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Abstract

Modulation instability, rogue wave and spectral analysis are investigated for the nonlinear Schrödinger equation with

the higher-order terms. The modulation instability distribution characteristics from the sixth-order to the eighth-order

nonlinear Schrödinger equations are studied. Higher-order dispersion terms are closely related to the distribution of mod-

ulation stability regime, and n-order dispersion term corresponds to n − 2 modulation stability curves in the modulation

instability band. Based on the generalized Darboux transformation method, the higher-order rational solutions are con-

structed. Then the compact algebraic expression of the Nth-order rogue wave is given. Dynamic phenomena of first-

to third-order rogue waves are illustrated, which exhibit meaningful structures. Two arbitrary parameters play important

roles in the rogue wave solution. One can control deflection of crest of rogue wave and its width, while the other can cause

the change of width and amplitude of rogue wave. When it comes to the third-order rogue wave, three typical nonlinear

wave constructions, namely fundamental, circular and triangular are displayed and discussed. Through the spectral anal-

ysis on first-order rogue wave, when these parameters satisfy certain conditions, it occurs a transition between W-shaped

soliton and rogue wave.
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1. Introduction

It has been extensive interests in studying rogue waves in recent years. Rogue wave was first put forward conceptually

in the ocean [1]. Rogue waves are relatively large and spontaneous waves, whose appearance may result in catastrophic

damage [2]. Large amplitude, unexpected, coming out from nowhere without warning and suddenly vanishing away

without trace, are the basic characteristics [3]. In general, the nonlinear partial differential equation satisfying the fiber

communication model, for the stable solution, under the interaction of the dispersion term and the nonlinear term, there

will be instability, which is called modulation instability (MI). MI is a basic nonlinear process of exponential increase

with some small perturbations superimposed on the background of continuous waves in nonlinear dispersive media. MI

of monochromatic nonlinear waves is a possible cause of the generation of rogue waves, which bursts sporadically more

than the average level of the water surface. It is considered that MI is a most ubiquitous kind of instability in the nature

world [4]. It exists both in the continuum and in the discrete nonlinear wave equations [5]. Since Benjamin and Feir’s

groundbreaking hydrodynamics construction [6], MI has played a prominent role in diverse areas of scientific research,

for example, plasma physics [7], nonlinear optics [8], and fluid dynamics [9].

In fact, the above mentioned instability can result in self-induced modulation of incoming continuous waves with

subsequent local pulses, which may be discovered in many physical systems. Due to the presence of this phenomenon,

there are many interesting physical effects, such as break-up of deep water-gravity waves in the ocean, the formation

of envelope solitons in electrical transmission lines and optical fibers, as well as the formation of cavitons in plasmas.

Different distributions of the MI gain can lead to distinct pattern of nonlinear dynamic phenomena [10]. The dispersion
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term and the nonlinear term are playing different roles in the nonlinear systems, but both of them affect the instability of

the solutions for the nonlinear systems. Recently, some literatures have analyzed the importance of high-order dispersion

terms, which is not only affect MI [11] but also induce some novel excited states [12, 13]. The study of MI regions in

nonlinear systems is crucial in many fields and is the basis for interpreting or regulating various models or phenomena in

different fields.

The nonlinear Schrödinger (NLS henceforth) equation has a prominent position in nonlinear physics. It has extensive

physical applications, especially in nonlinear optics [14], atmosphere [15], and water waves [16]. In 1983, Peregrine

[17] gave the analytical expression of the rogue wave in the first-order as an outcome of MI on the constant wave back-

ground. This type of rogue wave also has another name, that is Peregrine breather. In recent years, many authors [18–20]

have reported the higher-order rogue wave solutions, some important physical properties and applications for the NLS

equation. In addition, various extensions of NLS equation have also been studied, such as pair-transition-coupled NLS

equation [21], variable coefficient NLS equation [22–24], three-component NLS equations[25], three-component coupled

derivative NLS equations [26], and n-component NLS equations [27]. General high-order solitons of three different types

of nonlocal NLS equations in the reverse-time, PT-symmetric and reverse-space-time were derived by using a Riemann-

Hilbert treatment [28].

However, there exist only lowest-order terms (dispersion and nonlinearity) in the standard NLS equation [29]. When

the characteristics of the solutions exceed the simple approximation in deriving the NLS equation, the higher-order terms

will hold the dominate role [30]. For instance, it may help to illustrate the physical properties of wave blow-up and collapse

[31]. In 2016, Ankiewicz [32] et al. studied the following form of NLS equation containing higher-order nonlinear terms

and dispersion terms,

iqz + δ2Γ2(q) − iδ3Γ3(q) + δ4Γ4(q) − iδ5Γ5(q) + δ6Γ6(q) − iδ7Γ7(q) + δ8Γ8(q) + · · · = 0, (1)

with

Γ2 =qtt + 2q|q|2,

Γ3 =qttt + 6q2qt,

Γ4 =qtttt + 6q∗q2
t + 4q|qt |

2 + 8|q|2qtt + 2q2q∗tt + 6|q|4q,

Γ5 =qttttt + 10|q|2qttt + 30|q|4qt + 10qqtq∗tt + 10qq∗t qtt + 20q∗qtqtt + 10q2
t q∗t ,

Γ6 =qtttttt + q2[60|qt |
2q∗ + 50qtt(q∗)2 + 2q∗tttt] + q[12q∗qtttt + 18q∗t qttt + 8qtq∗ttt + 70(q∗)2q2

t + 22|qtt |
2]

