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Abstract

The identification of the minimal set of nodes that maximizes the propagation of information is
one of the most relevant problems in network science. In this paper, we introduce a new method
to find the set of initial spreaders to maximize the information propagation in complex networks.
We evaluate this method in assortative networks and verify that degree-degree correlation plays
a fundamental role in the spreading dynamics. Simulation results show that our algorithm is
statistically similar, regarding the average size of outbreaks, to the greedy approach in real-world
networks. However, our method is much less time consuming than the greedy algorithm.
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1. Introduction

With the popularization of Internet access by mobile devices, online social networks have
emerged as a suitable medium for information transmission [1, [2]. News, rumors, and adver-
tisements propagate fast in these networks due to the low average degree of separation between
users [2]. Information is also exchanged in communication networks, where users share files
related to multiple contents, including images, audio, and video. Communication and social net-
works are also characterized by a very heterogeneous structure, in which most of the users are
low connected, whereas a minimal set of them have many connections [2]]. Moreover, in some
social networks, high degree vertices tend to connect to low degree vertices, defining a disassor-
tative wiring pattern. This complex structure of networks affects the information propagation,
defining a hierarchy among the nodes [1]]. This means that networks present special nodes that
are the most influential spreaders in the propagation process [3} 4], i.e., nodes that maximize the
average size of outbreaks.
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The identification of these influential nodes is essential to understand and control the spread-
ing process on social networks [3l]. Particularly, the influence maximization problem (IMP) is
faced with the selection of a set of 7 spreaders that trigger the largest cascade of new adopters
according to a spreading dynamic [5]. The problem of finding this set of initial spreaders is
NP-hard for most of the spreading models [1], which makes the IMP as a challenge for network
scientists. Thus, since it is not possible to obtain the optimal results for most of the networks, the
IMP is addressed by heuristic algorithms. For instance, one of the most studied methods is a hill-
climbing greedy approach [1]], which guarantees that the influence spread is within (1—1/e) of the
optimal influence spread. This greedy algorithm outperforms the classic degree and centrality-
based heuristics in influence spread [[1], but it is still very computationally expensive. In addition,
Morone and Makse [3]] mapped the IMP onto optimal percolation in random networks to identify
the nodes that should be removed to minimize the average size of outbreaks. They verified that
this set is given by the nodes whose removal break down the network into many disconnected
subgraphs. However, this set of nodes does not correspond necessarily to optimal spreaders, as
verified by Radicchi and Castellano [6]]. Although all these works advanced the study of influ-
ence maximization, they disregard patterns of connections, such as degree-degree correlation and
community structure, which have a fundamental impact on spreading dynamics [2]].

Degree-degree correlations (or assortativity) is a network property in which nodes with simi-
lar features, such as degree, tend to be connected. Previous works verified that epidemics spread
faster in assortative networks, but the reach is more extensive on disassortative structures [7].
Assortativity also influences the spreading threshold [8] and the diffusion time [9]]. Although
degree-degree correlation influences the spreading dynamics, the role of this network property
on the influence maximization problem has not been addressed yet (see, for instance, [} 2])).
Here, we analyze how degree-degree correlation affects the average size of outbreaks in rumor
dynamics.

We also propose a method for identification of the most influential spreaders based on com-
munity organization. Communities are groups of nodes densely connected among them, but
with few connections with other groups [[10]. Some authors verified that to improve the spread-
ing efficiency, a good strategy is to distribute the seeds on the network producing lower over-
lap [[L1L12L[13L[14]). If the community structure is not considered, then only suboptimal solutions
can be obtained [12]. This happens because vertices belonging to the same community are likely
to be more similar to each other and share the same set of neighbors. Although communities
influence the diffusion of information, only a few studies have considered the community or-
ganization to study the influence maximization problem [12} 13} 14} [15} [16} [17, [18]]. Indeed,
most of these works try to reduce the number of candidate vertices according to some evaluation
method and the community structure. For instance, Galstyan et al. [12] employed the greedy
approach for selecting the seeds in the smallest community and verified that this might cause a
global activation cascade even for a small number of seeds. However, the results are restricted to
random networks made up of two communities. Wang et al. [[13] introduced a community-based
greedy algorithm to find the 7 most influential nodes. The idea is to divide the network into com-
munities and then, by a dynamic programming algorithm, incrementally select the community
from which the next influential node is taken. The method involves high computational cost,
although it is an order of magnitude faster than the greedy algorithm. In a similar approach, Cao
et al., [15] transformed the influence maximization problem into an optimal resource allocation
problem in the network communities. Initially, the method assumes that the communities are dis-
connected. Then, the method selects 17 candidates from each community according to the degree
centrality and a dynamic programming algorithm identifies the final target nodes.
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Although these works provided essential results on the influence maximization problem, none
of them addressed the impact of the assortativity on the propagation dynamics. These methods
are computationally expensive and consider a relatively low number of initial spreaders, i.e., up
to n = 50 spreaders. Moreover, classical rumor models are not addressed by these studies, al-
though the model by Maki and Thompson [[19] is often used to study information dynamics in
networks [2, 20} 21} 22} 23]]. Thus, in the present work, we provide an analysis of the impact
of degree-degree correlation on the influence maximization problem, where the Maki-Thompson
algorithm models the information spreading. A simple approach to maximize information diffu-
sion considering the community structure of the network is introduced. We perform exhaustive
simulations in eight real and ten artificial complex networks and verify that assortativity plays a
significant role in the influence maximization problem. For instance, increasing the number of
initial spreaders may not increase the size of the outbreak. Moreover, the selection of influen-
tial spreaders through communities is statistically similar to the greedy algorithm. However, our
method requires much lower computational cost and, therefore, is more suitable in practice.

