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Abstract

Square-wave or fold/hom bursting is typical of many excitable dynamical systems, such as pancreatic or
other endocrine cells. Besides, it is also found in a great variety of fast-slow systems coming from other
neural models, chemical reactions, laser dynamics, and so on. We focus on the spike-adding process and
its connection with the homoclinic structure of the system. The creation of new fast spikes on a bursting
neuron is an important phenomenon as it increases the duty cycle of the neuron. Here we mainly work
with the Hindmarsh-Rose neuron model, a prototype of fold/hom bursting, but also with the pancreatic
β-cell model, where, as already known from the literature, homoclinic bifurcations play an important
role in bursting dynamics. Based on several numerical simulations, we present a theoretical scheme that
provides a complete scenario of bifurcations involved in the spike-adding process and their connection
with the homoclinic bifurcations on the parametric space. The global scheme explains the different
phenomena of the spike-adding processes presented in literature (continuous and chaotic processes after
Terman analysis) and moreover, it also indicates where each kind of spike-adding process occurs. Different
elements are involved in the theoretical scheme, such as homoclinic isolas, canard orbits, inclination and
orbit flip codimension-two bifurcation points and several pencils of period doubling and fold bifurcations,
all of them illustrated with different numerical techniques. Some of these bifurcations needed in the
process may be not visible on some numerical simulations because the organizing points are in different
parametric planes due to the high dimension of the whole parameter space, but their effects are present.
Therefore, we introduce a mechanism of the spike-adding process in fold/hom bursters in the whole
space of parameters, even if apparently no role is played by the “far-away” homoclinic bifurcations. This
fact is illustrated showing how the theoretical scheme provides a theoretical explanation to the different
interspike-interval bifurcation diagrams (IBD) that have appeared in the literature for different models.
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1. Introduction1

One of the most active research lines today is neuroscience, and a part of it is devoted to the study2

of its basic elements, neurons. Models in this field exhibit fast slow dynamics [1], a feature which is3

shared with many other models in practical applications as the case of some chemical reactions [2] or,4
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in the field of technology, laser devices [3]. An essential measure is the time that a neuron, or any5

other system, is active. This is related with the number of oscillations (spikes) in the fast subregime.6

In the literature there is a large number of articles dedicated to study the mechanisms involved in the7

spike-adding processes and also how the number of spikes change when one parameter is varied.8

This paper studies the spike-adding process focusing on the Hindmarsh-Rose [4] neuron model, as9

a well known example and prototype of square-wave (or fold/hom) bursting [5]. Literature concerning10

this model is really impressive and, only in relation to our interests, we can quote [6, 7, 8, 9, 10, 11, 12,11

13, 14, 15, 16, 17]. We contribute to the general understanding of the spike-adding process in fold/hom12

bursters, one of the most common ones. Namely, we put forward a theoretical scheme to describe the13

mechanisms involved in the formation of spikes in the context of such model. Later, we also show how14

these mechanisms are also observed in the Sherman et al. model of the pancreatic β-cell [18].15

Since the pioneering work by Hodgkin and Huxley [19], many proposals have been made to encapsulate16

a qualitative description of the neuronal dynamics in a family of differential equations. The Hindmarsh-17

Rose model:18  ẋ = y − ax3 + bx2 − z + I,
ẏ = c− dx2 − y,
ż = ε[s(x− x0)− z],

(1)

is able to reproduce the most significant behaviours: quiescence, spiking and also bursting, either regular19

or irregular. Variable x represents the membrane potential, whereas y and z correspond to ionic currents.20

We consider a typical choice of parameters a = 1, c = 1, d = 5 and s = 4, discussing the spike-adding21

processes for different choices of the others [20]. The parameter ε is the small parameter of the model,22

giving rise to a fast-slow system with two fast and one slow variables.23

This model is a prototypical example of fast-slow system. Bifurcations in the fast subsystem (limit24

case ε = 0) are essential elements of the fast-slow decomposition (first developed by Rinzel [21]) to25

explain the dynamics when ε is small. The study of the fast subsystem provides the spiking (or fast)26

manifold Mfast, formed by stable limit cycles of the limit case, and the slow manifold Mslow, formed27

by the equilibria of the limit case. The stable periodic orbits of the complete model behave following the28

well-known phenomenon, explained by singular perturbation theory and Fenichel’s theorems [22], that29

the orbits (for small enough parameter ε) exhibit jumps from one manifold to the another one along its30

trajectory. Note that, when ε = 0, z is an additional parameter of system (1). Choosing b and I in31

suitable regions one can check that the curve of equilibrium points (slow manifold) exhibits a S-shape32

with two Hopf and fold bifurcations splitting the curve in stable and unstable branches (see [1] for more33

details).34

We call bursting oscillation a time evolution consisting of bursts of rapid spikes (any excursion around35

the tubular manifold Mfast), alternated by phases of relative quiescence (following Mslow). The kind36

of bursting that we study here is said fold/hom [23] because the family of limit cycles displayed by the37

fast subsystem ends at a homoclinic bifurcation, where trajectories of the full system jump to the slow38

manifold.39

By spike-adding process we understand any mechanism leading to the formation of additional turn-40

ings. The spiking rate and the time between spikes are essential elements in the understanding of the41

codifications in the neurons. As a result, spike-adding has been studied in many fold/hom neuron models42