+ 10qt[3q∗qttt + 5q∗qtt + 20q∗q2
tt] + 10q3[2q∗q∗tt + (q∗t )2] + 20q∗q2

tt + 20q|q|6,

Γ7 =qttttttt + 70q2
ttq
∗
t + 112qt |qtt |

2 + 98|qt |
2qttt + 70q2{qt[2q∗q∗tt + (q∗t )2] + q∗(2qttq∗t + qtttq∗)}

+ 28q2
t q∗ttt + 14q[q∗(20|qt |

2qt + qttttt) + 3qtttq∗tt + 2qttq∗ttt + 2qttttq∗t + qt + q∗tttt + 20qtqtt(q∗)2]

+ 140|q|6qt + 70q3
t (q∗)2 + 14(5qttqttt + 3qtqtttt)q∗,

Γ8 =qtttttttt + 14q3[40|qt |
2(q∗)2 + 20(q∗)3qtt + 2q∗q∗tttt + 4q∗t q∗ttt + 3(q∗tt)

2]

+ q2[28q∗(14|qtt |
2 + 6qtq∗ttt + 11q∗t qttt + 238qtt(q∗t )2 + 336|qt |

2q∗tt + 560q2
t (q∗)3

+ 98qtttt(q∗)2 + 2q∗tttttt] + 2q{21q2
t [9(q∗)2 + 14q∗q∗tt] + qt[728qttq∗t q∗ + 238qttt(q∗)2

+ 6q∗ttttt] + 34|qttt |
2 + 36qttttq∗tt + 22qttq∗tttt + 20qtttttq∗t + 161q2

tt(q
∗)2 + 8qttttttq∗}

+ 182qtt |qtt |
2 + 308qttqtttq∗t + 252qtqtttq∗tt + 196qtqttq∗ttt + 168qtqttttq∗t + 42q2

t q∗tttt

+ 14q∗(30q3
t q∗t + 4qtttttqt + 5q2

ttt + 8qttqtttt) + 490(q∗)2q2
t qtt + 140q4q∗[q∗q∗tt + (q∗t )2] + 70q|q|8,

where |q| = |q(z, t)| denotes envelope of the optical pulse with spatial coordinate z and scaled time coordinate t, δi (i =

2, 3, 4, 5, · · · ∞) represents the i-order real dispersion coefficient. Γ3 is the Hirota operator [33], Γ4 is the Lakshmanan-

Porsezian-Daniel operator [34], Γ5 is known as the quintic operator [35], Γ6 is the sextic operator, Γ7 is the heptic operator,

Γ8 is the octic operator. With an infinite number of arbitrary coefficients, these extensions are integrable. The arbitrariness
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of coefficients enables us to go well beyond the single NLS equation.

One of our goals in this paper is to investigate MI of a continuous wave for the NLS equation (1) with different

higher-order terms. We discuss MI distribution characteristics from the sixth-order NLS equation to the eighth-order NLS

equation. Comparing their MI gain functions of NLS equations with different order dispersion terms, it enables us to

find the distribution law of MS curves in the MI band. Then we focus on study rogue waves of the following reduced

sixth-order NLS equation [36–38]

iqz + δ2Γ2(q) + δ6Γ6(q) = 0. (2)

Nowadays many methods have been developed to investigate rogue waves of the nonlinear systems, such as the Darboux

transformation (DT) [39–44], Hirota method [45–48], nonlocal symmetry method [49]. Based on the generalized DT,

higher-order rogue waves will be generated for Eq. (2). For the parameter of δ2, many papers [50–52] choose δ2 = 1
2 , this

setting has certain convenient features. Here, we also set δ2 = 1
2 in Eq. (2). Via the analytical rational expressions and MI

characteristics, the dynamics of rogue waves will be studied in detail.

It is also our purpose here to investigate how to use the spectral features of the propagating wave envelope to reveal the

existence of nonlinearity and rogue wave in a short time before the occurrence of a special rogue wave event. To establish

the results, we apply the spectral analysis approach [53–57] to the first-order rogue wave solutions of Eq. (2).

The remainder of our article is constructed as follows. In Section 2, MI distribution features of the NLS equation

with different higher-order nonlinear and dispersion terms will be discussed according to MI analysis theory. By virtue

of the generalized DT of the sixth-order NLS equation, a concrete expression of the N-order rogue wave solutions will be

given in Section 3. In Section 4, Utilizing the expressions obtained in the previous section, the first-order, second-order,

and third-order exact rogue wave solutions are presented, where their dynamic behavior are also analyzed. Section 5 is

devoted to spectral analysis on the first-order rogue wave. Finally, some conclusions are given.

2. Modulation instability

MI is observed in a time-averaged way and usually triggered from a continuous wave or quasi-continuous wave. The

continuous wave condition is corresponding to an effectively unbounded MI domain. Then it can yield information on

average behavior of the nonlinear process and the general tendencies for instability, but usually prevents time-resolved of

the stochastic dynamics. MI symmetry breaking can occur for the reason of higher-order dispersion [58]. MI is the basic

mechanism for generating of rogue wave solutions. MI is an interactive gain procedure that generates priority frequency

intervals between patterns [59]. Studied here is the MI analysis on continuous waves for the NLS equation with different

higher-order dispersion terms, in order to reveal the MI features considering of higher-order dispersion effects. The plane

wave solution of system (1) has the following form

qcw = Aeiθ = Aei(kz+ωt). (3)

There are three real constants, wave number k, amplitude A and frequency of background ω. Substituting Eq. (3) into Eq.

