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Abstract

An implicit multiscale method with multiple macroscopic predic-
tion for steady state solutions of gas flow in all flow regimes is pre-
sented. The method is based on the finite volume discrete velocity
method (DVM) framework. At the cell interface a multiscale flux with
a construction similar to discrete unified gas-kinetic scheme (DUGKS)
is adopted. The idea of the macroscopic variable prediction is further
developed and a multiple prediction structure is formed. A predic-
tion scheme is constructed to give a predicted macroscopic variable
based on the macroscopic residual, and the convergence is accelerated
greatly in the continuum flow regime. Test cases show the present
method is one order of magnitude faster than the previous implicit
multiscale scheme in the continuum flow regime.

Keywords: implicit scheme, rarefied flow, kinetic scheme, multiscale
scheme

1 Introduction

Rarefied gas flow simulation is always a research hotspot of computa-
tional fluid dynamics (CFD). Recent years, multiscale gas-kinetic methods
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based on the discrete velocity method (DVM, [1, 2, 3, 4, 5]) framework for
nonequilibrium rarefied flow simulation have been developed, like the uni-
fied gas-kinetic scheme (UGKS) [6] by Xu and Huang, the discrete unified
gas-kinetic scheme (DUGKS) [7, 8] by Guo et al. These multiscale methods
overcome the time step and cell size restrictions of the original DVM method
which requires time step and cell size of the order of mean collision time and
mean free path, and thus have attracted more and more researchers’ atten-
tion. It is worth pointing out that although UGKS and DUGKS can adopt
time step and cell size comparable to the traditional macroscopic Navier-
Stokes (NS) method, they still involve large amount of computation due to
the curse of dimensionality. Hence, many researches on the acceleration of
these multiscale methods have been carried out, including Mao et al.’s im-
plicit UGKS [9], Zhu et al.’s prediction based implicit UGKS [10, 11], Zhu
et al.’s implicit multigrid UGKS algorithm [12], Yang et al.’s memory saving
implicit multiscale scheme [13], Pan et al.’s implicit DUGKS [14], etc. Fol-
lowing these previous works, it is quite valuable to further develop the fast
algorithm for the multiscale method.

In this paper, a multiple prediction implicit multiscale method for steady
state calculation of gas flow in all flow regimes is proposed. The idea of
macroscopic prediction presented by Zhu et al. [10] is further developed. A
prediction solver is used to predict the macroscopic variable based on the
macroscopic residual, and a multiple prediction procedure is constructed.
The prediction solver is designed to ensure the accuracy of the predicted
macroscopic variable in the continuum flow regime and the stability of the
numerical system in all flow regimes, which makes the method very efficient
in the continuum flow regime and stable in all flow regimes. Our test cases
show that the present method is one order of magnitude faster than the
previous implicit multiscale method in the continuum flow regime.

2 Numerical method

In this paper, the monatomic gas is considered and the governing equation
is BGK-type equation [15],

∂f

∂t
+~u · ∂f

∂~x
=
g − f
τ

, (1)

where f is the gas particle velocity distribution function, ~u is the parti-
cle velocity, τ is the relaxation time calculated as τ = µ/p (µ and p are
the viscosity and pressure). g is the equilibrium state which has a form of
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Maxwellian distribution,

g = ρ

(
λ

π

) 3
2

e−λ~c
2

, (2)

or if the Shakhov model [16] is used

g∗ = ρ

(
λ

π

) 3
2

e−λ~c
2

[
1 +

4(1− Pr)λ2~q · ~c
5ρ

(2λ~c2 − 5)

]
, (3)

where ~c is the peculiar velocity ~c = ~u − ~U and ~U is the macroscopic gas
velocity, ~q is the heat flux, λ is a variable related to the temperature T by
λ = 1/(2RT ). Pr is the Prandtl number and has a value of 2/3 for monatomic
gas. f is related to the macroscopic variables by

~W =

∫
~ψfdΞ, (4)

where ~W = (ρ, ρ~U, ρE)T is the vector of the macroscopic conservative vari-

ables, ~ψ is the vector of moments ~ψ =
(
1, ~u, 1

2
~u2
)T

, dΞ = duxduyduz is the
velocity space element. The stress tensor PPP and the heat flux ~q can also be
calculated by f as