[24, 25, 26, 27], including the Hindmarsh-Rose system as a prototypical one. It should be noted that in43

the literature one can find other types of spike addition processes that arise in bursting models of different44

nature, such as systems with external multiple frequency forcings, in which new bursting patterns can be45

observed [28, 29]. In these models, the effects of forcing frequencies must be taken into account. As well,46

phenomena of mixed mode burst oscillations (MMBO), that is, solutions that exhibit small amplitude47

oscillations and bursts consisting of one or multiple large amplitude oscillations, have been observed in48

some fourth order systems [10].49
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As explained in [30], the spike-adding transition may be either continuous, with a period which in-50

creases along the process, or discontinuous, involving chaotic phenomena. Relevance of fold bifurcations51

of periodic orbits was pointed out numerically in [31]. Dealing with fold/hom bursting, the spike-adding52

has also been related with canard orbits [14, 16, 32, 33], already anticipated in [30] when the increasing53

of the period was pointed out, and also with the existence of certain codimension-two homoclinic bifur-54

cations [7, 8, 10, 16, 17]. Spike-adding cascades were also discussed in [25] for a modified version of the55

Hindmarsh-Rose model. Authors identified two different routes which were determined by the location of56

the equilibrium point in the full system with respect to the homoclinic bifurcation in the fast subsystem.57

One involves fold bifurcations of periodic orbits. In the second route the spike-adding cascade is organized58

by isolas.59

As already mentioned, spike-adding mechanisms have been linked to the occurrence of certain codi-60

mension-two homoclinic bifurcations. Namely, fold and period doubling bifurcations have been shown61

to arise from codimension-two bifurcation points located along homoclinic bifurcation curves exhibited62

by the full system for fixed values of ε and with b and I varying. In this paper, we aim at showing63

the mechanism of the spike-adding process by proposing, based on our bifurcation results, a possible64

theoretical scheme that completes and provides answers to open questions related to the first scheme65

given in [16]. Moreover, the proposed scheme permits to locate theoretically both spike-adding processes66

studied by Terman [30], a connection which is missed in the literature.67

All these spike-adding processes are usually illustrated by means of interspike-interval bifurcation68

diagrams (IBD) of stable bursting orbits as one parameter changes (see [9, 13, 25]). That kind of pictures69

shows different cascades of spike-adding (or period-adding) phenomena, crossing or not chaotic zones.70

The involved chaotic transitions have been discussed in several papers [8, 13, 15, 17], but what is missing71

is a connection with a theoretical framework. In Section 3 it is shown how the introduced global scheme72

provides a theoretical explanation to the different IBD diagrams that have appeared in the literature.73

This paper is organized as follows. Section 2 presents a global three parametric numerical study of74

the Hindmarsh-Rose model focusing on the 2-3 spike-adding process (from 2 to 3 spikes per burst) and on75

the 6-7 one. Section 3 provides a theoretical scheme of the fold/hom spike-adding area with the different76

bifurcations involved in the process. Also, once the theoretical scheme is given we show how it provides77

an explanation for the typical IBD pictures shown in literature. An example using a more realistic model,78

the pancreatic β-cell neuron model of Sherman, Rinzel and Keizer (1988) [34], is presented in Section 4,79

showing that the same bifurcations as in the Hindmarsh-Rose model are present. Finally, we give some80

conclusions.81

2. Global analysis82

In this section we study the structure of the parametric space of the system by using different numerical83

techniques.84

As an introduction, in Figure 1 we use the HR model to exemplify two processes of spike-adding85

usually shown in literature [13, 25]. Panel (a) shows an interspike-interval bifurcation diagram (IBD) of86

stable bursting orbits as I varies when ε = 0.01, x0 = −1 and b = 2.7. Similar bifurcation diagrams are87

given in [9] where the spike-adding process is clearly shown. For high values of I, from right to left, the88

model exhibits tonic spiking which precedes a cascade of period doubling bifurcations leading to chaos.89

After crossing the chaotic zone the bifurcation diagram is wider and it starts an inverted cascade of period90

doubling bifurcations, and later a regular bursting regime with 12 spikes is observed. This transition is91

named a continuous interior crisis [11, 13] (compare also with [30] when Terman shows that a transition92

from n to n+ 1 spikes can be chaotic). When I decreases there is a sequence of spike-deletions between93

which there is a well-defined bursting regime. In [12, 13] it is said that the dynamics is block structured.94

Note that the transition between blocks can be again chaotic. As already mentioned, this type of diagram95
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Figure 1: Two typical examples of spike-adding processes. Left: interspike-interval bifurcation diagram (IBD) with x0 = −1,
b = 2.7, ε = 0.01 and I as bifurcation parameter. Right: continuation of a periodic orbit with b varying and x0 = −1.6,
I = 2.2, ε = 0.01. This left panel shows the IBD and the ‖ · ‖2 norm of the periodic orbit as a function of b, where solid
(resp. dashed) refers to stable (resp. unstable) orbits.