(2), it can be obtained that

k = 20A6δ6 − 90A4ω2δ6 + 30A2ω4δ6 − ω
6δ6 + A2 −

1
2
ω2. (4)

According to the MI theory, we add a small perturbation function p(z, t) to the plane-wave solution. Then a perturbation

solution can be derived as

qpert = (A + εp(z, t)) ei(kz+ωt), (5)

where p(z, t) = mei(Kz+Ωt) + ne−i(Kz+Ωt), Ω indicates the disturbance frequency, and m, n are both small parameters. Substi-

tuting the perturbation solution (5) into the sixth-order NLS equation (2), it can generate a system of linear homogeneous

equations for m and n. Based on the existence conditions for solutions of linear homogeneous equations, that is, the

determinant of coefficient matrix of m and n is equal to 0, which gives rise to a dispersion relation equation. By solving
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this dispersion relation equation, MI gain can be obtained

G6 = |Im(K)| =
1
2

Im
(
Ω

√
(Ω2 − 4A2)g2

6

)
,

g6 = 1 +
[
2Ω4 + (−20A2 + 30ω2)Ω2 + 60A4 − 180A2ω2 + 30ω4

]
δ6.

(6)

Similar to the above calculation process, we also obtain the MI gain functions of the seventh-order (i.e. δ2 = 1
2 , δ7 ,

0, δ3 · · · δ6 = 0 in Eq. (1)) and eighth-order (i.e. δ2 = 1
2 , δ8 , 0, δ3 · · · δ7 = 0 in Eq. (1)) NLS equation, respectively. Their

exact expressions are as follows

G7 = |Im(K)| =
1
2

Im
(
Ω

√
(Ω2 − 4A2)g2

7

)
,

g7 = 1 +
[
14ωΩ4 +

(
−140 A2ω + 70ω3

)
Ω2 + 420 A4ω − 420 A2ω3 + 42ω5

]
δ7,

(7)

and

G8 =|Im(K)| =
1
2

Im
(
Ω

√(
Ω2 − 4A2) g2

8

)
,

g8 =1 +
[
− 2 Ω6 +

(
28 A2 − 56ω2

)
Ω4 +

(
−140 A4 + 560 A2ω2 − 140ω4

)
Ω2

+ 280 A6 − 1680 A4ω2 + 840 A2ω4 − 56ω6
]
δ8.

(8)

From the above analysis, it appears that there exists two distinctive MI and modulation stability (MS) regions. In the

region of |Ω| < 2A, MI exists when gi , 0, (i = 6, 7, 8). On the contrary, if gi = 0, (i = 6, 7, 8), there appears nontrivial

features in the MI region. This in turn implies that a MS region occurs in the region of low perturbation frequency, where

the growth rate of corresponding MI decays to zero.

(a) (b) (c) (d)

(e) (f) (g)

Figure 1: Plots of the distribution of MI gain with perturbation frequency Ω and continuous background frequency ω, and A = 1. The dashed white
lines indicate the resonance lines, the dashed green lines mean boundary lines, and the solid green lines represent that perturbation is stable. In addition
to MS curves and MS quasi-elliptic curves, the remaining areas are all non-zero MI gain in MI band. (a) The standard NLS equation [60]: no MS region
exists in the MI band. (b) The Hirota equation [61]: an MS curve exists in the MI band. (c) The Lakshmanan-Porsezian-Daniel equation [62] with
δ3 = 0: an MS elliptic ring appears in the MI band. (d) The fifth-order NLS equation [63, 64] with δ3 = δ4 = 0: it not only has an MS curve, but also
has an MI quasi-elliptic ring in MI band. (e) The sixth-order NLS equation: it has two MS quasi-elliptic rings in the MI band. (f) The seventh-order
NLS equation: here exists an MS curve and two MS quasi-elliptic rings in the MI band. (g) The eighth-order NLS equation: two MS curves and two
MS quasi-elliptic rings appear in the MI band.

4



Comparing their MI gain functions of NLS equations with different order dispersion terms, we can obtain the distri-

bution law of MS curves in the MI band.

• When δ2 = 1
2 and the remaining δi = 0, i = 3, 4, 5, · · · , the system (1) is reduced to classical NLS equation. And the

highest power of g2(ω) is equal to 0, namely, g2(ω) = 1. Therefore, no MS region exists in the MI band (|Ω| < 2A), which

is described in Fig. 1(a).

• When the above-described conditions wherein δ3 = 0 becomes δ3 , 0, the system (1) is transformed into third-order

NLS equation. And the highest power of g3(ω) is 1, i.e. a simple factor of ω. It appears that an MS curve exists in the MI

band (|Ω| < 2A), which is described in Fig. 1(b).

• When the above-described conditions wherein δ4 = 0 becomes δ4 , 0, the system (1) can be degenerated to fourth-

order NLS equation. The highest power of g4(ω) is 2. There exists an MS elliptic ring in the MI band (|Ω| < 2A), which

is described in Fig. 1(c).

• When the above-described conditions wherein δ5 = 0 becomes δ5 , 0, then we can transform (1) into fifth-order

NLS equation. The highest power of g5(ω) is 3. Both an MS curve and an MS quasi-elliptic ring occur in the MI band

(|Ω| < 2A), which is illustrated in Fig. 1(d).

• When the above-described conditions wherein δ6 = 0 becomes δ6 , 0, we can transform (1) into sixth-order NLS

equation. And the highest power of g6(ω) is 4. There are two MS quasi-elliptic rings in the MI band (|Ω| < 2A), which is

illustrated in Fig. 1(e).

• When the above-described conditions wherein δ7 = 0 becomes δ7 , 0, and Eq. (1) is reduced to seventh-order NLS

equation. The highest power of g7(ω) is 5. There exists an MS curve and two MS quasi-elliptic rings in the MI band.

(|Ω| < 2A), see Fig. 1(f).