PPP =

∫
~c~cfdΞ, (5)

~q =

∫
1

2
~c~c2fdΞ. (6)

Moreover, f and g obey the conservation law,∫
~ψ(g − f)dΞ = ~0. (7)

Adopting the integral form, the steady state of the governing equation Eq. 1
is ∫

∂Ω

~u · ~nfdA =

∫
Ω

g − f
τ

dV , (8)

where Ω is the control volume, dV is the volume element, dA is the surface
area element and ~n is the outward normal unit vector. Take the moment of
Eq. 8 for ~ψ =

(
1, ~u, 1

2
~u2
)T

, the corresponding macroscopic governing equation
can be written as ∫

∂Ω

~FdA = ~0, (9)
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where the flux ~F has the relation with the distribution function f by

~F =

∫
~u · ~n~ψfdΞ. (10)

This paper is about the numerical method of determining the steady state
defined by Eq. 8. It is time-consuming to directly solve Eq. 8 through a mi-
croscopic scheme involving discretization in both physical space and velocity
space. The main idea of the present method is summarized as that, using
the accurate but expensive scheme to calculate the residual of the system
deviating from the steady state, then utilizing this residual and using the
less accurate but efficient scheme to do the evolution. More distinctly, an ac-
curate multiscale microscopic scheme based on the DVM framework is used
to handle the microscopic numerical system with Eq. 8, and a fast predic-
tion scheme is used to do the evolution of the macroscopic variables. The
prediction scheme can be some kind of macroscopic scheme based on macro-
scopic variables or even a scheme based on the DVM framework but with
less velocity points. The schematic of the general algorithmic framework for
the present method is shown in Fig. 1. The method consists of several loops
in different layers. The outermost loop is denoted by n. One iteration of
the n loop includes a loop denoted by m and a loop denoted by l, where the
macroscopic variable ~W n

i and the residual ~Rn
i are given as the input, the new

~W n+1
i and ~Rn+1

i are the output. In the m loop, the predicted macroscopic

variable ~̃W n+1
i is determined by the prediction scheme and by the numerical

smoothing process. In the l loop, the microscopic variable fn+1
i,k is calculated

and the new ~W n+1
i and ~Rn+1

i are obtained. The present method is a develop-
ment of the prediction method of Zhu et al. [10], and has a structure similar
to the multigrid method of Zhu et al. [12], therefore we call it as “multiple
prediction method”. The method is detailed in following paragraphs.

2.1 Construction of the l loop

In the l loop, residuals of the numerical system are evaluated through the
microscopic scheme and the microscopic variables (the discrete distribution
function) are updated through an implicit method (the numerical smoothing
process). The microscopic scheme is very important because it determines
the final steady state of the whole numerical system and thus determines the
nature of the present numerical method.

The microscopic scheme is based on Eq. 8. Discretizing the physical space
by finite volume method and discretizing the velocity space into discrete
velocity points, the microscopic governing equation Eq. 8 can be expressed
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as ∑
j∈N(i)

Aij~uk · ~nijfij,k = Vi
gi,k − fi,k

τi
, (11)

where the signs i, k correspond to the discretizations in physical space and
velocity space respectively. j denotes the neighboring cell of cell i and N (i)
is the set of all of the neighbors of i. Subscript ij denotes the variable at the
interface between cell i and j. Aij is the interface area, ~nij is the outward
normal unit vector of interface ij relative to cell i, and Vi is the volume of
cell i. The l loop aims to find the solution of Eq. 11 with the input predicted

variable ~̃W n+1
i , therefore Eq. 11 can be written more exactly as

∑
j∈N(i)

Aij~uk · ~nijfn+1
ij,k = Vi

g̃n+1
i,k − f

n+1
i,k

τ̃n+1
i

, (12)

where the symbol ∼ denotes the predicted variables at the (n + 1)th step.