is shown quite frequently in literature for different models but, although chaotic transitions are discussed,96

no connection with a theoretical framework is available.97

Right side panel (b) shows another IBD. In this case b varies whereas ε = 0.01, x0 = −1.6 and98

I = 2.2. From now on, unless indicated, we fix the value x0 = −1.6. We also provide the continuation99

of a periodic orbit (plotting the ‖ · ‖2 norm against b using AUTO continuation software [35]) along100

the whole process of spike-adding. Note that the periodic orbits evolve continuously with respect to the101

parameter (a similar evolution could be shown for the case of the left panel, at least for the transition102

from 2 spikes to 11 spikes). This spike-adding mechanism with a continuous evolution of the periodic103

orbit was already anticipated in [30]. Note that the sequence of bifurcations involved in the transition104

from n to n + 1 spikes is always the same: two fold bifurcations give rise to an hysteresis phenomenon.105

These fold bifurcations are the key features of this spike-adding process. They have already been shown106

in some examples in [8, 14, 16].107

As illustrated in Figure 1, spike-adding cascades determine, following the notion introduced in [13],108

a block structure in the bifurcation diagrams. But this analysis uses just one parameter, and other109

techniques are more suitable to provide results in higher parameter spaces. Figure 2 shows how these110

blocks give rise to bands when two- and three-parameter spaces are explored. Spike-counting technique [9],111

which counts the number of spikes in a burst, is used to obtain two-parameter sweeps on certain parameter112

planes: a vertical one with I fixed and five horizontal planes with ε fixed. Putting everything together on113

a three-dimensional parameter space (b, I, ε), we obtain the two pictures displayed in Figure 2 (front and114

back views). Clearly visualized, we observe a band structure which goes through a simplification process115

as ε increases: note how the number of colors (related with the number of spikes per burst) decreases.116

The simplification of the band structure is explained in [7] by means of a parallel process of simplification117

in the homoclinic structure in the system. The dark red regions denote chaotic areas or, due to the118

chosen color scale, they correspond to bursting orbits with a large number of spikes (see bottom part).119

For further understanding, one should place the bifurcation diagrams shown in Figure 1 in the context of120

Figure 2, where the IBD shown in the plot (b) of Figure 1 corresponds to a line in the three-parametric121

study of Figure 2 that crosses the different bands on the spike-adding process. Now the question is to122

focus on detecting the main ingredients that give rise to the structures observed in Figure 2.123

In the sequel, we use the notation hom(n,n+1) to refer to a homoclinic bifurcation surface (or curve)124

where the homoclinic orbit evolves from n to n + 1 spikes. In [6, 7], we showed how these homoclinic125
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Figure 2: Three-parametric (b, I, ε) diagram showing the spike-counting (SC) sweeping technique, number of spikes per
burst of the attractor, in different biparametric planes. The pictures show how the number of spikes per burst decreases
when the small parameter ε grows and how less and less color bands appear. The global structure seems to be similar for
any small value of the parameter, but with more color bands.

bifurcation surfaces overlap each other forming a structure of “mille-feuille”. In turn, arising from these126

surfaces we find bifurcations of periodic orbits that are essential ingredients in the mechanisms of spike-127

adding. As already mentioned, bifurcations of periodic orbits involved in the spike-adding mechanisms128

in the Hindmarsh-Rose model were linked to the existence of certain codimension-two homoclinic bifur-129

cations in [14, 16].130

In Figure 3 we show bifurcation diagrams on parametric planes (b, I), fixing different values of ε. All of131

them show similar techniques and elements: spike-counting, a homoclinic bifurcation curve, codimension-132

two homoclinic bifurcation points, folds of periodic orbits and curves of period doubling bifurcation.133

Although three types of homoclinic bifurcations of codimension-two can appear, now we only pay attention134

to inclination flips (IF) and orbit flips (OF). In our case, at both bifurcations the linear part at the135

equilibrium point has real eigenvalues λs, λu and λuu with λs < 0 < λu < λuu. Passing through an136

inclination flip, the orientation of the global two-dimensional unstable manifold changes. Whereas through137

an orbit flip, there is a switching when, following the backward flow, the homoclinic orbit approaches the138

equilibrium over the leading unstable manifold; namely, the entrance branch is reversed. References [7]139

and [36] contain extended discussions regarding these codimension-two homoclinic bifurcations. There140
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are three classes of flip homoclinic bifurcations: A, B and C. Those exhibited in the Hindmarsh-Rose141

model are all of type C. The corresponding theoretical bifurcation diagram is well-known in literature142

(see [36] and references therein). There exist pencils consisting of fold bifurcations of periodic orbits,143

period doubling bifurcations and wedge-shaped regions of chaotic behaviour.144
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Figure 4: Center: Parameter plane (b, I) for ε = 0.07 showing the isola of the codimension-one homoclinic curve that gives
6-7 spikes per burst. Left and right: xz projections of two homoclinic orbits for three fixed values of I.

