ek)

=
∞∑
k=1

(
∞∑
n=1

ρn(ek|xn)xn
∣∣∣ek) =

∞∑
k=1

∞∑
n=1

ρn(ek|xn) (xn|ek)

=
∞∑
k=1

∞∑
n=1

ρn(xn|ek)(xn|ek) =
∞∑
k=1

∞∑
n=1

ρn |(xn|ek)|2

=
∞∑
n=1

ρn

∞∑
k=1

|(xn|ek)|2 =
∞∑
n=1

ρn∥xn∥2 =
∞∑
n=1

ρn = 1.
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• If (xn)n∈N is an orthonormal basis, then ∥D∥ =
∥∥(ρn)n∈N∥∥∞. Indeed, let x ∈ SH

and write x =
∑∞

n=1(x|xn)xn, where 1 =
∑∞

n=1 |(x|xn)|2. Observe that

∥D(x)∥ =

√√√√ ∞∑
n=1

ρ2n|(x|xn)|2

⩽

√√√√ ∞∑
n=1

∥∥(ρ2n)n∈N∥∥∞ |(x|xn)|2

=
∥∥(ρn)n∈N∥∥∞

√√√√ ∞∑
n=1

|(x|xn)|2

=
∥∥(ρn)n∈N∥∥∞ .

This shows that ∥D∥ ⩽
∥∥(ρn)n∈N∥∥∞. In order to see that ∥D∥ =

∥∥(ρn)n∈N∥∥∞, we

just need to choose n0 ∈ N such that ρn0 =
∥∥(ρn)n∈N∥∥∞ = max

n∈N
ρn and realize that

D(xn0) = ρn0xn0 , therefore,

(6.2) ∥D(x0)∥ = ρn0 =
∥∥(ρn)n∈N∥∥∞ .

This shows that ∥D∥ =
∥∥(ρn)n∈N∥∥∞. According to Theorem 4.2, since D is self-

adjoint and compact, then

arg max
∥x∥=1

∥D(x)∥2 = V
(
λmax(D

2)
)
∩ SH .

Notice that

arg max
∥x∥=1

∥D(x)∥2 = arg max
∥x∥=1

∥D(x)∥ = suppv(D).

A supporting vector of D is xn0 in virtue of Equation (6.2), which is precisely the
state with the highest probability of the system.

Here we just found a first application of our main result (Theorem 4.2). A concrete
example of a probability density operator can be given in the infinite dimensional separable
complex Hilbert space

H := ℓ2 = ℓ2(N,C) :=

(αk)k∈N ∈ CN : ∥(αk)k∈N∥2 :=

(
∞∑
k=1

|αk|2
) 1

2

<∞


with states given by the canonical basis (en)n∈N and probabilities ρn = 1

2n
for every n ∈ N.

In this situation, the probability density operator looks like

(6.3)
D : ℓ2 → ℓ2

(αk)k∈N 7→ D ((αk)k∈N) :=
(αk

2k

)
k∈N

.
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According to above, ∥D∥ = 1
2
and a supporting vector of D is e1, which is the state with

highest probability.

More generally, let (Tn)n∈N ⊂ B(H) be a sequence of selfadjoint compact operators rep-
resenting observable magnitudes. For every n ∈ N, ∥Tn∥ represents the modulus of the
magnitude Tn. The pure state of H that jointly maximizes the moduli of the previous
magnitudes is

arg max
∥x∥=1

∞∑
n=1

∥Tn(x)∥2.

According to our Theorem 4.2, such pure state can be found in

V

(
λmax

(
∞∑
n=1

T 2
n

))
∩ SH .

6.2. Optimal TMS coils. Transcranial Magnetic Stimulation (TMS) is a noninvasive
technique to stimulate the brain, which is applied to psychiatric and medical conditions,
such as major depressive disorder, schizophrenia, bipolar depression, post-traumatic,
stress disorder and obsessive-compulsive disorder, amongst others [13]. The development
of TMS is being restricted by technical limitations, such as the undesired stimulation in
non-target cortex regions.

Over the years, there have been new TMS stimulator design methods such as [?, 2, ?,
3, ?, ?]. In all these approaches, coil design problem is eventually posed as a convex
optimization, where the constant search for new coil features and improved performance
has highlighted the need of employing more versatile optimization techniques capable of
dealing with the new requirements.

In TMS, strong current pulses driven through a coil are used to induce an electric field
stimulating neurons in the cortex.

