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Abstract

This paper deals with inverse problems subject to imprecise or vague information of some in-

volved data by means of interval-valued functions. To provide interval solutions to the inverse prob-

lems we have adopted a perturbed collage-based approach and we have also introduced a numerical

procedure by means of the use of interval bases in a sense. To illustrate the results, and as an applica-

tion, we have studied the Volterra interval-valued integral equation, and provide some computational

examples.

2020 Mathematics Subject Classification MSC: 45Q05, 47S40, 65L10, 65R20.

Keywords: Inverse problem, interval equations, Volterra integral equation.

1 Introduction

This work deals with some inverse problems by mean of fractal-based methods, and more specifically,

collage-based techniques, as well as some related numerical schemes. It addresses a perturbed version of

a well-known and straightforward consequence of the Banach fixed point theorem, the collage theorem

[5], and its application for designing numerical algorithms to solve an inverse problem involving a class

of interval integral equations. In order to present the motivation behind that perturbed result, we should

first recall that, in its classical form, the collage theorem asserts that in a complete metric space (M, d),

for the unique fixed point x• ∈ M of a contractive self-mapping Φ : M −→ M, the inequality

d(x, x•) ≤ 1

1 − c
d(x,Φ(x)),

is valid, where c ∈ [0, 1) is the contraction constant and x is any element in M. Therefore, a practical

problem arises when trying to calculate the so-called collage distance, d(x,Φ(x)): evaluating Φ at x is not

always a feasible calculus from a practical perspective. For instance, this is the case when dealing with

integral operators. In our main result, we state the collage theorem in terms of an approximating element

y of Φ(x), which is easy to calculate in a sense, and which satisfies a perturbed inequality along the lines

of that which is outlined in the collage theorem.
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A question related to the collage theorem is the collage-based inverse problem: given a target

element x in the complete metric space (M, d), a nonempty set Λ (typically a nonempty compact subset

of a Euclidean real space RN) and a family {Φλ}λ∈Λ of cλ-contractive self-mappings (0 ≤ cλ < 1) on M,

with respective fixed points x•
λ
, the aim is to find a parameter λ∗ ∈ Λ for which the distance d(x, x•

λ∗ ) is

as small as possible. To this end, and according to the collage theorem, one must consider (see [13]) the

optimization problem

min
λ∈Λ

1

1 − cλ
d(x,Φλ(x)).

Moreover, if c := inf
λ∈Λ

cλ > 0, then we must instead deal with the nonlinear program

min
λ∈Λ

d(x,Φλ(x)).

For the same practical reasons we have mentioned above, in this work we also focus on with a perturbation

of it.

In addition, and as an extension of the previous contents, we have considered another kind of

perturbed framework, which is in the presence of interval uncertainty. This is the case when some input

(data) is not deterministic, such as, following the example discussed by Román-Flores and Rojas-Medar

[18], in differential equations given for the growing population by means of the Malthus model, in the

case of imprecision or vagueness of information from individuals in the initial population. To this matter,

and specially on interval arithmetic operations, the reader can find the interval analysis commented on

works by Moore [16, 17]. It has a wide range of applications, such as reliable computing, validated

numerics, interval problems with differential equations, data envelopment analysis, robotics and so on,

which are discussed in several monographs and research papers, in addition to the bibliography therein

(see [20, 21, 22, 23]). Alefeld and Mayer [2] offer an interesting overview of applications of interval

arithmetic, and among these they include the application of the allocation of fixed points under contractive

functions, which are point wise valued on intervals. Furthermore, and in relation to our objectives, in

recent literature we find definitions of integral for interval-valued functions, such as those given by Aubin

and Cellina [4], Wu and Gong [24], and Stefanini and Bede [22], among others, which will be referred

to and discussed in this text. The integral for interval-valued functions provided by Stefanini and Bede

[22] will be a useful tool for us to use as a model and tooperate inverse problems subject to interval

uncertainty, such as the Volterra interval integral equation, as proposed in the present manuscript.