2. Concepts and methods

A social network can be represented as a graph G = (V, E) made up of a set of N = |V| vertices
(nodes) and a set E of edges that connect pairs of vertices. Here, we consider only undirected and
static networks. The degree k; of a vertex i corresponds to the number of edges attached to i. The
degree distribution of a network P(k) gives the probability that a given randomly selected vertex
has degree k. Social networks are characterized by highly heterogeneous degree distribution,
presenting a scale-free organization [2l], where most of the nodes are low connected, but a small
set of nodes have a high degree. We can also analyze the connection pattern of vertices with the
degree-degree correlation. In assortative, or positively correlated, networks nodes of similar de-
gree tend to be connected. In disassortative, or negatively correlated, networks low-degree nodes
tend to connect with strongly connected vertices. If the tendency of connection is independent
of the node degree, then the network is called non-assortative. The level of assortativity can be
quantified by the Pearson correlation coefficient, p, of the degrees of nodes at either end of an
edge [24]. According to this measure, a network can be classified as (i) assortative (o > 0),
(ii) disassortative (o < 0), or (iii) non-assortative (o ~ 0). Degree-degree correlation plays a
fundamental role in the analysis of several dynamical processes in networks [25]], like network
evolution and link prediction [20]], epidemic spreading [24], or synchronization [26].

2.1. Influence models

One can approach the spreading of rumors or information as a psychological contagion where
an idea “contaminates” the mind of a population [2} [20]]. In the general rumor approach [19, 22|
20| ignorant nodes (U) are those who are unaware of the information, spreaders (/) are informed
individuals that transmit the rumor, and stiflers (R) are individuals who have heard the rumor
but do not spread the information anymore [2| 4]]. Thus, each subject can be in one of the three
states, i.e., unaware, spreader, or stifler, at each time step. Notice that stiflers act as recovered
individuals in a disease spreading model, as they do not participate in the spreading process
anymore [[19}2]. Rumor models are different from the traditional susceptible-infected-recovered
(SIR) spreading model, in the sense that the spreading of information is intentional and the
transition between states occurs only through contacts, whereas the transition from infected to
recovery in the S /R model occurs spontaneously, independent of the connections. In other words,
S IR models assume that people have the same behavior to stop spreading information.
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In the rumor model proposed by Maki and Thompson [19]], a node that knows the rumor
tries to pass the information to each of its neighbors according to a probability 5. When the
contact is performed between two informed individuals, the active spreader becomes a stifler
according to probability u. We consider this model because all transitions occur through contacts,
which makes the dynamics strongly dependent on the network structure. In addition, this model
simulates real social dynamics more accurate than epidemic or threshold models, as people may
have multiple opinions, i.e., positive, hesitating or negative [27]. In rumor propagation, spreaders
behave like individuals with positive views and stiflers with negative ones.

Different from information cascade and threshold models [1} 2], spreaders stop the propaga-
tion after considering the information has lost its “news value” [19], i.e., the rumor is broadly
known or without novelty according to the contact interaction. Besides, the psychological conta-
gion implies a bigger exposure in time and different sources of information. Then, spreaders in
rumor models try repeatedly to propagate the information to their neighbors, which is related to
a social reinforcement action.

We set 8 = 0.3 and u = 0.2 for all simulations. However, and without loss of generality, the
results are stable in a larger combination of spreading parameters, as shown in[Appendix B] With
the selection of this high ratio, we assure to be in a regime above the critical point of the spreading
process for all the considered networks. Opposite to epidemics, where the efforts are in restrain
the propagation, here we are interested in analyzing the behavior of influence maximization in a
“pandemic” or viral marketing scenario [28]], far from the critical regime scenario.

2.2. Influence maximization

The propagation impact (o=(S)) for the set S of seeds corresponds to the expected fraction of
vertices that were informed during the spreading process. Therefore, the influence maximization
problem (IMP) seeks the set S of vertices that contain |S| = 7 initial seeds and maximize the
reach of information, i.e., o(S) should be maximized as a function of the set S.