• When the above-described conditions wherein δ8 = 0 becomes δ8 , 0, we can transform (1) into eighth-order NLS

equation. And the highest power of g8(ω) is 6. Then it reveals that two MS curves and two MS quasi-elliptic rings exist

in the MI band (|Ω| < 2A). The distribution of this case is illustrated in Fig. 1(g).

The MI distribution features of all above higher-order dispersion NLS equations are illustrated by Figs. 1(a-g). Ac-

cording to the above analysis process, it is evident that there exist two arbitrary parameters, namely higher order dispersion

coefficient δi, i = 2, 3, 4 · · · and amplitude A. These parameters control the MS distribution of system (1) in MI band. By

adjusting the parameters, the MS quasi-elliptic and MS elliptic ring can be completely contained within the MI band or

intersected at the MI boundary, the latter case yields two curves in MI band. By analyzing the expressions in Eq. (6), we

can discuss the MI distribution characteristics of the sixth-order NLS equation (2). Obviously, g6 is a polynomial about

ω and its highest power is 4. If this polynomial factor is decomposed into the product form of a single factor, then we can

get four solutions, which shows that G6 has four curves in the frequency plane (ω,Ω). Here, Fig. 1(e) illustrates the MI

gain distribution features in the frequency plane (ω,Ω). It is clear that this frequency plane contains two different regions,

namely, MI and MS. The expression Ω2 − 4A2 in G6 indicates that a low-perturbed frequency MI band (|Ω| < 2A) exists

in the frequency plane (ω,Ω). Setting g6 = 0, it gives rise to MI gain G = 0, which represents two MS quasi-elliptic

rings in frequency plane (ω,Ω) and demonstrated by Fig. 1(e). When selecting suitable parameters so that both elliptical

semi-major axis is greater than 2, then there exist four curves in the MI band. With selecting of δ6 = 0, Eq. (2) is then

transformed into classical NLS equation and the corresponding MI gain G6 is reduced to 1
2 Im

(
Ω

√
(Ω2 − 4A2)

)
. Fig. 1(a)

displays the MI gain distribution features of classical NLS equation. Quite evidently, there are neither MS curves nor MS

quasi-elliptic rings in the MI band.

It is easy to find that Fig. 1 only shows one case where the MS ellipse is contained in the MI band, i.e. the semi-

long axis of the MS ellipse less than 2. When choosing appropriate values of parameters to make the semi-long axis of

the MS ellipse greater than 2, we can get another case that only the MS curves exists in the MI band. From Fig. 1(g),

there appears that the MS elliptic ring in the middle degenerates into two MS curves. From the standard NLS equation

to eighth-order dispersion NLS equation, the number of the MS curves are 0, 1, 2, 3, 4, 5, 6, respectively; and the highest

power of gi(ω), (i = 2, 3, . . .) are 0, 1, 2, 3, 4, 5, 6, respectively. So we can obtain relation among them, which is listed in

Table 1.
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Table 1: Relation between three parameters
The Nonlinear Schrödingner equation with higher-order terms

The order of dispersion term 2 3 4 5 6 7 8 ... n
The highest power of ω in gi function 0 1 2 3 4 5 6 ... n-2

The number of the MS curves in MI band 0 1 2 3 4 5 6 ... n-2

3. Gneralized Darboux Transformation for the sixth-order NLS equation

So as to study rational solution for the sixth-order NLS equation (2), we will construct a generalized DT in this section.

Starting from the following linear spectral problems of Eq. (2), namely,

Ψt = i(λσ1 + Q)Ψ,

Ψz =

6∑
c=0

iλcVc,
(9)

where

σ1 =

1 0

0 1

 , Q =

0 q∗

q 0

 , Vc =

Ac B∗c
Bc −Ac

 ,
with

A0 = −
1
2
|q|2 − 10δ6|q|6 − 5δ6[q2(q∗t )2 + (q∗)2q2

t ] − 10δ6|q|2(qq∗tt + q∗qtt) − δ6|qtt |
2 + δ6(qtq∗ttt + q∗t qttt − q∗qtttt − qq∗tttt),

A1 = 12iδ6|q|2(qtq∗ − q∗t q) + 2iδ6(qtq∗tt − q∗t qtt + q∗qttt − q∗tttq), A2 = 1 + 12δ6|q|4 − 4δ6|qt |
2 + 4δ6(q∗ttq + qttq∗),

A3 = 8iδ6(qq∗t − q∗qt), A4 = −16δ6|q|2, A5 = 0, A6 = 32δ6, B2 = −24iδ6|q|2qt − 4iδ6qttt,

B0 =
i
2

qt + iδ6qttttt + 10iδ6(qq∗t qtt + qq∗ttqt + |q|2qttt + 3|q|4qt + qt |qt |
2 + 2q∗qtqtt),

B1 = q + 12δ6q∗q2
t + 16δ6|q|2qtt + 4δ6q2q∗tt + 2δ6qtttt + 12δ|q|4q + 8δ6q|qt |

2,

B3 = −16δ6|q|2q − 8δ6qtt, B4 = 16iδ6qt, B5 = 32δ6q, B6 = 0,

and eigenfunction Ψ = (ψ1, φ1)†, ψ1 and φ1 denote complex functions with z and t, †means matrix transpose, ∗ denotes the

complex conjugation, λ is an spectral parameter of the linear spectral problem (9). It is clearly that Uz−Vt +UV−VU = 0,

which is the compatibility condition of (9), can directly give rise to Eq. (2).