Left and right panels in Figure 3 show diagrams which include (black coloured lines) the curve hom(2,3)
145

and hom(6,7), respectively. From top to bottom the values of ε are 0.01, 0.015 and 0.03. Note that, as146

already known from [16], the endpoints of the homoclinic bifurcation curve are only apparent ends. There,147

the curve is folded onto itself so that, actually, there is a double covering with two branches. In fact,148

it is argued in [7] that these curves are closed and hence it makes sense to refer to isolas limited by149

homoclinic bifurcations. To illustrate this fact, in Figure 4 we show (central panel) the curve hom(6,7)
150

on the two-parameter plane (b, I) for ε = 0.07. It seems to be just a line, but this cannot be the case, as151

long as the bifurcation curve cannot stop suddenly, unless a codimension-two point or another singularity152

appears. If we follow the bifurcation curve with continuation techniques (using the software AUTO in our153

case) we really see that the continuation process produces foldings on the visible segment. To study what154

happens, we consider three values of the parameter I and we show the homoclinic orbits obtained in each155

one of the branches. At each value of I we have obtained two different homoclinic orbits (left and right156

panels in Figure 4). One has an extra loop around the equilibrium far from the burst activity, namely,157

there is a homoclinic orbit with six spikes (black color), and another one (red color) with seven spikes,158

but organized in two groups, one of six spikes and another one of just one. This provides a numerical159

evidence of the existence of the homoclinic isola.160

In this paper we focus on small values of ε because we want to provide a study of the generic case161

when ε � 1. That is the reason why the bifurcation diagrams for ε = 0.01 and ε = 0.015 are remarked162

in Figure 3. Note that the main difference between small and large values of ε has to do with left ends163

of folds and period doubling bifurcations. Whereas for small values these curves emerge from inclination164

flip bifurcations placed on the left side of the homoclinic curve, for larger values these bifurcation curves165

extend far from the homoclinic structure.166

To understand the theoretical scheme that we propose below in Section 3, one should pay attention to167

some of the differences observed in Figure 3. The most remarkable one is that, whereas hom(6,7) exhibits168

two orbit flips (OF), the left one located on the lower branch of the homoclinic curve and the right one169

on the upper one, hom(2,3) only exhibits one, located on the lower branch. We remark that the behaviour170

exhibited by hom(6,7) is the generic one, that is, it corresponds to the behaviour that we found along171

hom(n,n+1) for ε small and n > 2. Nevertheless, as already argued in [16], we stress that hom(2,3) behaves172

differently, although the global picture is similar, except in a very small region around the homoclinic173
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curve. We will come back to this later, when we discuss the scheme provided in Figure 6.174

In Figure 5 we show that the structures observed in Figure 3 for some values of ε are the generic ones175

for ε small enough. The bifurcation curves build up surfaces in the three-parameter space (b, I, ε). Later176

on, this global structure will allow us to understand, from a slightly different perspective, the different177

explorations on spike-adding processes provided in the literature.178

3. Global theoretical scheme179

In Section 2 we have seen numerically how the main bifurcations (period doublings and folds of180

periodic orbits) which are involved in the spike-adding mechanism are organized with respect to the181

homoclinic structures exhibited in the system. Next, we introduce a theoretical scheme providing a fully182

general overview of the process.183

3.1. Global theoretical scheme: biparametric case (ε fixed)184

Using the numerical simulations shown in Section 2 and previously in [7, 8, 16], we provide in Figure 6185

a more complete generic scenario of the transition in fold/hom bursters from n to n + 1 spikes when ε186

is small. Note that the homoclinic isola component was illustrated in the previous section exploring the187

hom(6,7) case. As already explained in [7], the homoclinic isolas are piled up and their size decreases as188

the number of spikes increases. In each homoclinic curve we find some significant degenerations: three189

inclination flips and two orbit flips. The two inclination flips on the left side are terminal points for fold190

and period doubling bifurcations, but they do not play a relevant role in the discussion below. Depending191

on the location, either above or below the isola, the mechanisms to create extra spikes are different. Note192

that the scheme is partial as more bifurcations and codimension-two points should be present.193

In Figure 6 we have remarked the complete structure for the n to n+ 1 (n > 2) spike-adding process.194

Suppose we follow the evolution of a periodic orbit with n spikes as we move from the right side of195

the parameter plane and below the homoclinic curve (see right plots of Figure 1). This orbit undergoes196

through two fold bifurcations which give rise to a hysteresis phenomena (a Z-shaped continuation curve).197

The first one is on the left, where the orbit becomes unstable and later the continuation goes back to198

the right till the fold bifurcation on the right is reached. There, the periodic orbit becomes stable again199

and, as we will shortly explain, exhibits an extra spike. The stability is lost later through several period200
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doubling and fold bifurcations (due to some pencils of these bifurcations generated on codimension-201

two bifurcation points) till another period doubling, located in between both main fold bifurcations, is202

reached. Hysteresis explains the existence of a region of bistability, where orbits with n spikes coexist203

with orbits with n+ 1 spikes. The addition of the extra spike is explained by a canard transition [10, 14]204

which occurs while the orbit undergoes through the second fold bifurcation on the right side. On the205

other hand, the transition from n to n + 1 spikes above the homoclinic isola involves a chaotic region.206