This leads us to consider interval problems, and we have focused on those of an integral-type. In

this context, the set C(Ω,Kc) of continuous functions from a compact space Ω into the metric spaceKc of

all compact real intervals (the Hausdorff metric), becomes a complete metric space when endowed with

an adequate uniform metric. Therefore, the interval integral equation under study permits the described

treatment of the corresponding inverse problem. Another key factor is the way in which we construct

the perturbations in this metric space. We approximate a continuous interval-valued function by means

of a Schauder basis in an associated space of continuous functions, which generates, adequately way,

easy-to-calculate continuous interval-valued functions to evaluate the involved operators Φλ. So, for a
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given function X ∈ C(Ω,Kc), we find another one Y ∈ C(Ω,Kc), as close to Φλ(X) as we want, in such a

way that we can explicitly determine Y .

The structure of this paper is as follows. In Section 2 we derive the perturbed collage theorem

as a consequence of the (Caccioppoli version of the) Banach fixed point theorem and in Section 3 we

recall some facts about interval calculus. In order to performthe calculations involved in the inverse

problem associated with a certain interval integral equation effectively, in Section 4 we have designed an

easy-to-calculate procedure derived from the use of some Schauder bases in certain spaces of continuous

functions. Finally, Section 5 deals with the study of the above-mentioned inverse problem, that of the

Volterra interval-valued integral equation

X(t) = G(t) +

∫ t

a

K(t, s, X(s))ds, (t ∈ [a, b]), (1.1)

where G ∈ C([a, b],Kc), K ∈ C([a, b] × [a, b] × Kc,Kc) are assumed to be known interval functions,

and X ∈ C([a, b],KC ) is the unknown interval-valued function to be determined. Finally, in Section 6 we

provide some examples.

2 A perturbed collage theorem

In this paper we have developed a collage-based result, but as previosly mentioned in the Introduction,

in practical situations we can not explicitly determine the collage distance, only an approximation of it.

In order to state the corner stone of these ideas, we begin by establishing a collage theorem of perturbed

character, which follows from the generalization of R. Caccioppoli of the Banach fixed point theorem

(see, for instance, [3, Theorem 2.3]). For a self-mapping Φ on a nonempty set M and x ∈ M, {Φn(x)}n≥1

denotes the sequence of iterates ofΦ generated by x. Then, that extension of Banach’s fixed point theorem

reads as follows: assume that (M, d) is a complete metric space, Φ : M −→ M such that

x1, x2 ∈ M ⇒ d(Φn(x1),Φn(x2)) ≤ αnd(x1, x2)

and {αn}n≥1 ⊂ R+ is a sequence such that the series
∑

n≥1

αn is convergent. Then, Φ has a unique fixed point

x• ∈ M and if x ∈ M, then for all n ≥ 1 there holds that

d(Φn(x), x•) ≤
∞
∑

k=n

αkd(Φ(x), x),

and, in particular, lim
n→∞
Φn(x) = x•.

Theorem 2.1 Let (M, d) be a complete metric space, Φ : M −→ M and {αn}n≥1 be a sequence of non-

negative real numbers such that

∞
∑

n=1

αn < +∞ and

x1, x2 ∈ M ⇒ d(Φn(x1),Φn(x2)) ≤ αnd(x1, x2).
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If in addition x• is the unique fixed point of Φ, and ε > 0 and x, y ∈ M satisfy d(Φ(x), y) < ε, then for

each n ≥ 1 with αn < 1 the inequality

d(x, x•) ≤

n−1
∑

k=1

αk

1 − αn

(d(x, y) + ε) (2.2)

is valid.

Proof. First of all, we shoul note that the above-mentioned extension of the Banach fixed point theorem,

[3, Theorem 2.3], guarantees the existence of a unique fixed point x• of Φ. So, to conclude this proof, we

should fix ε > 0 and x, y ∈ M satisfying d(Φ(x), y) < ε, and consider n ≥ 1 so that αn < 1 (the existence

of such an n ≥ 1, indeed, that of all them except perhaps a finite number, follows from the convergence

of the series
∑

n≥1

αn). Therefore,

d(x, x•) ≤ d(x,Φn(x)) + d(Φn(x), x•)

= d(x,Φn(x)) + d(Φn(x),Φn(x•))

≤ d(x,Φn(x)) + αnd(x, x•),

and thus

d(x, x•) ≤ 1

1 − αn

d(x,Φn(x)).

As a consequence, we arrive at the announced inequality, since

d(x, x•) ≤ 1

1 − αn

d(x,Φn(x))

≤ 1

1 − αn

n−1
∑

k=0

d(Φk(x)),Φk(Φ(x))

≤

n−1
∑

k=0

αk

1 − αn

d(Φ(x), x)

≤

n−1
∑

k=0

αk

1 − αn

(d(Φ(x), y) + d(y, x))

≤

n−1
∑

k=0

αk

1 − αn

(ε + d(y, x)).