Let us consider a discrete diffusion scenario in which each vertex i can be in only one state
at each time step. The initial conditions for the influence maximization problem is defined as
U©) = V\S, I(0) = Sand R(0) = {0}, where U(0) represents the set of unaware individuals
in time ¢t = 0 and /(0) the set of initial spreaders or initial seeds S. At each time step, all
spreaders uniformly try to infect their neighbors with probability 5, or stop the diffusion with
probability u according to the truncated dynamics [23]. More specifically, a spreader tries to
inform each of its neighbor until meets another informed node and becomes a stifler. The process
ends when I(c0) = {0} and then we can calculate the final fraction of informed individuals (ES),
ie. g = [R(0)|/N orog = 1-|U(c0)|/N. However, g is a function with stochastic fluctuations.
Thus, the influence function, o (S), is estimated by performing a sufficient number of calculations
of the final fraction of informed individuals ES, with the set of initial spreaders S:

1 K
()= 2 )75 (M

k=1

where o°g" represents the final fraction of informed individuals for a particular run , and K is
the total number of simulations in order to obtain a good estimate of the mean value of o<(S).
Here, we define the total number of simulations for each set of initial nodes as K = 600. This
choice is due to the computational constraint of the Greedy (hill-climbing) method, which has a
very high computation cost. However, we verify that the results are stable for larger values of K
in artificial networks.

4



1 GraphG(V, E); n, S={s}

Centrality
measures

Community
detection

Greedy — hill
climbing

i Ranked vertices of: i i Community i i
i Degree i | divisionn 1 i vertexs; e
; Betweenness L1 GM={G',Gy,.G ) i from(V\S) i
' PageRank P ' e '
Centrality
measures
! Ranked vertices of:
i Degree ;
i Betweenness i
1 PageRank '
o [ """""" No
Seed Seed Seed
selection selection selection
Best-ranked Community Greedy
selection selection selection

Figure 1: Methods considered here to address the influence maximization problem (IMP).

Fig.[I]shows the three methods considered here for solving the influence maximization prob-
lem: (i) by selecting the ; vertices with the highest value of a given centrality measure; (ii) by
detecting the  communities on the network and selecting the most central nodes inside each
community; and (iii) by a greedy approach, that is a hill-climbing procedure that returns the ,
most influential nodes. These methods receive as input the network G and return a set of 7 initial
spreaders.

Methods based on network centrality assume that the most central nodes convince the largest
number of individuals on the network [29] [30]. However, the problem, in this case, is how to
select the most suitable centrality measure to identify the most influential spreaders [31} [32]],
since centrality can be defined in terms of distance, flow, and random walks [31} [32]. Recently
in [33]], the authors introduce a scale-dependent multiscale centrality underlying the geometry
of the network, by the reachable of nodes with the simple diffusion dynamic governed by the
Laplacian of the graph. However, the centrality should be adapted to more complex dynamics,
e.g., epidemic or rumor spreading. Moreover, there are not consolidated results or analyzes of
this new method in terms of the IMP.

After defining the centrality measure, the influence maximization method selects the 17 most
central vertices as the initial spreaders (see Fig. E]) Like in previous works [4} 29, 30], here
we consider the well adopted degree (DG), betweenness centrality (BE) and PageRank (PR) to
measure the centrality of each node.



Another heuristical approach considered here is based on the network community structure.
A community is a group of nodes that has more connections between them than with nodes in
other groups. In social networks, communities represent people that share affinities, defining
the phenomenon of homophily [14]. This condition is the reason that information or sentiments
propagate better in a community, making people more open to the information shared by their
peers [14}134]]. Few works have considered the community structure in the influence maximiza-
tion problem [[12} [13} |14} [15, 116} 17, [18]. Here, we propose a new approach to select the initial
spreaders by the most central vertices within each community, i.e., we avoid selecting two nodes
in the same community.

As depicted in Fig. [I] the main 7 communities of the network are detected and for each iso-
lated G; community, we calculate a centrality measure and select the most central vertex within
the community. Notice that we set the number of influential spreaders 7 and the communities ob-
tained may not correspond to the best division of the network into communities, which yields the
maximum modularity. Therefore, we obtain 77 seeds in which the influence overlap is minimized,
but the influence within communities is maximized. Several methods have been developed to
detect the communities on networks [[10} [13]. Here we employ the fastgreedy algorithm, which
is a fast and accurate method for community identification [10, [35]].

Similarly, in [36] the authors presented a measure considering two types of influence for the
nodes in terms of the community structure: the local influence — linked to the intra-community
centrality, and the global influence — related to the inter-community centrality. Their results, on
top of SIR simulations in a super-critical regime with 4 = 1.0, confirmed that node rankings
based on the community centrality are more accurate than standard/global centrality measures,
in terms of the epidemic outbreak. However, part of the steps from the approach in [36] were
originally presented here [17,37]. Hence, their results are in accordance with our findings.

We also consider an approximation method based on a greedy hill-climbing algorithm [[1].
Many approaches have been derived from this general greedy method [1], such that most of them
try to reduce the computational complexity to some polynomial order [1]. Here, we consider
only the general greedy method [1]]. The algorithm determines among all vertices s; € V\S, i.e.
{s; € V|s; ¢ S}, the node that maximizes the function o (S U {s;}), recalling that S is initially
empty. Afterwards, the vertex s; is added to the set of seeds S = S U {s;} and the procedure runs
until the target set achieves the size |S| = .