Note that the theoretical scheme includes the two types of spike-adding processes introduced by Terman207

in [30] and also described in [13, 14, 16]. The main original contributions of the scheme are, first to208

establish what areas will produce each kind of spike-adding, and second to provide an overall explanation209

of the origin of the bifurcations involved in each type of spike-adding process. Later, in Figure 8, we210

will provide numerical explorations to illustrate both, continuous and chaotic spike-adding processes. We211

remark that the boxed area of Figure 6 contains the main ingredients for the spike-adding process in a212

fold/hom burster (as it is shown later in Section 4 for the pancreatic β-cell model), while the complete213

panel explains the complete structure for the Hindmarsh-Rose model.214
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Next, we describe in detail the location of the codimension-one bifurcations of periodic orbits proposed215

in Figure 6. Let us first pay attention to the bifurcations involved in the continuous spike-adding process216

(below the homoclinic isola). The fold bifurcation on the left emerges from the orbit flip on the left,217

located on the lower branch of the homoclinic curve. At this orbit flip the homoclinic connection exhibits218

n spikes. This fits with the fact that, at the fold bifurcation on the left, the periodic orbit also has n219

spikes. On the other hand, the fold bifurcation on the right emerges from an inclination flip located on220

the folding of the homoclinic isola [16]. Note again that this fits with the fact that at this fold bifurcation221

the periodic orbit is still evolving from n to n + 1 spikes. Indeed, as we will illustrate later in Figure 9,222

while the periodic orbit undergoes through the fold bifurcation on the right the head of a canard orbit223

is starting to develop and, as a consequence, an extra spike is being formed. It makes sense to think224

that this mechanism is related to its counterpart behaviour along the homoclinic curve. In addition,225

as we will see later, the existence, conjectured in [16] but not numerically detected (due to precision226

limitations of any available numerical continuation software), of the inclination flip on the folding of the227

homoclinic isola, is explained by arguments related to the form in which periodic orbits are created from228

the homoclinic curve. On the other hand, the chaotic lobe is related to several codimension-two homoclinic229

bifurcations. The fold and period doubling bifurcations at the right, separating the chaotic zone from the230

region corresponding to bursting with n spikes, emerge from the orbit flip located on the lower (n-spikes)231

branch of hom(n,n+1) . The fold bifurcation at the left, that is, the frontier between the chaotic zone and232

the region corresponding to bursting with n+ 1 spikes, emerges from the orbit flip located on the upper233

(n+1 spikes) branch of hom(n,n+1). In Figure 8 we will show that the chaotic behaviour inside the upper234

chaotic lobe is based on bursting behaviour with n-spikes, and so the pencils of bifurcations associated235

with that phenomena have to be generated on a codimension-two point related with n-spikes behaviour.236

Therefore, we conjecture that the period doubling and fold bifurcations inside the chaotic lobe emerge237

from the orbit flip located on the upper branch (n-spikes) of the previous homoclinic curve hom(n−1,n).238

hom(n, n+1) hom(2, 3)

Inclination-Flip
cod-2 bifurcation points
Orbit-Flip
cod-2 bifurcation points homoclinic bifurcation

Belyakov
cod-2 bifurcation points

Figure 7: Directions in which the saddle periodic orbits emerge from the homoclinic connection as we move along the
homoclinic bifurcation curve. In the generic case (n > 2) there are three changes of direction, two of them are explained
by the existence of orbit flips, whereas, the other can be explained by the presence of an inclination flip. In the case of the
curve hom(2,3) there is only one change which is explained by the existence of just an orbit flip.

As already mentioned, AUTO is not able to detect the inclination flip located at the right end of239

the isolas. Nevertheless, as reasoned in [16], there is an argument to show that there must be another240

degeneracy in between the orbit flips when we move from one to the other side of the isola along the right241

side of the curve. Arrows in Figure 7 indicate the direction in which single saddle periodic orbits emerge242

[37] from the homoclinic bifurcation curve (determined using AUTO software). Left panel shows the243

generic case where we see that there are, at least, three changes of direction. Following [16, 38], there are244

three codimension-two homoclinic bifurcations which can explain the side-switching: orbit flip, inclination245

flip and resonant eigenvalues. The latter one is excluded and moreover, following the homoclinic orbit246

from one orbit flip to the other along the right side, there is no change in the direction along which the247

homoclinic orbit leaves the equilibrium point and, hence, no additional orbit flip may exist in between.248
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The only option to explain the change in the direction of the arrows is the existence of an inclination flip.249

The same situation can be found in literature in a different model [38].250

Right panel in Figure 7 corresponds to the curve hom(2,3). In this case only one change of direction is251

observed. This fits with the fact that in this case (and also along hom(1,2)) only one orbit flip exists. In252

fact, the existence of an inclination flip at the right tip of the isola in these two cases is discarded because253

there exist two Belyakov bifurcation points and the right side of the homoclinic curve in between the254