g̃n+1
i,k and τ̃n+1

i can be directly calculated from the input variable ~̃W n+1
i . The

distribution function fn+1
ij,k at the interface ij is very important to ensure

the multiscale property of the scheme. In this paper, following the idea of
DUGKS [7, 8], the construction of fn+1

ij,k in reference [17] is adopted, i.e.

fn+1
ij,k =

τ̃n+1
ij

τ̃n+1
ij + hij

f (~xij − ~ukhij, 0, ~uk) +
hij

τ̃n+1
ij + hij

g̃ (~xij, 0, ~uk) , (13)

where

f(~xij − ~ukhij, 0, ~uk) =

{
fn+1
i,k + (~xij − ~xi − ~ukhij)∇fn+1

i,k , ~uk · ~nij ≥ 0,

fn+1
j,k + (~xij − ~xj − ~ukhij)∇fn+1

j,k , ~uk · ~nij < 0.
(14)

In above equations, ∇fn+1
i,k and ∇fn+1

j,k can be obtained through the recon-

struction of the distribution function data. g̃ (~xij, 0, ~uk) and τ̃n+1
ij are cal-

culated by the same way as the method of GKS [18] and they can be both

calculated from the predicted macroscopic variable ~̃W n+1
i . For g̃(~xij, 0, ~uk),

it is determined by the interface macroscopic variables ~̃W n+1
ij , which can be

calculated as

~̃W n+1
ij =

∫
~u·~nij≥0

~ψg̃l,n+1
ij dΞ+

∫
~u·~nij<0

~ψg̃r,n+1
ij dΞ, (15)

where the superscripts l and r denote variables at the left and right sides of the
interface, g̃l,n+1

ij and g̃r,n+1
ij can be determined after the spacial reconstruction
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of ~̃W n+1
i . For τ̃n+1

ij , it is calculated as

τ̃n+1
ij =

µ( ~̃W n+1
ij )

p( ~̃W n+1
ij )

+

∣∣∣pl,n+1
ij − pr,n+1

ij

∣∣∣∣∣∣pl,n+1
ij + pr,n+1

ij

∣∣∣hij, (16)

where the pressure pl,n+1
ij , pr,n+1

ij at two sides of the interface can be obtained
from the reconstruction and the second term on the right is for artificial
viscosity. hij in above equations is calculated from the physical local time
step

hij = min(hi, hj). (17)

The physical local time step hi for the cell i is determined by the local CFL
condition as

hi =
Vi

max
k

( ∑
j∈N(i)

(~uk · ~nijAijH[~uk · ~nij])

)CFL, (18)

where H[x] is the Heaviside function defined as

H[x] =

{
0, x < 0,
1, x ≥ 0.

(19)

For more details about the construction of the interface distribution function
fn+1
ij,k please refer to reference [17].

Eq. 12 is solved by iterations. The microscopic residual r
n+1,(l)
i,k at the lth

iteration can be defined as

r
n+1,(l)
i,k =

g̃n+1
i,k − f

n+1,(l)
i,k

τ̃n+1
i

− 1

Vi

∑
j∈N(i)

Aij~uk · ~nijfn+1,(l)
ij,k . (20)

According to the previous descriptions, r
n+1,(l)
i,k can be calculated from f

n+1,(l)
i,k

and ~̃W n+1
i through the spatial data reconstruction. The increment equation

to get the microscopic variable f
n+1,(l+1)
i,k at the iteration l+ 1 is constructed

by backward Euler method,

r
n+1,(l)
i,k + ∆r

n+1,(l+1)
i,k =

1

∆ξ
n+1,(l+1)
i,k

∆f
n+1,(l+1)
i,k , (21)
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where ∆ξ
n+1,(l+1)
i,k is the pseudo time step and ∆ξ

n+1,(l+1)
i,k is always set to

be ∞ in the present study. Combined with the residual expression Eq. 20,
Eq. 21 can be written as(

1

∆ξ
n+1,(l+1)
i,k

+
1

τ̃n+1
i

)
∆f

n+1,(l+1)
i,k = r

n+1,(l)
i,k − 1

Vi

∑
j∈N(i)

Aij~uk · ~nij∆fn+1,(l+1)
ij,k .