3. Databases

We perform extensive numerical simulations in several artificial and real-world networks,
evaluating the impact of the degree correlation in the influence maximization problem. The
structural properties of the networks are summarized in Table[I] with the respective assortativity
p, number of vertices N, average degree (k), average shortest path length (g) and the average
clustering coefficient (C.). Also, the highest modularity Q value and number of communities
N, identified by the fastgreedy algorithm are reported. We can see that real-world networks
are naturally more modular than artificial networks (except for the modular scale-free artificial
networks MSF). However, most networks present similar values of the average shortest path

length ((¢)).

3.1. Artificial networks

We employ the algorithm proposed by [Xulvi-Brunet and Sokolov| [38]] for controlling the
degree-degree correlation in Barabdsi-Albert (BA) networks. This algorithm performs rewirings
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Table 1: Topological measures of the networks considered here. p is the assortativity coefficient, N the network size, (k)
the average degree, (g) is the average shortest path length and (C,) is the average clustering coefficient. The community-
related parameters are the modularity Q and the number of communities N,.

Network o N (k) (&) (C.) FastGreedy
0 Nc
BA —-0.43 | 1000 | 11.9 | 2.96 | 0.017 | 0.26 8
BA —-0.31 | 1000 | 11.9 | 2.87 | 0.028 | 0.25 9
BA -0.21 1000 | 11.9 | 2.86 | 0.031 | 0.25 9
BA 0.02 1000 | 119 | 291 | 0.035 | 0.25 10
BA 0.11 1000 | 119 | 294 | 0.034 | 0.25 11
BA 0.34 1000 | 119 | 3.11 | 0.026 | 0.27 8
MSF -0.21 | 1000 | 11.6 | 4.05 | 0.390 | 0.84 14
MSF -0.13 | 1000 | 11.4 | 436 | 0.381 | 0.86 21
MSF —-0.06 | 1000 | 12.8 | 3.48 | 0.502 | 0.82 10
MSF -0.15 | 1000 | 12.0 | 3.23 | 0.286 | 0.59 12
Google+ —0.39 | 23613 | 3.32 | 4.03 | 0.174 | 0.74 33
Internet —0.20 | 22963 | 4.22 | 3.84 | 0.231 | 0.63 57
Caida —0.20 | 26475 | 4.03 | 3.87 | 0.208 | 0.64 43
Advogato -0.09 | 5054 | 15.6 | 3.27 | 0.253 | 0.34 49
email 0.01 1133 | 9.62 | 3.60 | 0.220 | 0.49 16
Hamsterster | 0.02 2000 | 16.1 | 3.58 | 0.539 | 0.46 57
PGP 0.23 | 10680 | 4.55 | 7.48 | 0.266 | 0.85 179
Astrophysics | 0.23 | 14845 | 16.1 | 479 | 0.638 | 0.63 1172

in order to increase or decrease the degree-degree correlation, i.e., by favoring the connection
between nodes with similar degrees, or by hubs and low degree nodes. For controlling the mod-
ularity of the network, we employ the benchmark implementation for hierarchical and modular
networks proposed by [Lancichinetti and Fortunato| [39]. This algorithm receives as inputs the
number of nodes, average and degree distribution, the minimum and maximum number of com-
munities, the level of mixing or overlapping among the communities. As results, we obtain
scale-free networks with different levels of modularity, i.e., community structure. We will refer
to this modular scale-free networks as “MSF” networks. We adopt these particular models as so-
cial networks also present scale-free degree distribution, community structure, and degree-degree
correlation.

3.2. Real world networks

We consider eight real-world datasets representing connections in social and communica-
tion networks. The disassortative networks are (i) Google+ [40], which is an user-user social
network; (ii) Internet [41], which represents a fraction of the symmetrical snapshot of the In-
ternet structure at the level of autonomous systems, reconstructed from BGP tables published
Oon ROUTEVIEWS.ORG project; (iii) Caida [42], which is an undirected network whose nodes are
autonomous system on the Internet, collected in 2007 from the CAIDA project; and (iv) ad-
vogato network [43]], which is an online platform for free software community launched in 1999
that considers trust relationship between developers. The assortative networks are (i) the email
network [44], which is a network of emails exchanged between members of the Rovira i Virgili
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University; (ii) hamsterster [45]], which is a network based on the friend and family relationship
among users of the HAMSTERSTER.com website; (iii) PGP [46], which is the largest component of
the network of users of the Pretty-Good-Privacy algorithm for secure information interchange;
and (iv) astrophysics [47], which is a collaborative network between scientists on previous stud-
ies of astrophysics on arXiv. We assume that all these networks are undirected and unweighted.
Only the largest network component is considered in our analysis.