�

3 Some elementary notions and facts about interval calculus

We denote by KC the family of all bounded closed intervals in R, i.e.,

KC =
{[

a, a
]

: a, a ∈ R and a ≤ a
}

.
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From herein, for the sake of simplicity, we refer to any element in KC as an interval.

Given two intervals A = [a, a], B = [b, b], we have the following classical operations of the sum

A + B = [a + b, a + b]

and the multiplication by scalars

τA = {τa : a ∈ A} =














[τa, τa], if τ ≥ 0,

[τa, τa], if τ ≤ 0.

With respect to the difference of two intervals, several definitions exist in literature. One of the most

popular is the generalized Hukuhara difference (gH-difference, for short). The gH-difference of two

intervals A and B, which we recall from [15, 21, 22], is as follows:

A ⊖gH B = C ⇐⇒














(a) A = B +C,

or (b) B = A + (−1)C.

Note that the difference of an interval and itself is zero, that is, A ⊖gH A = [0, 0]. Furthermore, the

gH-difference of two intervals always exists and is equal to

A ⊖gH B = [min{a − b, a − b},max{a − b, a − b}].

We refer to Markov [15], Moore [16, 17] and Alefeld and Herzberger [1] for further details on the topic

of interval analysis.

We also recall the Pompeiu-Hausdorff distance D on KC which is defined by

D(A, B) = max

[

max
a∈A

d(a, B),max
b∈B

d(b, A)

]

with d(a, B) = minb∈B |a− b|. It is well-known (see [22]) that D(A, B) =
∥

∥

∥A ⊖gH B
∥

∥

∥ = max{|a− b|, |a − b|}
where, for C ∈ KC , ‖C‖ = max{|c| : c ∈ C}, and that (KC ,D) is a complete and separable metric space.

Finally, in this paper we consider the definition of the integral for an interval-valued function as

used by L. Stefanini and B. Bede [22], as follows.

Definition 3.1 Given an interval-valued function f : [a, b] → KC , with f (t) = [ f (t), f (t)], f is said to be

integrable if and only if the endpoint functions f and f are integrable, and the integral of f over [a, b] is

defined as
∫ b

a

f (t)dt =

[∫ b

a

f (t)dt,

∫ b

a

f (t)dt

]

∈ KC . (3.3)

Remark 3.2 The previous definition is a natural extension of the classic integral, and fits the aim of this

paper. However, we would like to point out that other definitions of integral for inteval-valued functions

exist in literature. For instance, Aubin and Cellina [4] have defined the Aunmann integral of f over [a, b]
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as
∫ b

a
f (t)dt =

{

∫ b

a
h(t)dt : h ∈ S ( f )

}

, where S ( f ) is the set of all the integrable selectors of f , that is,

S ( f ) =
{

h : [a, b] → R : h integrable, h(t) ∈ f (t),∀t ∈ [a, b]
}

. Bede and Gal [6] have proved that if f is

a measurable and integrable bounded interval-valued function, then the endpoint functions f and f are

integrable, and (3.3) is fulfilled. On the other hand, Wu and Gong [24] introduced the Henstock integral

for interval-valued functions as an extension of the Henstock integral in real-valued functions. In fact,

the endpoint functions f and f are Henstock integrable if and only if the interval-valued function f is

Henstock integrable, and its integral coincides with the interval defined by the Henstock integral of the

endpoint functions ([24], Theorem 2.1). In this way, under certain hypotheses, the Henstock integral of f

verifies (3.3).

4 Approximation of a continuous interval-valued function

In this section we focus on obtaining an approximation of a continuous interval-valued function in terms

of a sequence of functions, simple in a sense, which will be essential in the development of our numerical

method to solve interval integral inverse problems by means of the perturbed collage theorem, Theorem

2.1.

Given Ω a compact topological space, we will denote by C (Ω) the Banach space of all continuous

real valued functions defined on Ω with its usual max norm, ‖ · ‖∞, and by C (Ω,KC) the set of all

continuous functions from Ω into KC endowed with the distance

H( f , h) := sup
ω∈Ω

max{|h(ω) − f (ω)|, |h(ω) − f (ω)|} (4.4)

with f (ω) = [ f (ω), f (ω)] and h(ω) = [h(ω), h(ω)] in C (Ω,KC).