(22)

For the increment of the interface distribution function ∆f
n+1,(l+1)
ij,k , it is sim-

ply handled by a modified upwind scheme

∆f
n+1,(l+1)
ij,k =


τ̃n+1
ij

τ̃n+1
ij +hij

∆f
n+1,(l+1)
i,k , ~uk · ~nij ≥ 0

τ̃n+1
ij

τ̃n+1
ij +hij

∆f
n+1,(l+1)
j,k , ~uk · ~nij < 0

, (23)

where the coefficient
τ̃n+1
ij

τ̃n+1
ij +hij

is the corresponding coefficient multiplied by

f (~xij − ~ukhij, 0, ~uk) in Eq. 13. This coefficient is multiplied because during
the whole l loop the term g̃ (~xij, 0, ~uk) in Eq. 13 is calculated by the predicted

macroscopic variable ~̃W n+1
i and therefore is an invariant, so the variation of

the microscopic variable f
n+1,(l+1)
i,k only influences the term f (~xij − ~ukhij, 0, ~uk),

which is multiplied by the coefficient
τ̃n+1
ij

τ̃n+1
ij +hij

. It is worth noting that in

an actual implementation of the method, the interface distribution function
fnij,k at the nth step may be taken as the initial value f

n+1,(0)
ij,k at l = 0 for

the step n + 1 to reduce computation cost, in this situation the variation
∆f

n+1,(1)
i,k should also account for the variation of g̃ (~xij, 0, ~uk), and the co-

efficient
τ̃n+1
ij

τ̃n+1
ij +hij

shouldn’t be multiplied at the first iteration of the l loop,

i.e.

∆f
n+1,(1)
ij,k =

{
∆f

n+1,(1)
i,k , ~uk · ~nij ≥ 0

∆f
n+1,(1)
j,k , ~uk · ~nij < 0

. (24)

In this situation, after the first iteration of the l loop, the interface distri-

bution function f
n+1,(l>0)
ij,k will be calculated with the newly predicted ~̃W n+1

i

and Eq. 23 is used to handle ∆f
n+1,(l+1)
ij,k again. Without loss of generality,
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substituting Eq. 23 into Eq. 22 will yield 1

∆ξ
n+1,(l+1)
i,k

+
1

τ̃n+1
i

+
1

Vi

∑
j∈N+

k (i)

τ̃n+1
ij

τ̃n+1
ij + hij

Aij~uk · ~nij

∆f
n+1,(l+1)
i,k

=r
n+1,(l)
i,k − 1

Vi

∑
j∈N−

k (i)

τ̃n+1
ij

τ̃n+1
ij + hij

Aij~uk · ~nij∆fn+1,(l+1)
j,k ,

(25)
where N+

k (i) is the set of i’s neighboring cells satisfying ~uk · ~nij ≥ 0 while
for N−k (i) it satisfies ~uk · ~nij < 0. For simplicity, Eq. 25 is solved by the
Symmetric Gauss-Seidel (SGS) method, or also known as the Point Relax-
ation Symmetric Gauss-Seidel (PRSGS) method [19, 20]. In each time of the
SGS iteration, a forward sweep from the first to the last cell and a backward
sweep from the last to the first cell are implemented, during which the data
of a cell is always updated by the latest data of its adjacent cells through
Eq. 25. Such a SGS iteration procedure is totally matrix-free and easy to
implement.

After several times of SGS iterations for solving Eq. 25, an evaluation
of f

n+1,(l+1)
i,k with a certain precision can be obtained. Then the residual

r
n+1,(l+1)
i,k at the (l+1)th iteration of the l loop can be computed from f

n+1,(l+1)
i,k

and ~̃W n+1
i , and a new turn of the l loop will be performed. After several

iterations of the l loop, an evaluation of fn+1
i,k with a certain precision can be

obtained, and the interface distribution function fn+1
ij,k can be calculated by

Eq. 13. Then the macroscopic numerical flux ~F n+1
ij at the interface can be

got by numerical integral in the discrete velocity space

~F n+1
ij =

∑
k

~ψk~uk · ~nijfn+1
ij,k ∆Ξk, (26)

and the macroscopic residual ~Rn+1
i defined by the macroscopic governing

equation Eq. 9 at the (n+ 1)th step can be calculated from the flux by

~Rn+1
i = − 1

Vi

∑
j∈N(i)