Supposing that Ψ = (ψ1, φ1)† is a fundamental solution based on the above spectral problem. Then the basic DT for

Eq. (2) has the form

Ψ[1] = T [1]Ψ, T [1] = λI − H[0]Λ1H[0]−1,

q[1] = q[0] + 2(λ∗1 − λ1)
ψ1[0]∗φ1[0]

(|ψ1[0]|2 + |φ1[0]|2)
,

(10)

where φ1[0] = φ1, ψ1[0] = ψ1, and

I =

1 0

0 1

 , H[0] =

ψ1[0] −φ1[0]∗

φ1[0] ψ1[0]∗

 , Λ1 =

λ1 0

0 λ∗1

 .
In the general case, assuming similarly that Ψl = (ψl, φl)†, 1 ≤ l ≤ N represents an elementary solution to (9) with

q=q[0] at λ = λl. Then N-fold basic DT for Eq. (2) is thereby inferred that
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Ψ[N] = T [N]T [N − 1]T [N − 2] · · · T [1]Ψ, T [l] = λI − H[l]ΛlH[l]−1,

q[N] = q[N − 1] + 2(λ∗N − λN)
ψN[N − 1]∗φN[N − 1]

(|ψN[N − 1]|2 + |φN[N − 1]|2)
,

(11)

where Ψl[l − 1] = (ψl[l − 1], φl[l − 1])†, and

Ψl[l − 1] = Tl[l − 1]Tl[l − 2]Tl[l − 3] · · · Tl[1]Ψl,

Tl[k] = T [k]|λ=λl , 1 ≤ l ≤ N, 1 ≤ k ≤ l − 1,

H[l − 1] =

ψl[l − 1] −φl[l − 1]∗

φl[l − 1] ψl[l − 1]∗

 , Λl =

λl 0

0 λ∗l

 .
Considering an elementary solution cannot be iterated many times by the above method, it is necessary to construct

the generalized DT to overtake this difficulty. Therefore, suppose that Ψ1 = Ψ1(λ1 + ε), which is a special solution of (9)

with q[0] at λ = λ1 + ε, applying the taylor expansion on Ψ1 at ε = 0 yields

Ψ1 = Ψ
[0]
1 + Ψ

[1]
1 ε + Ψ

[2]
1 ε2 + Ψ

[3]
1 ε3 + · · · + Ψ

[N]
1 εN + · · · , (12)

with ε a small parameter and Ψ
[k]
1 = 1

k!
∂k

∂λk Ψ1(λ)|λ=λ1 . It is obvious that Ψ
[0]
1 is the solution of (9) with q=q[0] at λ = λ1.

3.1. The 1-fold generalized DT

According to the basic DT (10), we can easily derive the 1-fold generalized DT formulas, that is

Ψ[1] = T [1]Ψ, T [1] = λI − H[0]Λ1H[0]−1,

q[1] = q[0] + 2(λ∗1 − λ1)
ψ1[0]∗φ1[0]

(|ψ1[0]|2 + |φ1[0]|2)
,

(13)

with φ1[0] = φ[0]
1 , ψ1[0] = ψ[0]

1 , and

H[0] =

ψ1[0] −φ1[0]∗

φ1[0] ψ1[0]∗

 , Λ1 =

λ1 0

0 λ∗1

 .
3.2. The 2-fold generalized DT

Apparently, T [1]Ψ1 is the solution of (9) with q[1] at λ = λ1 + ε and T1[1]Ψ[0]
1 = 0. It is natural to draw the following

result

lim
ε→0

T [1]|λ=λ1+εΨ1

ε
= lim

ε→0

(ε + T1[1])Ψ1

ε

= Ψ
[0]
1 + T1[1]Ψ[1]

1

≡ Ψ1[1],

it gives a nonzero solution of the system (9) with q[1] at λ = λ1. Hence, 2-fold generalized DT can be constructed, namely

Ψ[2] = T [2]T [1]Ψ, T [2] = λI − H[1]Λ2H[1]−1,

q[2] = q[1] + 2(λ∗1 − λ1)
ψ1[1]∗φ1[1]

(|ψ1[1]|2 + |φ1[1]|2)
,

(14)
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with Ψ1[1] = (ψ1[1], φ1[1])†, and

H[1] =

ψ1[1] −φ1[1]∗

φ1[1] ψ1[1]∗

 , Λ2 =

λ1 0

0 λ∗1

 .
3.3. The 3-fold generalized DT

Continuing the similar process above, we give 3-fold generalized DT. Under the following conditions

T1[1]Ψ[0]
1 = 0, T1[2](Ψ[0]

1 + T1[1]Ψ[1]
1 ) = 0,

and applying the limit method,

lim
ε→0

[T [2]T [1]]|λ=λ1+εΨ1

ε2 = lim
ε→0

(T1[2] + ε)(T1[1] + ε)Ψ1

ε2

= Ψ
[0]
1 + (T1[1] + T1[2])Ψ[1]

1 + T1[2]T1[1]Ψ[2]
1

≡ Ψ1[2],

thus a nontrivial solution can be obtained for the Lax pair (9) with q[2] at λ = λ1. Then the 3-fold generalized DT is

naturally deduced as follows

Ψ[3] = T [3]T [2]T [1]Ψ, T [3] = λI − H[2]Λ3H[2]−1,

q[3] = q[2] + 2(λ∗1 − λ1)
ψ1[2]∗φ1[2]

(|ψ1[2]|2 + |φ1[2]|2)
,

(15)

where Ψ1[2] = (ψ1[2], φ1[2])†, and

H[2] =

ψ1[2] −φ1[2]∗

φ1[2] ψ1[2]∗

 , Λ3 =

λ1 0

0 λ∗1

 .
3.4. The N-fold generalized DT

Repeating N times of the above process, it naturally gives rise to the expression of N-fold generalized DT, which reads