Belyakov points corresponds to saddle-focus equilibrium points and so, flip bifurcations make no sense.255

We remark that our theoretical scheme of Figure 6 is valid for the generic case of hom(n,n+1) with256

n > 2. As already explained, in the generic case, one of the fold bifurcations involved in the continuous257

spike-adding emerges from the inclination flip at the tip on right side of the homoclinic isola, as well as258

one of the folds involved in the chaotic spike-adding emerges from the orbit flip located on the upper259

branch of the curve hom(n,n+1). When n = 2, there are only one OF point on the lower branch of the260

curve hom(2,3). In any case, the macroscopic global view is similar to the generic case, as shown in261

Figure 3.262

Both cases, continuous and chaotic spike-adding transitions, are illustrated in Figure 8 for the case263

of the transition from 2 to 3 spikes (we have chosen this case as globally the process is the same but it264

is easier and better visualized due to the bigger area involved). A periodic orbit is continued along three265

different segments of parameters: L1, L2 and L3 as displayed in the top panel. Bottom panels show the266

corresponding bifurcation diagrams: on the vertical axis we plot the value of y (top diagrams) at the267

points where the variable x has a maximum and the ‖ · ‖2 norm (bottom diagrams) of the periodic orbit.268

Along the segment L1 we observe a continuous spike-adding process. From right to left, we see how a269

periodic orbit with 2 spikes undergoes a fold bifurcation at which it looses its stability. Later, now for b270

moving to right, the periodic orbit increases its length until it reaches a second fold at which b starts to271

decrease again. The periodic orbit recovers the stability after a period doubling bifurcation. Note that in272

this area there are pencils of bifurcations very close each other, and so it is quite difficult to observe them273

and their effects. Just to show this, the doubled periodic orbit emerging at that point (b ' 2.922) is also274

continued with AUTO. It undergoes through a fold bifurcation where parameter b starts to increase until275

a second period doubling is reached, and so on (note that the unstable orbit is connected with bifurcated276

orbits close to the fold on the right). This process only can be detected using continuation techniques277

because the stable region is very small and it has no real effects in the dynamics.278

The behaviour along the segment L2, very close to the homoclinic curve but below, exhibits some279

differences to that already described along the segment L1, but the process is still continuous. The main280

difference is that in this case there is a microchaotic structure coexisting with stable periodic orbits due281

to the segment L2 crosses pencils of period doublings and fold bifurcations generated on the orbit flip282

point located on the left (see [8] for additional details).283

Finally, along the segment L3, the spike-adding process is discontinuous, going through a chaotic area.284

Starting from the right we see how a 2-spikes periodic orbit goes through a chaotic window after which285

only one stable orbit persists, but exhibiting 3 spikes. Note that the chaotic window is generated via a286

period doubling cascade originated from a bursting orbit with 2 spikes, as shown on the picture on the287

right for the segment L3. Note that the determining characteristic for the process of spike-adding to be288

continuous or discontinuous is on which side of the homoclinic curve the system is located and, therefore,289

what are the bifurcations that affect it.290

A picture of the transition from 2 to 3 spikes along the segment L1 is given in Figure 9. Following291

the bifurcation curve depicted in the plane (b, ‖ · ‖2) displayed in the right panel, the excursion starts on292

the lower branch of the bifurcation curve where the 2-spikes periodic orbit is stable. After undergoing293

through a fold bifurcation, the periodic orbit becomes unstable and its length starts to increase as b294

decreases. This is the beginning of the canard transition already mentioned. The increment in the length295

of the periodic orbit occurs as it extends following the piece of the slow manifold. The orbit evolves from296
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Figure 8: Analysis of the spike-adding process from 2 to 3 spikes for ε = 0.01. Top: Biparametric diagram with the
spike-counting technique and main bifurcation curves for the transition along selected spike-adding process. Bottom:
Bifurcation diagrams for segments marked on top picture (L1 ≡ I = 2.2; L2 ≡ I = 2.727 − 3.0918(b − 2.926); L3 ≡ I =
2.891 − 3.0918(b − 3.001)). Two pictures have been performed for each segment: one plot with the standard bifurcation
continuation diagram given by AUTO showing the ‖ · ‖2 norm of the orbit and another one with the y value of the points
where the corresponding orbit has a maximum for variable x.