Aij ~F
n+1
ij . (27)

Note that in the l loop we solve the microscopic system Eq. 12 which is under

the condition of the predicted variable ~̃W n+1
i , so ~Rn+1

i is not zero even if the
microscopic system is solved sufficiently accurately. Finally, the macroscopic
variable ~W n+1

i is calculated by numerical integral as

~W n+1
i =

∑
k

~ψkf
n+1
i,k ∆Ξk + ~̃W n+1

i −
∑
k

~ψkg̃
n+1
i,k ∆Ξk, (28)

8



where the term ~̃W n+1
i −

∑
k

~ψkg̃
n+1
i,k ∆Ξk is the integral error compensation

term to make the scheme conservative, more details about this term please
refer to reference [17].

The iteration of the l loop is similar to the numerical smoothing process
in multigrid method [12]. The computation procedure of the l loop is listed
as follows:

Step 1. Set the initial value f
n+1,(0)
i,k = fni,k.

Step 2. Calculate the interface distribution function f
n+1,(l)
ij,k by Eq. 13 from

f
n+1,(l)
i,k and ~̃W n+1

i through data spatial reconstruction. Calculate the

microscopic residual r
n+1,(l)
i,k by Eq. 20.

Step 3. Make judgement: if the residual r
n+1,(l)
i,k meets the convergence cri-

terion, or if the iteration number of the l loop meets the maximum
limit, break out of the l loop and go to Step 5.

Step 4. Solve Eq. 25 by several times of SGS iterations, obtain f
n+1,(l+1)
i,k ,

and go to Step 2.

Step 5. By Eq. 26, Eq. 27 and Eq. 28, do numerical integral in the velocity
space to get ~W n+1

i and ~Rn+1
i for the step n+ 1.

2.2 Construction of the m loop

In the m loop, based on the macroscopic variable ~W n
i and the macroscopic

residual ~Rn
i at the nth step, a reasonable estimation for the macroscopic

variable ~̃W n+1
i is obtained through a fast prediction scheme to accelerate

convergence. Theoretically speaking, the prediction scheme can be either a
macroscopic scheme based on macroscopic variables or a microscopic scheme
based on the DVM framework but with less velocity points. In this paper,
a macroscopic scheme is designed to do the prediction. The process of the
m loop has certain similarity to the coarse grid correction in the multigrid
method [12].

2.2.1 Framework

The macroscopic residual has the form of Eq. 27. To reduce the residual,
a prediction equation is constructed by backward Euler formula

1

∆tn+1
i

(
~̃W n+1
i − ~W n

i

)
= ~Rn

i + ∆ ~̃Rn+1
i . (29)
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∆tn+1
i is the local prediction time step, the purpose of this time step is to

constrain the marching time depth of the prediction process to make the

scheme stable in the extreme case. The predicted residual increment ∆ ~̃Rn+1
i

is calculated by

∆ ~̃Rn+1
i = − 1

Vi

∑
j∈N(i)

Aij ~̃Fn+1
ij +

1

Vi

∑
j∈N(i)

Aij ~Fnij, (30)

where ~Fnij and ~̃Fn+1
ij are fluxes calculated by the prediction solver from ~W n

i

and the predicted ~̃W n+1
i with data reconstruction. This prediction solver

is well-designed to balance between accuracy and stability, and will be pre-
sented later in the next section.