It is very easy to check that f = [ f , f ] : Ω → KC is continuous if and only if f and f are

continuous. As a direct consequence, if TΩ is the nonempty set

TΩ := {( f , f ) ∈ C (Ω) × C (Ω) : f ≤ f }

with the metric

d(( f , f ), (h, h)) := max{‖ f − h‖∞, ‖ f − h‖∞},

then, the mapping

S : (C (Ω,KC) ,H)→ (TΩ, d)

defined by

S ([ f , f ]) := ( f , f )

is an isometric bijection. In particular, (C (Ω,KC) ,H) is a complete and separable metric space.
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In order to obtain the aforementioned approximation for a continuous interval-valued function, we

make use of an adequate Schauder basis in a certain Banach space, motivated by the succesful use in the

scalar-valued case (see [7], [9], [10] and [11]). We should recall that, in general, given a Banach space

E, a sequence { fn}n≥1 of elements of E is said to be a Schauder basis of E if, for every z ∈ E, there is a

unique sequence {αn}n≥1 of scalars such that z =
∑

n≥1 αn fn. A Schauder basis gives rise to the canonical

sequence of (continuous and linear) associated projections Πm : E → E, Πm(
∑

n≥1 αn fn) :=
∑m

k=1 αk fk

(see [12] and [19]).

In the following result we introduce an approximation of a continuous interval-valued function in

the metric space C(Ω,KC) in terms of a Schauder basis in the Banach space C(Ω), which will be essential

for obtaining the algorithm to solve the inverse problem for the Volterra interval integral equation.

Proposition 4.1 Let Ω be a topological compact space, { fn}n≥1 be a Schauder basis of C(Ω) and let

{Πn}n≥1 be the associated sequence of projections such that

a) if ω ∈ Ω and n ≥ 1, then fn(ω) ≥ 0, and

b) if g ∈ C(Ω), g ≥ 0, and n ≥ 1, then Πn(g) ≥ 0.

Thus, given f ∈ C(Ω,KC) and ε > 0 there exists n ≥ 1 such that

H ( f , Pn( f )) < ε,

where

Pn( f )(ω) =

n
∑

k=1

αkφk(ω) +

n
∑

k=1
βk−αk≥0

(βk − αk)ψk(ω) ⊖gH





























n
∑

k=1
βk−αk<0

|βk − αk|ψk(ω)





























with φk(ω) =
[

fk(ω), fk(ω)
]

, ψk(ω) =
[

0, fk(ω)
]

and certain real numbers α1, α2, . . . , αn and β1, β2, . . . , βn.

Proof. If f = [ f , f ] ∈ C (Ω,KC), the fact that { fn}n≥1 is a Schauder basis of C(Ω) implies the existence

of sequences of scalars {αn}n≥1 and {βn}n≥1 such that f =
∑

n≥1 αn fn and f =
∑

n≥1 βn fn. Therefore, we

define

Pn( f )(ω) :=

















n
∑

k=1

αk fk(ω),

n
∑

k=1

βk fk(ω)

















, (n ≥ 1, ω ∈ Ω),

and, according to the definition (4.4) of the distance H, given ε > 0 we can guarantee the existence of

n ≥ 1 such that H( f , Pn( f )) < ε. Finally, taking into account that if a, b, α, β ∈ R+
0

with aα−bβ > 0 , then

[0, aα − bβ] = a[0, α] ⊖gH b[0, β],
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it follows that

Pn( f )(ω) =

















n
∑

k=1

αk fk(ω),

n
∑

k=1

αk fk(ω)

















+

















0,

n
∑

k=1

(βk − αk) fk(ω)

















=

n
∑

k=1

αk

[

fk(ω), fk(ω)
]

+





























0,

n
∑

k=1
βk−αk≥0

(βk − αk) fk(ω)





























⊖gH





























0,

n
∑

k=1
βk−αk<0

|βk − αk| fk(ω)





























=

n
∑

k=1

αk

[

fk(ω), fk(ω)
]

+

n
∑

k=1
βk−αk≥0

(βk − αk)
[

0, fk(ω)
]

⊖gH





























n
∑

k=1
βk−αk<0

|βk − αk |
[

0, fk(ω)
]





