“headless” canard to a maximal canard, giving finally a bursting orbit with an extra spike (for details, see297

[10, 14]). Homoclinic orbits undergo similar transformations as they evolve from the orbit flip located in298

the lower branch of the homoclinic curve and they pass the right-folding (see [16] for an example showing299

the transition from 3 to 4 spikes).300

3.2. Global theoretical scheme: global case301

The structure provided by the theoretical scheme is robust with respect to ε for small values of this302

parameter. In Figure 10 the theoretical scheme of Figure 6 is visualized into a three-parameter space.303

Note that the surfaces of fold bifurcation and period doubling involved in the spike-adding process emerge304

from the homoclinic bifurcation curves. A green plane is marked to emphasize that, in principle, it would305
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corresponding to the selected values. Along the continuation of the bifurcation lines we observe periodic orbits with two
spikes (orbit 1), later headless canards (orbit 2), maximal canard (orbit 3), canards with head (orbit 4), and finally orbits
with three spikes (orbit 5).

be possible to take two-parameter slides hiding the whole homoclinic structure, but in any case, as we306

have argued, the spike-adding process cannot be fully understood without realizing the full bifurcation307

diagram. Particularly, all previous explorations recorded in the literature fit with our scheme, although308

in some of them it is not possible to see any homoclinic bifurcation (it depends on the selected parameters309

and regions as argued from Figure 10). In fact, all the situations detected in previous studies can be310

explained with a single global theoretical scheme shown in Figure 10.311

�

p1 p2

Figure 10: Scheme of a three-dimensional view of the theoretical scheme (only essential elements are displayed). The
structure persists for small values of ε.

In order to see how the theoretical scheme given in Figure 6 is valid for the classical 1D views312

provided in literature, we take again the pictures of Figure 1. Plots (b) and (c) have been already studied313

in Figures 8 and 9 linking them with the results of Figure 6. Now, we intend to explain the theoretical314
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facts of the 1D simulation shown on plot (a) of Figure 1 (we recall that this type of 1D visualization was315

already considered in [9, 13], among others). Top panel in Figure 11 shows how the three-parametric316

global scheme does not only extends adding ε but also other parameters as, for instance, x0 (compare317

also with Figure 2). In this case we observe that moving parameter x0 just makes a translation of the318

global picture in the parameter space, and therefore the biparametric picture (I, x0) just shows a parallel319

band structure as presented in plot (b). On that picture we also add some bifurcation lines (fold and320

homoclinic bifurcations), that obviously follow the band structure, giving straight lines. Taking now a321

segment fixing b = 2.7, x0 = −1 and ε = 0.01 as that depicted in panel (b), we obtain the bifurcation322

diagrams displayed in panels (c), (d) and (e). Note that plot (e) corresponds to the IBD right panel of323

Figure 1.324

It is important to remark that when one studies the interspike-interval bifurcation diagram shown in325

panel (e), and we note that this is the most standard visualization of this kind of systems in literature,326

the relevance of the homoclinic bifurcation remains hidden, in spite of the segment crosses the homoclinic327

surface. In order to reveal the internal structure of the spike-adding process in that line, we need to use328

continuation techniques. To that goal, we pay now attention to the other two 1D bifurcation diagrams329

of panels (c) and (d), where we show the ‖ · ‖2 norm and the period of the stable (continuous line)330

and unstable (discontinuous line) periodic orbits for the given parametric values computed using AUTO331

software. Starting from the left, we see that there exists a spike-adding cascade, but moving to the right,332

the role of the homoclinic orbit is again hidden because we are now following the stable branch of periodic333

orbits. Only when we continue the orbit up to the last fold bifurcation we see that an unstable periodic334

orbit persists as I decreases up to it undergoes a homoclinic bifurcation on the value marked by a dotted335

vertical line. So, attending to this exploration, we can say that it is at the homoclinic orbit where the336

periodic orbit involved in the continuous spike-adding is created, but when the periodic orbit bifurcates337

from the homoclinic orbit it is unstable and only recovers the stability through period doubling or fold338

bifurcations.339

Note that to the right of the homoclinic bifurcation the spike-adding is chaotic: the segment crosses340

chaotic lobes, most of them very narrow, and so difficult to detect. In that region the bands of periodic341

orbits with a fix number of spikes are in fact formed by isolas of periodic orbits disconnected one each342

other. The periodic orbits experiment a period doubling cascade (we just depict the first period doubling343

with a red dot) generating the chaotic region. One should also compare with the continuation along344

the segment L3 in Figure 8. Recall that, when explained by a chaotic process, the spike-adding is345

discontinuous (see [30]). Discontinuities are apparent in the inter-spike interval bifurcation diagram346

depicted in Figure 11 (panel (e)). In panels (c) and (d) we observe that the bifurcation curves emerging347

from the cascade of folds located to the right of the homoclinic bifurcation create isolas with a fold348

bifurcation point located to the right side of the bifurcation diagram. In fact, close to the value of I for349

which the segment enters in the region with one spike, there is a collection of fold bifurcation curves. Note350

that all of these bifurcation points are in fact the intersection with the pencils of bifurcations created351

on the orbit-flip and inclination-flip points located on the homoclinic bifurcation curve but on different352

parametric planes.353

Finally, we remark that the global scheme presented in this paper explains most of the phenomena of354

the spike-adding process as it relates the different bifurcation lines, that are present in Figures 8 and 11,355

with the pencils of bifurcations created on the codimension-two homoclinic bifurcation points that are in356

different parametric planes and that cannot be seen in the selected set of parameters. As illustrated on357

Figure 10, when we have a large parametric phase space, it depends on how and where we make a section358

in order to better visualize the real organizing points of the studied phenomena.359
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4. Pancreatic β-cell neuron model360