4. Results and discussion

4.1. Impact of assortativity on artificial networks

We calculate the final fraction of influenced individuals according to Equation[I} The number
of initial seeds varies from two nodes to 10% of the total number of nodes (N). The impact
of degree correlation on the influence maximization problem is illustrated in Fig. 2] where we
show the relative maximum spreading, i.e., the fraction of maximum informed nodes within
the population that was not initially informed (initial seeds). We observe that an unexpected
phenomenon occurs when networks are disassortative (see Fig. [ with negative p) — the curve
of relative maximum influenced nodes (o(S) — [S|/N) has a peak when the number of seeds is
lower than 10% of the network and then starts to decline when the number of seeds is increased.
This peak is due to the low interaction between the initial spreaders in disassortative networks,
i.e., central nodes (e.g. hubs) are connected through low degree nodes, increasing the distance
between them or branching [25]]. If the number of seeds is higher than 10% of the total number
of nodes, then the overlap of influence between spreaders occurs and they become stiflers more
frequently than for a smaller number of seeds.

We also observe that selecting the central nodes by the communities provides better results
than the greedy method when the networks have high modularity (see Fig. Eka)—(d)). For instance,
in the disassortative networks, the community detection approach works well for high modularity
values. This is since communities are well defined and the centroids are well separated, which
can be observed by the high modularity and disassortative property. Therefore, there is a lower
effect of spreading overlapping between the community seeds.

Another interesting point is the crossover phenomena at low numbers of initial seeds, as
shown in the inset of Fig. 2(d)-(f). We observe that there exist a maximum relative size of the
outbreak for the community approach, which happens in networks with a well defined modular
structure. When the modularity is too small, a small number of initial seeds achieved larger
relative outbreak size, which decreases with the size of S. On the other hand, the higher ranking
strategy improves the relative maximum outbreak size when additional seeds are considered, and
the reach of the outbreak peak is enhanced in stronger disassortative networks.

For non-correlated and assortative networks (please, see Section E] for network correlation
definitions), selecting the central nodes by considering the whole network leads to the lowest
relative size of the outbreak (o-(S) —[S|/N) and the results are worse than the uniform selection of
seeds (see the curves of random in Fig.[2[c), (g), (h) and Fig.[A.T[b)). This happens because hubs
are placed in the same community and, therefore, there is a large number of interactions between
the initial spreaders, reducing the rumor propagation. The artificial BA networks considered are
less modular than real-world networks (see Table[I]), which makes the algorithm by communities
performing worse than the greedy seed selection.

Additionally, in Fig. 2] we observe that the selection according to communities yields sim-
ilar results for all centrality measures considered. The same happens to the selection accord-
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Figure 2: Impact of degree-degree correlation on the influence maximization problem, when maximizing the relative
size of the outbreak in function of the initial seeds (S). The number of seeds varies from two nodes to 10%N. For
each artificial scale-free network, we calculate the set of initial seeds according to: (BST) the best-ranked nodes of
the network; (COM) the most central nodes from communities; (RANDOM) randomly selecting the initial seeds; and
(GREEDY) the greedy method. The adopted measures are betweenness centrality (BE), degree (DG) and PageRank (PR).
The inset figures are the zoom at low number of seeds [S| = 3%N, with the same axes units.

ing to global centrality (best-ranked approach). Thus, the selection among the centrality mea-
sures does not affect the prediction of the fraction of influenced nodes significantly. This can
be explained by the high correlation between degree, PageRank and betweenness centrality in
scale-free networks, which have been reported as producing statistical similar results in other
domains [48 49]. However, one could consider more elaborated centrality measures that out-
perform heuristic methods in the identification of influential nodes [49, 50} 51} 152} 153 33]]. For
instance, combining local topology information into a multi-centrality index [49]; synthesizing
local features and spreading influence in a fusion [50] or multiscale [33] index; or combining a
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node centrality from perturbed versions of the network [51]].

Previous results suggest that the reach of the rumor depends on the network assortativity and
community organization, the method for selecting the initial spreaders, and the number of seeds.
For instance, in we have different results among the methods in two networks with
similar structural properties, but opposite degree-degree correlation. Another example is the
greedy approach in Fig. [2[e), which could not follow the growing behavior of the higher ranking
strategy. This dependency is not expected, since the number of infected nodes should always
increase with the number of seeds. The before is approximately observed in the linear behavior
for the uniform selection of initial spreaders, without considering the network topology.

4.2. Impact of assortativity on real world networks

We also analyze the spreading process in eight real-world networks (see Table [I). These
networks present different levels of degree-degree correlation and community organization. The
optimal fraction of stiflers o(S), i.e., the maximum informed individuals in function of S, is
calculated by considering the number of initial seeds in the interval [2, nmax ], Where nmax cor-
responds to 10% of nodes. We limit the simulation until 10% of network size because the greedy
method has a very high computational cost. For instance, the identification until the 10% of most
influential spreaders took about two months for the Caida network, whereas our method provides
similar results in less than two hours.

The set of initial spreaders are selected uniformly at random or according to centrality mea-
sures calculated from the whole network or inside communities. Fig. [3] shows the maximum
relative fraction of stiflers obtained in function of the number of seeds. We can see that a peak in
the relative curve (o(S) —|S|/N) occurs in disassortative networks for the higher ranking strategy.
These results are similar to those obtained in artificial networks (see Fig. ).