The aim of the m loop is to solve Eq. 29 and give an estimation for ~̃W n+1
i

with a certain precision. Like what we do in the l loop, Eq. 29 is also solved
by iterations. The residual ~Rn+1,(m)

i at the mth iteration can be defined by
Eq. 29 and expressed as

~Rn+1,(m)
i =− 1

Vi

∑
j∈N(i)

Aij ~̃Fn+1,(m)
ij +

1

Vi

∑
j∈N(i)

Aij ~Fnij + ~Rn
i

− 1

∆tn+1
i

(
~̃W
n+1,(m)
i − ~W n

i

)
,

(31)

and the corresponding increment equation for ~̃W
n+1,(m+1)
i is

~Rn+1,(m)
i + ∆ ~Rn+1,(m+1)

i =
1

∆η
n+1,(m+1)
i

∆ ~̃W
n+1,(m+1)
i , (32)

where ∆η
n+1,(m+1)
i is the pseudo time step. Considering Eq. 31, the increment

of the residual ∆ ~Rn+1,(m+1)
i can be expressed as

∆ ~Rn+1,(m+1)
i = − 1

∆tn+1
i

∆ ~̃W
n+1,(m+1)
i − 1

Vi

∑
j∈N(i)

Aij∆ ~̃Fn+1,(m+1)
ij , (33)

the variation of the flux ∆ ~̃Fn+1,(m+1)
ij is further approximated by

∆ ~̃Fn+1,(m+1)
ij = ~F

n+1,(m+1)
ij − ~Fn+1,(m)

ij , (34)

where ~Fij has the form [21] of the well-known Roe’s flux function

~Fij =
1

2

(
~Fij( ~Wi) + ~Fij( ~Wj) + rij ~Wi − rij ~Wj

)
. (35)
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Here ~Fij( ~W ) is the Euler flux

~Fij( ~W ) =


ρ~U · ~nij

ρUx~U · ~nij + nij,xp

ρUy ~U · ~nij + nij,yp

ρUz ~U · ~nij + nij,zp

(ρE + p)~U · ~nij

 , (36)

and rij is

rij =
∣∣∣~Uij · ~nij∣∣∣+ aij + 2

µij
ρij∆xij

, (37)

where aij is the acoustic speed at the interface and ∆xij is the distance
between cell center i and j. Substitute Eq. 33, Eq. 34 and Eq. 35 into Eq. 32,
approximate r

n+1,(m+1)
ij by r

n+1,(m)
ij , and note that

∑
j∈N(i)

Aij~Fij( ~Wi) = ~0 holds,

we can get 1

∆tn+1
i

+
1

∆η
n+1,(m+1)
i

+
1

2Vi

∑
j∈N(i)

r
n+1,(m)
ij Aij

∆ ~̃W
n+1,(m+1)
i

= ~Rn+1,(m)
i +

1

2Vi

∑
j∈N(i)

r
n+1,(m)
ij Aij∆ ~̃W

n+1,(m+1)
j

− 1

2Vi

∑
j∈N(i)

Aij

(
~Fij( ~̃W n+1,(m+1)

j )− ~Fij( ~̃W n+1,(m)
j )

)
.

(38)

Eq. 38 is solved by several times’ SGS iterations. An estimation of ~̃W
n+1,(m+1)
i

with a certain precision can be obtained from Eq. 38, then r
n+1,(m+1)
ij and the

residual ~Rn+1,(m+1)
i at the (m+1)th iteration of the m loop can be calculated.

After several turns of the m loop, the predicted macroscopic variable ~̃W n+1
i

with a certain precision can be determined.

In fact, utilizing ~W n
i and ~̃W n+1

i , a prediction for the microscopic variable
f̃n+1
i,k can also be obtained to accelerate the convergence of the microscopic

numerical system (i.e. the l loop). The increment of the distribution function
∆f̃n+1

i,k can be calculated from the Chapman-Enskog expansions [22] based

on macroscopic variables ~W n
i and ~̃W n+1

i . This strategy will increase the
complexity of the algorithm and thus is not adopted in the present method.

Likewise, as one can see, the process of the m loop is similar to the
numerical smoothing process in multigrid method [12]. The computation
procedure of the m loop is listed as follows:

11



Step 1. Set the initial value ~̃W
n+1,(0)
i = ~W n

i .

Step 2. Calculate the residual ~Rn+1,(m)
i by Eq. 31 from ~Rn

i , ~W n
i and ~̃W

n+1,(m)
i

(data reconstruction is implemented).