In this section we briefly illustrate that similar structures, as the ones observed for the Hindmarsh-Rose361

neuron model, are observed in other fold/hom neuron bursting models. Different models of pancreatic362

β-cells are usually based on the standard Hodgkin-Huxley formalism including different phenomena [34,363

39, 40], like the intracellular storage of Ca2+, the glucose metabolism, the influence of ATP, and so on.364

The most simple model of pancreatic β-cells which generates a realistic bursting behaviour is a three-365

dimensional model with two fast variables and one slow variable. In this paper we consider the model of366

Sherman, Rinzel and Keizer (1988) [34] given by367  τ V̇ = −[ICa(V ) + IK(V, n) + gSS(V − VK)] + Iapp,
τ ṅ = σ[n∞(V )− n],

τSṠ = S∞(V )− S,
(2)

with the auxiliary ionic current functions defined by Iapp (the external current) and

ICa(V ) = gCam∞(V ) (V − VCa), IK(V, n) = gK n (V − VK),

and where the different steady state gating variables take the forms368

m∞(V ) =

[
1 + exp

(
Vm − V
θm

)]−1
, n∞(V ) =

[
1 + exp

(
Vn − V
θn

)]−1
,

S∞(V ) =

[
1 + exp

(
VS − V
θS

)]−1
.

In this model, V represents the membrane potential, n the opening probability of the potassium369

channels and ICa and IK are the calcium and potassium currents, (for more details see [27, 34]). The370

fixed parameters values that we use are taken from reference [27] and they are given by371

τ = 0.02, τS = 5, VCa = 25, VK = −75, gCa = 3.6, gK = 10.0, gS = 4,
σ = 0.85, Vm = −20, Vn = −16, θm = 12, θn = 5.6, θS = 10.

The ratio kS = τ/τS , in our case kS = 0.004, defines the ratio of the time parameters for the fast (V372

and n) and the slow (S) variables. The parameter VS is the main bifurcation parameter and it defines373

the membrane potential at which the steady-state value for the gating variable S attains one-half of its374

maximum value.375

In Figure 12 we show bifurcation diagrams on the parametric plane (VS , Iapp). These pictures are376

similar to the ones shown in Figure 3 for the Hindmarsh-Rose model. The main difference is that for this377

model it is much more difficult to locate numerically the different elements that are clearly shown in the378

Hindmarsh-Rose model. Besides, in the β-cell neuron model we do not have Belyakov points for the 2-3379

spike-adding process, and so now this case also follows the generic theoretical scheme of the boxed area of380

Figure 6 with two orbit flip codimension-two points. As in the Hindmarsh-Rose model, an inclination flip381

point is conjectured in the sharp fold of the homoclinic curves. The 2-3 spike-adding process is detailed382

with a magnification of the bifurcation lines. On the left side of the homoclinic curve the main fold383

bifurcations that create the spike-adding region go to one OF and to the conjectured IF. On the right384

side, the period doubling and fold bifurcation lines that delimit the chaotic lobe go each one to different385

OF points as shown in the generic theoretical scheme of Figure 6. On the magnification on Figure 12386

the continuous lines are the ones computed with AUTO, and the discontinuous ones are the conjectured387

continuation of the lines.388
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On the 6-7 spike-adding process the numerical continuation software is not able to compute some of389

the curves close to the codimension-two points (AUTO detects the two OF points, but they are very close390

each other).391

Therefore, from this brief analysis on the β-cell neuron model, it is plausible that the fold/hom spike-392

adding process in mathematical neuron models follows the theoretical scheme shown in Figure 6. Note393

that the Figure 6 provides the complete scheme for the Hindmarsh-Rose model, while the boxed area the394

generic scheme for fold/hom bursters. The great advantage of using the Hindmarsh-Rose model is that395

it makes more easy to detect the different elements of the spike-adding process.396

Conclusions397

We propose a global scheme to understand the spike-adding process in fold/hom bursting models,398

exemplified in the Hindmarsh-Rose neuron model. In the analysis we use different numerical techniques399

such as spike-counting, Lyapunov exponents and bifurcation continuation methods. Our simulations, and400

those of literature, allow us to introduce a global theoretical scheme that completes the previous ones that401

appeared recently (see [16]). The global framework connects the different types (continuous and chaotic)402

of spike-adding processes introduced by Terman [30]. It determines the regions of the parametric space403

where each kind of process occurs, and provides a general explanation of the origin of the bifurcations404

involved in them. Finally, being a global and multiparametric scheme, it allows to give an explanation405

to the different interspike-interval bifurcation diagrams (IBD) that have appeared in the literature for406

different models. This is an important point, since in most papers the spike-adding process is illustrated407

only with IBD plots, but without connecting to any region or bifurcation. In addition, an example has408

been presented that uses a more realistic model, the pancreatic β-cell neuron model of Sherman et al.,409
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which shows the same scheme as in the Hindmarsh-Rose model. Therefore, there are indications of the410

universality of this theoretical scheme for the generic fold/hom spike-adding process.411
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