The goal in TMS coil design is to find optimal positions for the multiple windings of
coils (or equivalently the current density) so as to produce fields with the desired spatial
characteristics and properties [2, 3] (high focality, field penetration depth, low inductance,
low heat dissipation, etc.). This design problem has been frequently posed as a constraint
optimization problem. The idea is to solve the resulting optimization problem in an exact
manner justified by abstract mathematical proofs unlike previous TMS coils designed by
means of heuristic methods not proven to be convergent to the optimal solution [2, 13, 14].

In this work, in order to illustrate an application of the maths above, we are going to
tackle the design of a novel TMS coil capable of producing a maximal stimulation in the
occipital lobe while dissipating a minimum power. The modulation of the activity in this
region in the cerebral cortex has an enormous interest as it is involved in many brain
functions as those related with process of visual information [14].
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To this end a new coil geometry consisting of a hemispherical surface of radius 0.12m
with a cylindrical extension of height 0.1m has been considered, in which we want to
find the electric current that induces maximum Ex, Ey and Ez fields in a target region in
the occipital lobe formed from a 2cm radius spherical distribution of H = 400 points, of
which center is at coordinates (0cm, 6cm, 6cm) as shown in figure 1(a).

This particular problem can be formulated as

(6.4)


max ∥Ezψ∥2
max ∥Eyψ∥2
max ∥Exψ∥2
minψTRψ

whereN is the number of nodes employed to mesh the conducting surface [3], withN > H,
Ex, Ey, Ez ∈ RH×N , R ∈ RN×N is the resistance and ψ is the desired stream function.

We proceed now to reformulate the multiobjective optimization problem given in Equation
(6.4). First, we apply the Cholesky decomposition to R to obtain R = CTC so we have
that ψTRψ = (Cψ)T (Cψ) = ∥Cψ∥22 and we obtain

(6.5)


max ∥Ezψ∥2
max ∥Eyψ∥2
max ∥Exψ∥2
min ∥Cψ∥22

Next, by taking into consideration that the square root is a strictly increasing function
on [0,∞), we can apply Equation (2.4) to obtain

(6.6)


max ∥Ezψ∥2
max ∥Eyψ∥2
max ∥Exψ∥2
min ∥Cψ∥2

Now, since C is an invertible square matrix, by setting φ = Cψ we obtain

(6.7)


max ∥(EzC

−1)φ∥2
max ∥(EyC

−1)φ∥2
max ∥(ExC

−1)φ∥2
min ∥φ∥2

Problem (6.7) is of the form (1.1). In accordance with Section 3, Problem (6.7) is refor-
mulated as follows in order not to fall out of the Hilbert space setting:

(6.8)

{
max ∥(EzC

−1)φ∥22 + ∥(EyC
−1)φ∥22 + ∥(ExC

−1)φ∥22
∥φ∥2 = 1
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Problem (6.8) can be solved with Theorem 4.2. Once we find a solution φ of Problem
(6.8), we have that ψ = C−1φ is the desired stream function.
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(a)

(b)

Figure 1. (a) Schematic diagram showing the hemispherical conducting
surface with a cylindrical extension along with the region of interest where
the stimulation is desired to be maximal, which has been included in a illus-
trative human head model for sake of clarity. (b) Wirepaths with 16 turns
of the TMS coil solution of design problem in Equation (6.4).
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The wire-paths of the solution to the design problem in Equation (6.4) is shown in Figure
1(b), it is a two lobed TMS coil, where it can be seen that the winding density is more
concentrated over the region of stimulation. Finally, Figure 2(a) shows the colormap of
the normalized optimal stream function over the coil surface.

(a)

Figure 2. (a) Colormap of the normalised optimal stream function
ψ

ψmax
over the coil surface.

6.3. Optimal location using statistics multivariate analysis. In multivariate sta-
tistical analysis, the use of different techniques such as Principal Component Analysis
(PCA) for modelling the variance between variables, has been largely considered [11]
with up-to-date applications such as big data and digital image analysis [1, 6]. Here we
present a practical application of supporting vectors focus on the optimal location of a
private educational academy between the different provinces of Spain.
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We are going to consider 3 different variables for this study: proportion of population
with some kind of education (basic or high) (m1), with higher education (m2) and with
higher education between 25 and 34 years (m3). These data have been obtained from
the 2009 social indicators database of the National Statistic Office (in Spain INE. http:
//www.ine.es/daco/daco42/sociales09/sociales.htm).