Ψ1[N − 1] = Ψ
[0]
1 +

N−1∑
l=1

T1[l]Ψ[1]
1 +

l−1∑
k=1

N−1∑
l=1

T1[l]T1[k]Ψ[2]
1 + · · · + T1[N − 1]T1[N − 2] · · · T1[1]Ψ[N−1]

1 ,

Ψ[N] = T [N]T [N − 1]T [N − 2] · · · T [1]Ψ, T [N] = λI − H[N − 1]ΛN H[N − 1]−1,

q[N] = q[N − 1] + 2(λ∗1 − λ1)
ψ1[N − 1]∗φ1[N − 1]

(|ψ1[N − 1]|2 + |φ1[N − 1]|2)
,

(16)

where Ψ1[N − 1] = (ψ1[N − 1], φ1[N − 1])†, and

H[l − 1] =

ψ1[l − 1] −φ1[l − 1]∗

φ1[l − 1] ψ1[l − 1]∗

 , Λl =

λ1 0

0 λ∗1

 , 1 ≤ l ≤ N.

Combining and simplifying the above formulas (13-16), it follows a compact formula for N-order rational solution of

(2) that

q[N] = q[0] + 2(λ∗1 − λ1)
N−1∑
j=0

ψ1[ j]∗φ1[ j]
(|ψ1[ j]|2 + |φ1[ j]|2)

. (17)

In the following section, we can utilize the above formula to derive an arbitrary order rogue wave for (2). Then it

follows their dynamic behavior illustrations.
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4. Rogue wave solutions

Having established the result of generalized DT, attention is now given to constructing higher-order rogue waves for

(2). For this purpose, assuming the seed solution

q[0] = eiθ, θ = at + (−a6δ6 + 30a4δ6 − 90a2δ6 −
1
2

a2 + 20δ6 + 1)z, a ∈ R. (18)

The problem that a seed solution cannot be iterated by basic DT, can be solved by constructing its generalized DT. And

then substituting Eq. (18) into Eq. (9), the corresponding fundamental vector solution can be obtained, that is

Ψ1 =

i(C1eM −C2e−M)e−
1
2 θ

(C2eM −C1e−M)e
1
2 θ

 , (19)

with

C1 =
(a + 2λ +

√
(a + 2λ)2 + 4)

1
2√

(a + 2λ)2 + 4
, C2 =

(a + 2λ +
√

(a + 2λ)2 + 4)
1
2√

(a + 2λ)2 + 4
,

M =
1
4

√
(a + 2λ)2 + 4

{
[i(−2a5 + 4a4λ − 8a3λ2 + 16a2λ3 − 32aλ4 + 64λ5 + 40a3 − 48a2λ

+ 48aλ2 − 32λ3 − 60a + 24λ)δ6 + i(−a + 2λ)]z + 2it +

N∑
k=1

skξ
2k
}
, sk = mk + ink, (mk, nk ∈ R),

where ξ is a small real parameter. Setting λ = − 1
2 a + i + ξ2 and expanding Ψ1 at ξ = 0, it arrives at

Ψ1(ξ) = Ψ
[0]
1 + Ψ

[1]
1 ξ2 + Ψ

[2]
1 ξ4 + · · · . (20)

Here, vector function Ψ
[0]
1 has the following explicit expression

ψ[0]
1 =

1 + i
2

η[0]
1 e−

i
2 θ, φ[0]

1 = −
1 + i

2
η[0]

2 e
i
2 θ, (21)

where

η[0]
1 = 12(a5 − 5ia4 − 20a3 + 30ia2)δ6 + 2(180δ6 + 1)a − 2i(60δ6 + 1),

η[0]
2 = 12(ia5 + 5a4 − 20ia3 − 30a2)δ6 + 2i(180δ6 + 1)a + 2(60δ6 + 1).

Clearly, Ψ
[0]
1 = (ψ[0]

1 , φ[0]
1 )† satisfies the system (9) with spectral parameter λ1 = − a

2 + i
2 . Therefore, utilizing the formula

(17) with N = 1, it suffices to obtain first-order rogue wave of (2), that is

q[1] =
(
1 +

D1 + iE1

F1

)
eiθ, (22)

where

F1 =144(a10 − 15a8 + 160a6 − 200a4 + 300a2 + 100)z2δ2
6 + 48(a6 − 15a4 + 10)z2δ6

− 48(a4 − 20a2 + 30)aztδ6 + 4(a2 + 1)z2 − 8azt + 4t2 + 1,

D1 = − 288(a10 − 15a8 + 160a6 − 200a4 + 300a2 + 100)z2δ2
6 − 96(a6 − 15a4 + 10)z2δ6

+ 96(a4 − 20a2 + 30)aztδ6 − 8(a2 + 1)z2 + 16azt − 8t2 + 2,

E1 =240(a4 − 6a2 + 2)zδ6 + 8z.

Obviously, there are two arbitrary parameters a and δ6 in the expression for q[1], the latter is the sixth-order dispersion

coefficient. Next, we fix δ6 to analyze the dynamic of rogue wave solution with changing of frequency a. Taking the case

of a = 0 as a criterion, when a < 0, the crest of rogue wave occurs counterclockwise deflection; while a > 0, the crest

9



(a) (b) (c)

Figure 2: Plots of first-order rogue wave with a = −0.5, 0, 0.5, from left to right, respectively and δ6 = 0.01.