Step 3. Make judgement: if the residual ~Rn+1,(m)
i meets the convergence

criterion, or if the iteration number of the m loop meets the maximum
limit, break out of the m loop and the predicted macroscopic variable
~̃W n+1
i is determined.

Step 4. Solve Eq. 38 by several times of SGS iterations, obtain ~̃W
n+1,(m+1)
i ,

and go to Step 2.

2.2.2 Prediction solver

The prediction solver used to calculate the fluxes ~Fnij and ~̃Fn+1
ij in Eq. 30

requires careful design. For the continuum flow, the prediction solver should
be as accurate as a traditional NS solver. For the rarefied flow, it’s unrealistic
for a fast solver based on macroscopic variables to provide a very precise flux,
but the solver should be stable so that the present method can be applied
to all flow regimes. Thus, there are two principles for the prediction solver:
accurate in the continuum flow regime, stable in all flow regimes.

We start constructing the solver from the view of gas kinetic theory.
Based on the famous Chapman-Enskog expansion [22], the distribution func-
tion f obtained from the BGK equation Eq. 1 to the first order of τ is

f = g − τ(
∂g

∂t
+ ~u · ∂g

∂~x
). (39)

Suppose there is an interface in x direction. If the interface distribution
function has the form of Eq. 39, take moments of ux ~ψ to Eq. 39 and ignore
second (and higher) order terms of τ , we can get the NS flux [18, 23], where
the term g corresponds to the Euler flux and terms with τ (i.e. terms except
g) correspond to viscous terms in the NS flux. Flux directly calculated
from Eq. 39 will lead to divergence in many cases, and we introduce some
modifications below.

The Euler flux often causes stability issue. Inspiring by gas-kinetic scheme
(GKS) or also known as BGK-NS scheme [18], we replace it by a weighting
of Euler flux and the flux of kinetic flux vector splitting (KFVS) [24]. That
is, we replace the term g in Eq. 39 and the interface distribution function is
expressed as

f =
τ ′

τ ′ + h
glr +

h

τ ′ + h
g − τ(

∂g

∂t
+ ~u · ∂g

∂~x
), (40)
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where glr is

glr =

{
gl, ux ≥ 0
gr, ux < 0

(41)

which is determined by the reconstructed macroscopic variables on the two
side of the interface. The interface macroscopic variable ~W is calculated as

~W =

∫
ux≥0

~ψgldΞ +

∫
ux<0

~ψgrdΞ, (42)

and g is obtained from ~W . The weight factors τ ′/(τ ′ + h) and h/(τ ′ + h)
share the same forms as those in Eq. 13 (for how these weight factors are
constructed please refer to [17]), and τ ′ is calculated by

τ ′ = τ + τartificial =
µ

p
+

∣∣pl − pr
∣∣

|pl + pr|
h, (43)

where τartificial is for artificial viscosity. h is the local CFL time step and is
equal to hij in Eq. 13. Eq. 40 has a form similar to the interface distribution
function of GKS [18], except that the viscous term is not upwind split and the
weight factor is constructed following the thought of DUGKS [7, 8]. Because
the KFVS scheme is very robust, the flux obtained from Eq. 40 makes the
numerical system more stable than directly using Eq. 39. In the continuum
flow regime, h � τ , if the flow is continuous the term τartificial for artificial
viscosity will be negligible and Eq. 40 will recover the NS flux, while if the
flow is discontinuous the term τartificial will be activated and Eq. 40 will work
as a stable KFVS solver. In the rarefied flow simulation, τ > h and the
inviscid part of Eq. 40 generally provides a KFVS flux, which can increase
the stability of the scheme.