Contrary what is currently expected, the choice of seeds according to global centrality mea-
sures provides lesser informed nodes than the random selection of seeds, mainly in assortative
networks (see for instance Fig. [3] (e),(g),(h) and Fig. [A.T[(b)). This is due to the interaction of
central spreaders in the early steps of the process, as central nodes tend to be connected in these
networks and cause that spreaders in rumor dynamic turn inactive more quickly.

Fig.|3|also shows that the selection of initial spreaders according to communities provides a
larger fraction of informed individuals than the greedy approach for the Google+, and at small
sizes of initial seeds for Caida network. Generally, the greedy method tend to have poor perfor-
mance for low sizes of S when more disassortative and modular the networks. The before can be
observed in Fig. 2] (a)-(e) and Fig. 3| (a),(c)-(e).

For the remaining networks, the greedy approach is better, in most cases, than all the other
methods. However, the relative maximum size of outbreaks is similar to the community-based
results. Thus, the greedy strategy for real-world networks is harder concerning artificial mod-
els. This is due to the community structure present in real networks, with possible unbalance
communities and intersections. This property could be a limitation for the fastgreedy community
detection algorithm, which finds a well-separated dendrogram of the communities. However,
since the greedy method is computationally expensive, the selection of seeds according to com-
munities reveal to be more suitable.

4.3. Distribution of initial spreaders

We analyzed how the distribution of the seeds is similar in terms of communities. Since
these communities have different sizes, we aim to calculate the probability of uniformly select
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Figure 3: Impact of degree correlation in the real-world networks, when maximizing the relative size of the outbreak in
function of the initial seeds (S). The number of seeds varies from two nodes to 10% of network size, selected according

to communities (COM), ranking of the most central nodes (best-ranked, BST), random (RANDOM) and by the greedy
method (GREEDY). Betweenness centrality (BE), degree (DG) and PageRank (PR) are the centrality measures used.
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a vertex that belongs to some G/. community, i.e., p(x.) = |G.|/N, where |G,] is the number of
vertices in the community. In this way, we define X = {x1,x»,...,x,} as the set that describes the
probabilities p(x) for all the communities. Moreover, we say thaty. = S N G.. denotes the seeds
that are part of a community. Thus, the probability of uniform select a seed that belongs to some
community G is p(y.) = ly.|/n. In the same way, Y = {y,,y,...,y,} is the set that describes the
probabilities p(y) for all the communities.

We expect that rumor spread better when the seeds are distributed among communities. This
should occur because each seed tries to infect its own community and the interaction between
pairs of spreaders is minimized. We verify this hypothesis here by the normalized variation of
information (NVI), inspecting the similarity between the size of communities and the distribu-
tion of the seeds in the communities. The NV is an information-theoretic metric that obeys the
triangle inequality [54] and is normalized in a stochastic sense defined as follow: Given two dis-
crete sets X and Y, their joint information entropy () and mutual information (1) are expressed
respectively in terms of the marginal and joint distributions of X and Y,

_IXY)
HX,Y)

where the results are normalized in [0, 1] and the mutual information measures the overlap be-
tween the two sets. In information theory this measure returns 0 when the two sets are identical
in the information of the item distribution and 1 when they are completely different, i.e., they are
independent with no sharing of information.

In terms of the seed distribution across communities, we identify 77 main communities and
calculate the NVI measure for the seeds according to the greedy approach and degree centrality,
as shown in Table E} When the set of seeds is similarly distributed across communities, the NVI
values tend to zero. When the seeds are concentrated in only one partition, the NVI values tend
to a maximum equal to unity. Lower NV values mean that the seeds are more homogeneously
distributed as the size of the communities.

We notice that the NV values for the greedy algorithm are lower than the higher ranking
strategy according to the degree. This suggests that the greedy approach tends to select the seeds
more homogeneously distributed across communities — most of the cases in seed sets with sizes
lower than 1% of the network. In the artificial networks, the NV values of the degree approach
increase with S|, because seeds tend to be placed in specific communities. Moreover, the NVI
differences between Greedy and BST-DG algorithms increase with assortativity. The reason is
that in high degree-degree correlated BA networks, hubs are all placed in the same community,
and they tend to be connected.

Similarly, when increasing the assortativity, the seeds identified by the greedy method are
more homogeneously distributed across the communities than the BST-DG seeds, which is more
notably observed in the NVI values for the real-world networks. This result supports the hy-
pothesis that the seeds of the greedy method are distributed according to the communities of the
network, avoiding spreading overlapping between the seeds as a possible strategy [11]]. This also
indicates that the influence maximization problem in networks with community organization can
be addressed by the identification of the most central nodes inside communities, instead of con-
sidering the greedy approach, which is computationally more expensive. In networks without
community structure, the greedy algorithm, or the selection according to the most central nodes
(globally) provides the best results, as observed in Fig.[2]

However, notice that our results are valid only for the Maki-Thompson rumor model. In the
case of S IR, cascade or threshold models [31}55]], the results may be different. The investigation
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Table 2: The normalized variation of information (NVI) measure calculated for the selection of seeds according to the
greedy (GREEDY) approach or degree centrality (BST-DG).