(a) (b) (c) (d) (e)

Figure 3: Contour graphics for first-order rogue wave with a = −0.5,−0.3, 0, 0.3, 0.5, from left to right, respectively and δ6 = 0.01.

occurs clockwise deflection. In addition, the width of the crest changes. As |a| increases, the deflection angle of crest of

rogue wave increases, and so does its width. Figs. 2 and 3 illustrate the above dynamic characteristics. Now, we fix a to

be any particular constant and take limit on q[1] at δ6 → ∞, that is

lim
|δ6 |→∞

|q[1]| ≡ 1. (23)

As the absolute value of δ6 increases, the modulus of q[1] gradually reverts to a constant background plane; the rogue

wave gradually disappeared and the energy gradually decreased. Without loss of generality, fix a = 0, Fig. 4 shows this

evolution process in the first-order rogue wave structure by varing parameter δ6. For δ6 = 0, Eq.(1) degenerates into the

standard NLS equation, and it follows that the amplitude of |q[1]| is equal to 3.

Figure 4: The evolution process of the rogue wave structure with the change of δ6 for a = 0.

Similar to the computational process of Section 3.2, taking limit

lim
ξ→0

T [1]|ξ=− 1
2 a+i+ξ2Ψ1

ξ2 = lim
ξ→0

(ξ2 + T1[1])Ψ1

ξ2

= Ψ
[0]
1 + T1[1]Ψ[1]

1

≡ Ψ1[1],

(24)
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and using the obtained formula (17) with N = 2, it is not hard to adduce the second-order rogue wave. Since the

expression of this solution is too cumbersome, we only show its dynamic behavior, which are illustrated by Figs. 5 and

6. The corresponding contour map of Fig. 6 is demonstrated in Fig. 7. Substituting m1 = 0, n1 = 0 into Eq. (17), the

second-order fundamental rogue wave solution can be derived, and there exists a maximum value 5 at point (0, 0) in the

(t, z) plane, see Fig. 5. However, when only changing a parameter m1 = 100, the fundamental structure disappears, there

appears a triplet structure containing three first-order rogue waves. Similarly, the deflation properties in first-order rogue

wave also exist in the above two kinds of second-order rogue wave structures . To see this, the evolution process of this

corresponding rogue wave structure is demonstrated in Fig. 7 with varying a.

(a) (b) (c)

Figure 5: Plots of second-order rogue wave by choosing m1 = n1 = 0 and a = −0.5, 0, 0.5, from left to right, respectively.

(a) (b) (c)

Figure 6: 3D graphics for second-order rogue wave by choosing δ6 = 0.01, m1 = 100, n1 = 0 and a = −0.5, 0, 0.5, from left to right, respectively.

(a) (b) (c) (d) (e)

Figure 7: The corresponding contour graphics for the second-order rogue wave obtained in Fig. 6 with parameters: δ6 = 0.01, m1 = 100, n1 = 0 and
a = −0.5, −0.3, 0,0.3, 0.5, from left to right, respectively.

Applying formula (17) with N = 3, it then follows the third-order rogue wave solution. Here, we just show three types

of third-order rogue wave solutions, fundamental pattern, triangular pattern and circular pattern rogue wave, respectively,

see Fig. 8. The first row are the three-dimensional graphs, and the second row are the corresponding density maps.

The amplitude of third-order fundamental rogue wave reaches maximum value 7 at point (0, 0) in the (t, z) plane. Obvi-

ously, these rogue waves are symmetrical, which can be seen from Figs. 8(d-f). They also possess the above deflection

characteristics.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Three kinds of third-order rogue wave structures for Eq. (2). Left columns: fundamental type structure at a = 0, δ6 = 0.01,mi = ni =

0(i = 1, 2); middle columns: triangular structure at m1 = 100, the rest of the parameters are same to left columns; right columns: circular structure at
m2 = 1000, the rest of the parameters are same to left columns.

5. Spectral analysis of rogue waves

Our attention is now turned to spectral analysis on rogue wave solution for Eq. (22) in this section. In [53], it appears

that the specific triangular spectrum for a Peregrine rogue wave could be applied to early warning of rogue waves by

spectral measurements. The spectrum analysis is referred to as a useful method in predicting and exciting of rogue wave

solutions in the nonlinear fiber [54, 55]. For more conveniently to calculate the spectral of first-order rogue wave solution,

we take δ6 = 1
12 in Eq. (22). It then follows that

q[1] =
(4(1 + iK1)

K2
− 1

)
exp(iθ0), (25)

where

K1 =(5a4 − 30a2 + 12)z, θ0 = at +
(5
2

a4 −
97
12

a2 +
8
3

)
z,

K2 =(a10 − 15a8 + 160a6 − 260a4 + 304a2 + 144)z2 − 4(a4 − 20a2 + 32)azt + 4t2 + 1.

Now we perform spectrum analysis approach on the above derived first-order rogue wave solution by the Fourier trans-

formation as follows

F(β, z) =
1
√

2π

∫ +∞

−∞

q[1](z, t) exp(iβt)dt. (26)

From the solution (25), it is inferred that the rogue wave solution contains two parts, a plane wave and a variable signal

part. It is clear that the plane wave background becomes infinity and the integral is a δ function, so we omit the spectrum

of plane wave background. The corresponding modulus of the rogue wave signal is given by

|F(β, z)| =
√

2π exp
(
−
|β′|

2

√
1 + (5a4 − 30a2 + 12)2z2

)
, (27)

where β′ = β + a.
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Firstly, from the perspective of the bottom row of Fig. 9 to analyze, it is clear that the spectrum of the solution (25) with

different a has strong symmetry properties. And then combined with the expression (27), when a , ± 1
5