=

n
∑

k=1

αkφk(ω) +

n
∑

k=1
βk−αk≥0

(βk − αk)ψk(w) ⊖gH





























n
∑

k=1
βk−αk<0

|βk − αk |ψk(ω)





























,

where φk(ω) =
[

fk(ω), fk(ω)
]

, ψk(ω) =
[

0, fk(ω)
]

. �

The following result provides us with an procedure to determine the integral of Pn( f ) in Proposition

4.1:

Proposition 4.2 (i) Given hk : [a, b] → KC integrable interval-valued functions, for k = 1, . . . , n, then
∑n

k=1 hk is integrable, and
∫ b

a

∑n
k=1 hk(t)dt =

∑n
k=1

∫ b

a
hk(t)dt.

(ii) Given f , h : [a, b] → KC integrable interval-valued functions, and define (h⊖gH f )(t) = h(t)⊖gH f (t),

then h ⊖gH f is integrable. Furthermore, if f (t) = [0, f (t)] and h(t) = [0, h(t)], with h(t) ≥ f (t), then
∫ b

a
(h(t) ⊖gH f (t))dt =

∫ b

a
h(t)dt ⊖gH

∫ b

a
f (t)dt.

Proof. (i) The proof is straightforward, since the summation of hk, k = 1, . . . , n, is equivalent to the

summantion of their lower and upper endpoints, which are integrable by Definition 3.1.

(ii) By definition of the gH-difference, we have that

h(t) ⊖gH f (t) =
[

min{h(t) − f (t), h(t) − f (t)},max{h(t) − f (t), h(t) − f (t)}
]

.

Since f and h are integrable, then h, f , h, f are integrable. The latest implies that h − f and h −
f are integrable. Then, min{h − f , h − f } and max{h − f , h − f } are integrable, therefore h ⊖gH f is

integrable. Furthermore if f (t) = [0, f (t)] and h(t) = [0, h(t)] with h(t) ≥ f (t), then
∫ b

a
(h(t) ⊖gH f (t))dt =

[

0,
∫ b

a
(h(t) − f (t))dt

]

=
∫ b

a
h(t)dt ⊖gH

∫ b

a
f (t)dt. �

Now we are in a position to calculate the integral of Pn( f ).

Proposition 4.3 Consider the interval-valued functions and the hypotheses and equations given in Propo-

sition 4.1 with Ω := [a, b]. Then,

∫ b

a

Pn( f )(t)dt =

n
∑

k=1

αk

∫ b

a

φk(t)dt +

n
∑

k=1
βk−αk≥0

(βk − αk)

∫ b

a

ψk(t)dt ⊖gH





























n
∑

k=1
βk−αk<0

|βk − αk|
∫ b

a

ψk(t)dt





























.
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Proof. The interval-valued functions φk and ψk verify the hypothesis required in (i) and (ii) in Proposition

4.2. Therefore, in view of Proposition 4.1, the validity of the announced equality follows. �

The following technical result together with Proposition 4.2 and Propostion 4.3, allow us to check

that
∫ b

a
Pn( f )(t)dt is close to

∫ b

a
f (t)dt in the sense of the distance D.

Lemma 4.4 If f , h ∈ C([a, b],Kc), then

D

(∫ b

a

f (s)ds,

∫ b

a

h(s)ds

)

≤ (b − a)H( f , h).

Proof. If f (s) = [ f (s), f (s)] and h(s) = [h(s), h(s)], it suffices to follow this chain of inequalities:

D

(∫ b

a

f (s)ds,

∫ b

a

h(s)ds

)

= max

{
∣

∣

∣

∣

∣

∣

∫ b

a

f (s)ds −
∫ b

a

h(s)ds

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

∫ b

a

f (s)ds −
∫ b

a

h(s)ds

∣

∣

∣

∣

∣

∣

}

≤ max

{∫ b

a

| f (s) − h(s)|ds,

∫ b

a

| f (s) − h(s)|ds

}

≤
∫ b

a

max
{

| f (s) − h(s)|, | f (s) − h(s)|
}

ds

=

∫ b

a

D( f (s), h(s))ds

≤
∫ b

a

H( f , h)ds

= (b − a)H( f , h).