Network e [S|/N  GREEDY BST-DG
(%) NVI NVI
BA -043 05 0.409 0.409
BA -0.43 1 0.556 0.535
DN BA -0.43 10 0.706 0.731
google+ -0.39 05 0.311 0.408
google+ -0.39 1 0.196 0.334
google+ -0.39 10 0.464 0.725
BA 0.02 05 0.409 0.409
BA 0.02 1 0.469 0.651
NA BA 0.02 10 0.708 0.843
email 0.01 05 0.368 0.306
email 0.01 1 0.524 0.695
email 0.01 10 0.603 0.809
BA 034 05 0.344 0.689
BA 0.34 1 0.492 0.858
AN BA 0.34 10 0.693 0.861
astrophysics 023 0.5 0.523 0.940
astrophysics 0.23 1 0.589 0.948
astrophysics 0.23 10 0.558 0.933

of the effect of community structure on these models are an interesting topic for further research.

4.3.1. Statistical analysis

Since the greedy approach selects seeds uniformly among communities, it is expected that
the community-based and greedy methods provide a similar number of informed nodes. Thus,
we perform a statistical test to compare the performance of the four methods considered here
— the final fraction of recovered individuals measures this performance. Initially, we analyze
the influence maximization considering 1% of the network as initial spreaders (see Table[3). We
consider a statistically significance test employing the Friedman and Nemenyi approach [56].
The Friedman test is a non-parametric counterpart of the well-known ANOVA (analysis of vari-
ance), with the corresponding Nemenyi post-hoc test for comparing the average ranks of the
algorithms. If the Friedman test rejects the null hypothesis of similar performance, we proceed
with the Nemenyi post-hoc test for pairwise comparisons, verifying whether the differences in
rank values are statistically significant.

The critical diagram representation suggested by Demsar [56] provides a visual method to
compare the results. In the diagram, a horizontal line represents the axis with the average rank
values of the methods. In this axis, the lowest (highest) ranked methods are on the left (right)
side. Algorithms that are not significantly different from each other are connected through a
bold horizontal line. The performance between methods is significantly different if their corre-
sponding average ranks differ by at least the critical difference CD. The value of CD given by the
Nemenyi test is presented at the top of the diagram.

According to the result of o(1%) in the Table[3] the chi-square statistics for the methods is
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Table 3: Final fraction of informed nodes (0(S)) according to different methods.

Network GREEDY COM-DG BST-DG RANDOM
o(1%) oc(10%) o(1%) o(10%) oc(1%) o(1%)
Google+ 0.1686  0.1663  0.1897  0.2627 0.1549 0.1501
internet 0.2130  0.2810 0.1906  0.2570  0.1639 0.1755
caida 0.1959 0.2640 0.1966  0.2531 0.1696 0.1743
advogato 04071 0.5179 04138 0.5002  0.3933 0.3821
email 0.6086 0.6976 0.6089  0.6707 0.5942 0.5941
hamsterster  0.5738  0.7318  0.5693  0.6871 0.5408 0.5236
PGP 0.3126  0.5356 0.3122  0.4985 0.2593 0.2654
astrophysics  0.5785  0.6979  0.5735  0.6745 0.5418 0.5456

19.20, and the critical value of the chi-square statistics with 3 degrees of freedom at 95 percentile
is 7.81. Thus, for the Freidman test using the chi-square statistics, the null-hypothesis that all
methods behave similarly should be rejected. Moreover, we calculate the F-statistics of the
methods, obtaining the value of 28.00. With 3 and 21 degrees of freedom and at 95 percentile,
the critical value of the F-statistics is 3.07, indicating that the null hypothesis should be rejected
again. Therefore, the method does not provide statistically similar results.

Since the methods do not provide the same fraction of informed nodes, we apply the post-hoc
Nemenyi test in order to find which method achieves the maximum influence. The critical dia-
gram of the Nemenyi test is shown in Fig.[d The CD for comparing the mean ranking between
two methods at 95 percentile is 1.66. Mean-ranking differences above this value are statistically
significant. Thus, we conclude that there are no statistically significant differences in the influ-
ence maximization results between the greedy and community method when the number of seeds
represents less than 1% of the network. However, the Nemenyi test indicates significant differ-
ences between the methods based on community centrality and those that consider the random
selection of spreaders or selection according to higher centrality.

CD

-

2 3 4

GREEDY
COM

RANDOM
BST

Figure 4: The critical difference (CD), according to the Nemenyi test, for comparing the mean-ranking of two different
methods at 95 percentile is 1.66. Mean-ranking differences above this value are significant and unconnected.

We verify in Fig.[3]that for [S| > 1%N, the methods based on the greedy method and commu-
nity centrality provide the highest number of informed nodes. Thus, we perform the statistical
hypothesis test only on the methods based on the greedy approach and community organization.
For evaluation of these two algorithms in multiple data sets, we employ the Wilcoxon signed-
rank test [56]]. This statistical test is a non-parametric alternative to the paired t-test. We adopt the
Wilcoxon test because it is less affected to outliers and does not assume a particular population
distribution [56]. For rejecting the null-hypothesis of similar performance, the W-value returned
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by the test should be smaller than the corresponding critical W, value of the Wilcoxon test table.