√
75 ± 5

√
165,

Figs. 9(d) and 9(e) have specific triangular spectrum of a Peregrine rogue wave. Furthermore, one can easily find that

the triangular widening appears at a = 0, when compared to the case at a = 2. The corresponding density diagrams are

displayed in Figs. 9(a) and 9(b). However, when a = ± 1
5

√
75 ± 5

√
165, the spectrum of the solution (25) is a band shape,

see Fig. 9(f), and the rogue wave solution is now reduced to a stable W-shaped soliton solution in Fig. 9(c). Similarly,

Nth-order rogue waves can be reduced to Nth-order W-shaped solitons. This result in turn implies that MI analysis is

consistent with spectral analysis for the sixth-order Eq. (2) with δ6 = 1
12 . From the perspective of MI gain function (6), it

can be adduced that

g6 =
1
6

(30A4 − 10Ω2A2 − 90a2A2 + Ω4 + 15a2Ω2 + 15a4 + 6), (28)

where A is the amplitude, Ω is the perturbed frequency and a is the frequency of background. By setting A = 1,Ω = 0

and g6 = 0, it follows

g6 =
1
2

(5a4 − 30a2 + 12) = 0, (29)

then there is a transformation of two sates here, which happens between the rogue wave and the W-shaped soliton in the

region of zero-frequency MS.

(a) (b) (c)

(d) (e) (f)

Figure 9: The first row displays density figures of two first-order rogue waves and a W-shaped soliton solutions in Eq. (25) with a = 0, 2, and
1
5

√
75 −

√
165, from left to right, respectively. The bottom row displays the spectrum dynamics of |F(β, z)| in Eq.(27).

In order to demonstrate the impact of the parameter δ6, we will give the spectrum analysis of the rogue wave solution

by selecting a = 0 in Eq. (22) for convenience. It thus transpires that

q[1] =
( 4(1 + 2i(1 + 60δ6)z)
4t2 + 4(1 + 60δ6)2z2 + 1

− 1
)

exp(i(1 + 20δ6)z), (30)
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and

|F(β, z)| =
√

2π exp
(
−
|β|

2

√
1 + 4(1 + 60δ6)2z2

)
. (31)

Similarly, when δ6 , −
1
60 , the spectrum of the solution (30) also possesses specific triangular spectrum of a Peregrine

rogue wave. In addition, their spectrum share the same features with different parameters as above Eq. (25). Obviously,

a little change appears in δ6, a big change presents in the corresponding triangular widening spectrum in contrast with

above condition. Setting δ6 = − 1
60 , the solution (30) is a W-shaped soliton, presented in Fig. 10(c). Its corresponding

spectrum appears in banded form, see Fig. 10.

(a) (b) (c)

Figure 10: Spectral dynamics of |F(β, z)| in Eq. (31) with δ6 = 0, 0.1 and − 1
60 , from left to right, respectively.

6. Summary and discussions

In conclusion, MI of the continuous wave background has been investigated for the NLS equation with different

higher-order dispersion term. The MI distribution characteristics from the sixth-order to the eighth-order NLS equations

are studied in detail. There are two arbitrary parameters, namely, higher-order dispersion term δi, i = 3, 4, . . . and ampli-

tude A. These parameters control the MS distribution of the NLS with different higher-order dispersion terms in the MI

band. By adjusting the parameters, the MS quasi-elliptic and MS elliptic ring can be completely contained within the MI

band or intersected at the MI boundary, the latter case yields two curves in the MI band. gi is a polynomial with ω, and its

highest power of ω is closely related to how many MS curves can exist in the MI band. It is adduced that the high-order

dispersion terms indeed affect the distribution of the MS regime, n-order dispersion term corresponds to n− 2 modulation

stability curves in the MI band. Here, we do not consider the case of NLS equation with multiple dispersion terms, only

considering the case with a higher-order dispersion term, it is inferred that the distribution of MS curve in the MI band is

not affected. Therefore, when multiple different order dispersion terms exist simultaneously, the higher-order dispersion

term plays the main role in the distribution of MS curve in the MI band.

In addition, we have proposed rogue waves of the NLS with sixth-order dispersion term. By constructing the gener-

alized DT, we give compact algebraic expression of Nth-order rogue waves (17). Then the exact expression of first-order

rogue wave is demonstrated. Since expressions of high-order rogue waves are too cumbersome, we demonstrate its dy-

namic behavior through pictures. There are two arbitrary parameters a and δ6, the sign of the former determines the

direction of deflection and the magnitude of the absolute value affects the angle of deflection and the width of rogue wave

solution. While the latter can cause the change of the width and amplitude of rogue wave. For the first- to third-order

rogue waves, they all own the deflection properties mentioned above. For the third-order rogue wave solution, three kinds

of structures, that is fundamental, triangular, and circular, are illustrated in Fig. 8, and their dynamic behavior features are

discussed in detail.

Via the spectrum analysis approach on first-order rogue wave, It has been found that arbitrary parameters a and δ6

have effects on the spectrum of the solution (25). Fixing δ6 = 1
12 , when a , ± 1

5

√
75 ± 5

√
165, the solution has specific
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triangular spectrum for a Peregrine rogue wave and the value of a is related to the size of the triangular spectrum; when

a = ± 1
5

√
75 ± 5

√
165, the solution is reduced to a W-shaped soliton, which is not localized in temporal and spatial context

and the spectrum is banded. Similarly, fixing a, when δ6 satisfies certain constraint, the spectrum of the solution (30) also

presents the specific triangular spectrum or banded spectrum, which correspond to the rogue wave solution or W-shaped

soliton solution, respectively.

Finally, it is worthy to mention that we will further study the excitation conditions and numerical analysis of various

nonlinear waves and their corresponding positions in the MI gain plane in the future.
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