�

5 Inverse problem

Since, in this work, we adopt a collage-based approach to deal with an inverse problem related to the

Volterra interval integral equation (1.1), we must first consider its fixed-point-treatment, that is, the well-

known fact that, under suitable assumptions of continuity and lipschitzianity, the equation (1.1) admits

a unique solution, and that it is possible to give this in terms of the limit of the sequence of iterates of

an integral operator at a continuous interval-valued function, since such an interval integral equation is

obviously equivalent to determine a fixed point of an adequate integral operator. This follows from the

generalized Banach fixed point theorem ([3, Theorem 2.3]).

Proposition 5.1 Assuming G ∈ C([a, b],Kc) and K ∈ C([a, b]2 × Kc,Kc), in such a way that, for some

L > 0 there holds that

A, B ∈ Kc

a ≤ t, s ≤ b















⇒ D(K(t, s, A),K(t, s, B)) ≤ L D(A, B).
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Then, the self-operator Φ : C([a, b],Kc) −→ C([a, b],Kc) defined at each X ∈ C([a, b],Kc) as

Φ(X)(t) := G(t) +

∫ t

a

K(t, s, X(s))ds, (t ∈ [a, b]) (5.5)

admits a unique fixed point X•. Furthermore, if X ∈ C([a, b],Kc) and n ≥ 1, then

H(Φn(X), X•) ≤
















∞
∑

k=n

Lk(b − a)k

k!

















H(Φ(X), X),

and so,

lim
n→∞
Φn(X) = X•.

In particular, and according to the perturbed collage theorem, Theorem 2.1, we arrive at:

Corollary 5.2 Let G ∈ C([a, b],Kc), K ∈ C([a, b]2 × Kc,Kc) and L > 0 such that

A, B ∈ Kc

a ≤ t, s ≤ b















⇒ D(K(t, s, A),K(t, s, B)) ≤ L D(A, B).

Let X• ∈ C([a, b],Kc) be the unique solution of the Volterra interval integral equation (1.1) and suppose

that ε > 0 and X, Y ∈ C([a, b],Kc) satisfy

H

(

G(·) +
∫ (·)

a

K(·, s, X(s))ds, Y(·)
)

< ε.

Then

H(X, X•) ≤ eL(b−a)(H(X, Y) + ε).

With the idea in mind of stating the previosly inverse problem in a precise way, now we can focus

on the following fact: In the perturbed collage theorem, Theorem 2.1, we can replace the image by Φ of

an element x ∈ M by another y ∈ M where, for a given ε > 0, d(x, y) < ε. When dealing with a certain

inverse problem involving the Volterra interval integral equation (1.1), our aim is to find, for a given

X ∈ C([a, b],Kc) and an ε > 0, a continuous function Y ∈ C([a, b],Kc) such that both H(Φ(X), Y) < ε

and that Y is easy-to-calculate, unlike Φ(X) in general. We do this in Lemma 5.3 in a constructive way,

which will be essential for addressing the inverse problem.

Lemma 5.3 Let { fn}n≥1 be a Schauder basis in C([a, b]2) with sequence of associated projections {Πn}n≥1

and satisfying the hypotheses in Proposition 4.1, X ∈ C([a, b],Kc), Φ be defined as in (5.5) and ε > 0.

Therefore, there exists n ≥ 1 in such a way that for Pn defined as in Proposition 4.1 and Y : [a, b] −→ Kc

is the continuous interval-valued function

Y(·) := G(·) +
∫ (·)

a

Pn(K(·, s, X(s))ds,

we have that

H(Φ(X), Y) < ε.
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Proof. If Z ∈ C([a, b]2,Kc) is defined at each a ≤ t, s ≤ b by

Z(t, s) := K(t, s, X(s)), (5.6)

according to Proposition 4.1, let n be a positive integer with

H(Z, Pn(Z)) <
ε

b − a
.

Then, taking into account the invariance of D by translations, Lemma 4.4 and (5.6), we arrive at

H(Φ(X), Y) = sup
t∈[a,b]

D

(

G(t) +

∫ t

a

K(t, s, X(s))ds,G(t) +

∫ t

a

Pn(K(t, s, X(s)))ds

)

= sup
t∈[a,b]

D

(∫ t

a

K(t, s, X(s))ds,

∫ t

a

Pn(K(t, s, X(s)))ds

)

≤ sup
t∈[a,b]

(t − a)H(K(t, ·, X(·)), Pn(K(t, ·, X(·))))

≤ (b − a)H(Z, Pn(Z))

< ε.