We compute the Wilcoxon statistical test at 95 percentile for the greedy and community
approach considering the number of initial spreaders as |[S| = 10%N (Table[3). As a result, we
obtain a W-value = 8. The critical value for eight networks at p = 0.05 is W, = 3. Therefore, the
null-hypothesis of similar performance of the methods cannot be rejected. These results suggest
that the fraction of informed nodes provided by the greedy algorithm and the method based on
community centrality are statistically similar. Therefore, since the community-based method is
computationally faster than the greedy algorithm, it is more suitable to address the influence
maximization problem in practice.

5. Conclusion

We have analyzed the role of degree-degree correlation in the influence maximization prob-
lem. To simulate the information spreading, we consider the rumor model proposed by Maki and
Thompson [19} 20], which is more suitable to represent the information dynamics in social net-
works [2]. We have proposed a method to maximize the influence transmission based on network
community organization. This method has been analyzed by performing simulations on the top
of eight real and ten artificial complex networks. We have verified that our method is statistically
similar, in terms of the information reach, to the approach based on a greedy algorithm, which is
computationally expensive. Thus, our results suggest that our method is more suitable in practice
since it provides similar results as the greedy approach, but it is less time-consuming.

Our analysis can be extended by comparing our method with the exact solution of the optimal
set of seed in small networks. We can generate networks with varying level of community orga-
nization and determine the set of seed by considering both methods. Then, we can verify for what
cases our approach is close to the optimal solution. Our analysis can also be complemented with
the consideration of patterns of connections and influence inside networks (e.g. [49, 153/ 150} 57])
to select the set of initial spreaders. Besides, centrality measures like proposed in [32, 3336} 51
have potential for finding the best seeds in the IMP, and deserve future studies.

Another interesting phenomenon is the emerging of a maximum value of influence related
to seed size and network structure. The peak seems to be related to both the modularity and
degree-degree correlation, in which: the more disassortative and lower modular the network, the
peak appears with the best-ranked nodes; and when more disassortative and higher modularity, it
occurs in the community seeds. The before indicates that there exists a crossover around p ~ 0.
We consider this point deserves more analysis in future works.

The study of weighted [S8]], multilayer [59]], and dynamical networks [60] is also promising.
In all these cases, general methods for community identification in networks are necessary [10].
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Appendix A. Results of Assortativity in Artificial Networks

We have in Fig. [A.T] two networks with similar structural properties, but opposite degree-
degree correlation. The analyzed methods produce different results in each case. For instance,
in the disassortative network (Fig.[A.T|a)) the greedy approach has poor performance for lower
sizes of S, the community seeds reach larger relative outbreak until 2%N, and the global seeds
are a good option as well until 6%N. On the other hand, in the assortative case (Fig.[A.T[b)), the
greedy approach always achieved the maximum relative outbreak, and the global centrality seeds
reached the lowest results, worst than the random selection of seeds.

- |SI/N

0.7{ ——BST-BE
——BST-DG
—=—BST-PR
-<-COM-BE

o(S)

--COM-DG
-@-COM-PR
——RANDOM

GREEDY
0.6 0.6

4 7 10 1
Initial seeds (%)

4 7 10
Initial seeds (%)

(a) BA (p = -0.21, 0 = 0.25) (b) BA (p =0.34, 0 =0.27)

Figure A.1: Impact of degree-degree correlation on the influence maximization problem, when maximizing the relative
size of the outbreak in function of the initial seeds (S). The number of seeds varies from two nodes to 10%N. For
each artificial scale-free network, we calculate the set of initial seeds according to: (BST) the best-ranked nodes of
the network; (COM) the most central nodes from communities; (RANDOM) randomly selecting the initial seeds; and
(GREEDY) the greedy method. The adopted measures are betweenness centrality (BE), degree (DG) and PageRank (PR).

Appendix B. Spreading parameters evaluation

We evaluated the relation between the spreading parameters and the selection of the initial
spreaders in an artificial scale-free network. In Fig. [B.I] we show the simulations adopting the
degree centrality and a fixed value of 7 = 4%N initial spreaders.

The maximum influence spreading o<(S) is affected according to the respective method (Fig.[B.I).
The solid and dotted white curves represent the combination of 8 and y parameters that reach the
final fractions of 0.35 and 0.6 stiflers, respectively. We observe that these curves show a well de-
fined linear pattern, which means, the results are stable and equivalent values of A = 3/u obtain
similar o(S) results.

The white lines of the community centrality selection (Fig.[B.1a)) present higher slopes than
the Best-ranked (Fig. [B.I|b)) and Random (Fig. [B.I|c)) seed selection. This result means that
the community selection maximized the spreading influence on the network in the function of S

more than the other two methods. Additionally, the best-ranked method has the lowest slope in
the white lines.
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