To find the optimal location we consider the province where the values of m1, m2 and
m3 are maximum. Due to the different units of the variables, we standardize them (µ =
0, σ = 1) obtaining mst

1 , m
st
2 and mst

3 . Here we have a typical multiobjective problem that
can be formulated as follow:

(6.9)

{
max ∥Mx∥22
∥x∥22 = 1

where M is the matrix composed by the three variables standardized considered in our
study M = [mst

1 |mst
2 |mst

3 ] and x is the supporting vector (in this case, the first component
in PCA as shown in Figure 3), with N = 52 locations, H = 3 standardized variables,
x ∈ RH×1 and mst

1 ,m
st
2 ,m

st
3 ∈ RN×1. We observe that this optimization problem is similar

to Equation (6.8) and thus Theorem 4.2 applies to it.

Moreover, the solution of this multiobjective problem let us to sort the sites considering
the three variables of this study (Figure 4A). The higher value of Mx indicate the best
place to locate the private educational academy because it has the higher proportions
of population which can be considered as target. Likewise, we can represent them in a
geographic projection (Figure 4B). Although this is an example, it can be extended to
more variables achieving a better model and results.
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Figure 3. Reference frame defined by the three principal components with
the variables of Section 6.3. In this case, with the variables directly cor-
related, a supporting vector x indicates the direction of the first compo-
nent (maximum of the three variables, red arrow). In blue squares, the
locations considered in this paper. In blue lines, the standardized variables
mst

1 ,m
st
2 ,m

st
3 represented in PCA reference frame.
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Figure 4. (A) Bar diagram with the values of Mx obtained in each
province of Spain. The optimal place to locate the private academy shall
be where the value of Mx is the highest. (B) Geographic distribution of the
Mx values. Green provinces are the best places for our multiobjective prob-
lem. Design problem described in Equation (6.9).
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7. Conclusions

7.1. General conclusions. The generalized supporting vectors are proved to be useful
in many applied disciplines. A large number of optimization problems in Physics, Engi-
neering, Statistics, etc, can be reformulated in terms of generalized supporting vectors.
The idea behind this reformulation is the linearization of the optimization problem. Once
an optimization problem is linearized, then certain matrices come up and they are to be
optimized by using matrix norms. Thus generalized supporting vectors arise. We then
can exactly solve the following optimization problem:{

max ∥A1x∥22 + · · ·+ ∥Anx∥22
∥x∥2 = 1

where A1, . . . , An are matrices. In fact, due to our Theorem 4.2, we can also solve exactly
the infinite dimensional version of the previous optimization problem:{

max
∑∞

i=1 ∥Ti(x)∥2
∥x∥ = 1

where the Ti’s are compact operators on Hilbert spaces such that
∑∞

i=1 ∥Ti∥2 < ∞. We
have shown by means of Subsection 6.1 that the previous optimization problem has useful
applications in the study of effects in Quantum Physics. A first application of supporting
vectors was given in [3] where a TMS coil was truly optimally designed. In that paper a
three-component problem is stated but only the case of one component was solved. Here
we solve the three-component case. Another application of supporting vectors is provided
in this paper where an optimal location problem is solved using statistics multivariate
analysis.

7.2. Novelties of this work. In this subsection we enumerate the novelties provided by
this work:

(1) We provide an exact solution of an optimization problem, not a heuristic method
for approaching it [2, 13, 14]. Our exact solution is an analytical solution justi-
fied by a mathematical theorem whereas the heuristic methods presented in the
literature are not mathematically proved to be convergent to the solution of the
optimization problem.

(2) For the first time in the literature of generalized supporting vectors, a MATLAB
code is provided for computing them.

(3) By means of the generalized supporting vectors we can exactly solve the three-
component problem to obtain a truly optimal TMS coil, whereas until now the
one-component problem was the only problem addressed [3]. Our TMS coil is
optimal because we solve the optimization problem exactly.

(4) In virtue of our main result (Theorem 4.2), we are able to optimize a sequence
of observable magnitudes by a pure state in a quantum mechanical system. In
particular we focus on the probability density operator on a quantum mechanical
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system represented by an infinite dimensional separable complex Hilbert space.
Hence, we find, by means of our Theorem 4.2, the state that maximizes the mod-
ulus of the probability density operator, which in fact coincides with the state of
higher probability of the system.

(5) We spotlight the relation of supporting vectors with Statistical Optimization, con-
necting multivariable analysis with multiobjective problem solutions.