�

Finally, we present the general scheme for solving an inverse problem via the perturbed collage

theorem, Theorem 2.1. The idea is to consider a complete metric space (M, d), a nonempty index set Λ

–usually a compact subset of RN–, a family of contractive self-mappings Φλ : M −→ M or, at least,those

which satisfy the conditions of the perturbed collage theorem, Theorem 2.1, with a unique fixed point x•
λ
,

a target element x ∈ M and an ε > 0. Then, for any λ ∈ Λ we calculate an element yλ ∈ M, in a suitable

way, such that d(Φλ(x), yλ) is easily computable and

d(Φλ(x), yλ) < ε,

and then we determine that

λ∗ ∈ argmin
λ∈Λ

d(yλ, x), (5.7)

for which, in view of (2.2), it holds that

d(x, x•λ) ≤

n−1
∑

k=1

α
(λ)

k

1 − α(λ)
nλ

(d(x, yλ) + ε), (5.8)

where, for each λ ∈ Λ, {αnλ}n≥1 is a sequence in R+ with

∞
∑

n=1

αnλ < +∞ and nλ ≥ 1 satisfies αnλ < 1. If,

in addition, we assume the stability condition

ρ := sup











































n−1
∑

k=1

α
(λ)

k

1 − α(λ)
nλ

: λ ∈ Λ











































< ∞, (5.9)

11



then (5.8) yields

d(x, x•λ) ≤ ρ(d(x, yλ) + ε),

and so we can consider problem (5.7) instead of

λ∗ ∈ argmin
λ∈Λ

d(x, x•λ),

since in general we can not determine each fixed point x•
λ

or, if it is possible to obtain an approximation

of it, such a calculation has a very high computational cost. The condition (5.9) is quite familiar in

some particular cases. For instance, when the self-mappings Φλ are cλ-contractive, with 0 ≤ cλ < 1,

it is equivalent to the well-known assumption sup
λ∈Λ

cλ < 1 in a typical collage-based approach to inverse

problems (see for instance [8], [13] and [14]).

Now we can address the inverse problem related to the Volterra interval integral equation (1.1). So

we consider a, b ∈ R with a < b, a nonempty set Λ and, for each λ ∈ Λ, two interval-valued functions

Gλ ∈ C([a, b],Kc) and Kλ ∈ C([a, b]2 × Kc,Kc), and an Lλ > 0 such that

A, B ∈ Kc

a ≤ t, s ≤ b















⇒ D(Kλ(t, s, A),Kλ(t, s, B)) ≤ Lλ D(A, B).

We should also consider the self-operator Φλ : C([a, b],Kc) −→ C([a, b],Kc) defined for each X ∈
C([a, b],Kc) by

Φλ(X)(t) := Gλ(t) +

∫ t

a

Kλ(t, s, X(s))ds, (t ∈ [a, b]), (5.10)

and its unique fixed point X•
λ
. Then, in view of Proposition 5.1, the stability condition (5.9) is valid as

soon as

sup
λ∈Λ

Lλ < ∞

and therefore, under this hypothesis, the preceding reasoning applies.

6 Numerical examples

In order to illustrate the behaviour of the inverse problem, we have developed some examples. Given Λ

a compact subset of RN, for λ ∈ Λ, given Gλ ∈ C ([a, b],KC ), and Kλ : [a, b] × [a, b] × KC → KC we

consider the problem of finding X ∈ C ([a, b],KC) such that

X(t) = Gλ(t) +

∫ t

a

Kλ(t, s, X(s))ds, (t ∈ [a, b]).

The inverse problem starts with a target element X̃. This element is obtained as follows: first of all,

we fix values λ0 ∈ Λ and we obtain a numerical approximation of the solution of the equation

X(t) = Gλ0
(t) +

∫ t

a

Kλ0
(t, s, X(s))ds, (t ∈ [a, b]). (6.11)
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This numerical approximation is an approximation of the fixed point of the self-operator given in (5.10).