(6) This is an interdisciplinary work that comprises pure abstract nontrivial theorems
with their proofs and programming codes with their results to directly apply them
to real-life situations.

Acknowledgements. The authors would like to express their deepest gratitude towards
the reviewers for their valuable suggestions and comments that helped improve the paper
considerably.

Appendix A. Algorithms developed in this work

In this section we show the algorithms written in MATLAB that allow to solve all the
real problems that can be modeled with generalized supporting vectors (in particular, the
problems presented in the previous two sections).

A.1. General algorithm for generalized supporting vectors. First we include the
algorithm to compute the solution of the problem presented in [4, Theorem 3.3], that is

max
∥x∥2=1

k∑
i=1

∥Aix∥22 = λmax

(
k∑

i=1

AT
i Ai

)

arg max
∥x∥2=1

k∑
i=1

∥Aix∥22 = V

(
λmax

( k∑
i=1

AT
i Ai

))
∩ Sℓn2

where A1, . . . , Ak are m × n real matrices. This algorithm beholds the particular case
where k = 1 and A1 is an m × 2 matrix whose column vectors have the same Euclidean
norm (see Theorem 5.6).

function [lambda_max, x] = sol_1(M)

%%%%%

%%%%% INPUT:

%%%%%

%%%%% M = {A_1 A_2 ... A_k} a list with the matrices

%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%

%%%%% OUTPUTS:

%%%%%

%%%%% lambda_max - maximum eigenvalue
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%%%%% x - basis of unit eigenvectors associated to lambda_max

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%

k = length(M);

[nrows ncols] = size(M{1});

a1 = M{1}(:,1); %% First column of M{1}

a2 = M{1}(:,2); %% Second column of M{1}

if (k==1) & (ncols==2) & (abs(norm(a1)-norm(a2))<1e-12)

%%% In this particular case, a single matrix with two columns with

%%% the same norm is considered. A tolerance of 1e-12 is needed in

%%% order to compare these norms.

%%% The maximum lambda_max and the supporting vectors are computed

%%% directly as in Theorem 3.5

lambda_max = norm(a1)^2 + abs(a1’*a2);

if floor(a1’*a2)==0

%%% The columns of this matrix form a basis of supporting vectors

x = eye(2);

elseif a1’*a2>0

%%% The columns of this matrix form a basis of supporting vectors

x = [sqrt(2)/2 sqrt(2)/2; -sqrt(2)/2 -sqrt(2)/2]’;

elseif a1’*a2<0

%%% The columns of this matrix form a basis of unit supporting

vectors

x = [-sqrt(2)/2 sqrt(2)/2; sqrt(2)/2 -sqrt(2)/2]’;

end

else

%%% This is the general case

suma = zeros(ncols);

for i=1:k

suma = suma + M{i}’*M{i};

end

%%%

[V,D] = eig(suma); %%% Computing the eigensystem

lambda_max = max(diag(D)); %%% This is the maximum eigenvalue

N = size(D,1);

%%% Now we find the indices where the elements of the diagonal of the

%%% matrix D are equal (with a tolerance of 1e-12) to lambda_max

ind_lambda_max = find(abs(diag(D)-lambda_max*ones(N,1))<1e-12);

x = V(:, ind_lambda_max); %%% %%% The columns of this matrix form a

%%% basis of unit supporting vectors associated to the maximum

eigenvalue

end

end
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A.2. Particular algorithm for the TMS coil. Here we include the code to compute
the solution of Problem (6.4): 

max ∥Ezψ∥2
max ∥Eyψ∥2
max ∥Exψ∥2
minψTRψ

function psi = sol_psi(Ex, Ey, Ez, R)

C=chol(R); % Cholesky’s decomposition of matrix R = C’ * C

A1=Ex*inv(C); % Change of variable to each matrix involved

A2=Ey*inv(C);

A3=Ez*inv(C);

[lambda, phi] = sol_1({A1 A2 A3}); % We apply the algorithm to obtain

% phi = C * psi

psi=inv(C)*phi(:,1); % We undo all changes to compute

% the solution psi employing the

% first column in phi

end
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[3] C. Cobos-Sánchez, F.J. Garćıa-Pacheco, J.M. Guerrero-Rodriguez and J.R. Hill, “An inverse bound-
ary element method computational framework for designing optimal TMS coils”, Eng. Anal. Bound.
Elem. 88 (2018), 156–169.
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