To obtain X̃ we start with an initial X0 ∈ C ([a, b],KC ) and for j = 1, 2, ... we calculate for the chosen

n ∈ N
Xn

j (t) := Gλ0
(t) +

∫ t

a

Pn(Kλ0
(t, s, Xn

j−1(s))ds, (t ∈ [a, b]),

where Pn is described in Proposition 4.1 using as { fn} the usual basis in C([0, 1]2) constructed over the

diadic nodes (see for instance [9]). Fixing ε > 0 we consider m ∈ N in such a way that

H(Xn
m, X

n
m−1) < ε,

and take X̃(t) := Xn
m(t) as the target element. We can now address the inverse problem. Given the target

element X̃ : [a, b]→ KC , and fixed r ∈ N, we consider

Yλ,r(t) = Gλ(t) +

∫ t

a

Pr(Kλ(t, s, X̃(s))ds, (t ∈ [a, b]).

We then compute λ∗r ∈ Λ in such a way that

H(X̃, Yλ∗r ,r) = min
λ∈Λ

H(X̃, Yλ,r), (6.12)

and we analyse the differences between λ0 and λ∗r .

Example 6.1 Let

X(t) = G(t) +

∫ t

0

K(t, s, X(s))ds, (t ∈ [0, 1]) (6.13)

be the Volterra interval equation where G(t) is obtained in such away that the solution of the equation

is X(t) = [cos(t) − t
2
, cos(t) + t

2
] and K(t, s, u) = (

√
2t − 1s)u. We now consider the family of Volterra

interval integral equations

X(t) = Gλ(t) +

∫ t

0

Kλ(t, s, X(s))ds, (t ∈ [0, 1])

with Gλ(t) = G(t) and Kλ(t, s, u) = (αt + βs)u, where λ = (α, β) with α ∈ [1, 3] and β ∈ [− 3
2
,− 1

2
]. For the

value λ0 = (α0, β0) = (
√

2,−1), we compute X̃ = Xn
m and with this target element we calculate Yλ,r. Then

we solve the minimization problem (6.12) and we note λ∗r = (α∗r , β
∗
r ) as the solution. In Table 1, we show

the obtained values for different m, n and r.

Example 6.2 We now consider the family of Volterra interval integral equations

X(t) = [2t +
1

8
, 2t +

3

8
] +

∫ t

0

(α cos(t) + β cos(s))arctan(X(s))ds, (t ∈ [0, 1]) (6.14)

with arctan(X(s)) = [arctan(X(s)), arctan(X(s))], α ∈ [1.5, 2.5] and β ∈ [0.5, 1.5]. For α0 = 2 and β0 = 1,

we compute X̃ = Xn
m and we calculate Y(α,β),r. Then we solve the minimization problem (6.12) and we

note (α∗r , β
∗
r ) as the solution.
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Table 1. Numerical results for Example 6.1.

m n r α∗r β∗r H(X̃, Yλ∗r ,r)

3 32 32 1.4052404924510171 −0.9908622806761388 1.48128× 10−9

3 92 92 1.4127066294461754 −0.9982113290080197 3.14213× 10−9

3 172 172 1.4064981933829088 −0.9904868353840546 1.88601× 10−9

7 32 32 1.4142065762008067 −0.9999923158306506 2.58755× 10−9

7 92 92 1.4142138642529456 −1.0000006138203197 2.03712× 10−9

7 172 172 1.414213609421653 −1.0000001074746905 2.8527 × 10−9

Table 2. Numerical results for Example 6.2.

m n r α∗r β∗r H(X̃, Yλ∗r ,r)

7 92 92 1.9960170992122808 1.002917299482817 3.33067× 10−16

7 172 172 1.9978735611639642 1.001405265860099 6.98024 × 10−9

Conclusions

In this paper we have established a perturbed Collage theorem. To deal with Volterra interval-valued

integral equations, the use of adequate Schauder bases in certain Banach spaces, naturally associated

with the inverse problem, allows us to design an algorithm based on the perturbed Collage Theorem.

In our future work, we will explore new contexts and applications related to this manuscript, which

includes the vagueness of data needs of fuzzy modelling, as well as the necessary tools in order to extend

the content and results of the present paper.
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[7] M. I. Berenguer, D. Gámez A computational method for solving a class of two dimensional Volterra

integral equations, J. Comput. Appl. Math. 318 (2017), 403–410.

[8] M. I. Berenguer, H. Kunze, D. La Torre, M. Ruiz Galán, Galerkin method for constrained varia-

tional equations and a collage-based approach to related inverse problems., J. Comput. Appl. Math.

292 (2016) 67–75.
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integral equation of the second kind and biorthogonal systems, Abstr. Appl. Anal. 2010, Art. ID

135216, 11 pp.
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