The flux obtained from Eq. 40 works well in the continuum flow regime.
However, in the case of large Kn number, the numerical system based on
Eq. 40 is very stiff due to the large NS-type linear viscous term and the
scheme is easy to blow up. Therefore, we multiply the viscous term by a
limiting factor q(κ) and Eq. 40 is transformed into

f =
τ ′

τ ′ + h
glr +

h

τ ′ + h
g − q(κ)τ(

∂g

∂t
+ ~u · ∂g

∂~x
). (44)

Here we emphasize that the limiting factor q(κ) aims not to accurately cal-
culate the flux, but to increase the stability in the case of large Kn number.
One can view it as an empirical parameter. The limiting factor q(κ) is
constructed considering the form of nonlinear coupled constitutive relations
(NCCR) [25, 26], and is expressed as

q(κ) =
κ

sinh(κ)
, (45)
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which has lim
κ→0

q(κ) = 1 and lim
κ→+∞

q(κ) = 0. κ is related to the viscous term

and calculated as

κ = ln

2
π

1
4

√
2β

√
Pr |k∇T |2

CpTp2
+
|2µSij|2

2p2
+ 1

 , (46)

where−k∇T and 2µSij correspond to the heat flux and stress in NS equation,
Cp is the specific heat at constant pressure. β is a molecular model coefficient
[26] involved in the variable soft sphere (VSS) model [27, 28] and is calculated
as

β =
5(α + 1)(α + 2)

4α(5− 2ω)(7− 2ω)
, (47)

where the molecular scattering factor α and the heat index ω depend on the
type of gas molecule. The limiting factor q(κ) is constructed to weaken the
viscous term in large Kn number case to make the scheme stable. It can be
seen from Eq. 45 and Eq. 46 that, when the stress and heat flux are small,
q(κ) is approaching to 1 and we can get the NS viscous term in Eq. 44, when
the stress and heat flux are large, q(κ) is approaching to 0 and the viscous
term is weakened. Here we further reveal the mechanism of q(κ) through
a simple one-dimensional case where there is no stress but only heat flux,
i.e. k∂T/∂x 6= 0 and ∂U/∂x = 0. In this case κ is

κ = ln

2
π

1
4

√
2β

√
Pr |k∂T/∂x|2

CpTp2
+ 1

 , (48)

and the heat flux from the viscous term of Eq. 44 is

q = q(κ)

(
−k∂T

∂x

)
= q(κ)qNS. (49)

If the magnitude of the NS heat flux |qNS| approaches 0, q(κ) will approach
1 and q approaching qNS holds true for Eq. 49. If |qNS| approaches +∞, in
this case the heat flux q from Eq. 49 goes to

q =
ln (2M |qNS|)

M

qNS

|qNS|
, (50)

where M is

M =
π

1
4

√
2β

√
Pr

CpTp2
. (51)
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On the other hand, in the NCCR relation [26], for one-dimensional case, if
∂U/∂x = 0, the heat flux is calculated as

qNCCR = q(κNCCR)

(
−k∂T

∂x

)
= q(κNCCR)qNS, (52)

where κNCCR is

κNCCR =
π

1
4

√
2β

√
Pr |qNCCR|2

CpTp2
. (53)

If the magnitude of |qNCCR| approaches 0, similarly qNCCR approaching qNS

holds true, i.e. the NS heat flux is recovered. If the magnitude of |qNCCR|
approaches +∞, in this limiting case the magnitude of the heat flux can be
deduced from Eq. 52 and Eq. 53 as

|qNCCR| =
ln (2M |qNS|)

M
, (54)

where M has the same definition as Eq. 51. Comparing Eq. 50 and Eq. 54,
one can find that q and qNCCR are identical in the limiting case. The above
derivation implies that q and qNCCR are very similar when their magnitudes
are very small or very large. Of course, instead of the above special case,
for more general multidimensional case, ~q from the viscous term of Eq. 44
and ~qNCCR based on the NCCR relation [26] are not exactly same when
their magnitudes approach +∞, but they are generally of the same order of
magnitude when they are large. All in all, the viscous term of Eq. 44 recovers
the NS viscous term when the stress and heat flux are small, and this viscous
term will be reduced to the same order of magnitude as the NCCR viscous
term when the stress and heat flux are large. Thus, in small Kn number case
the flux obtained from Eq. 44 is accurate as the NS flux, while in large Kn
number case the viscous term of Eq. 44 is suppressed to make the numerical
system more stable.

Finally, take moments of ux ~ψ to Eq. 44 (ignore second and higher order

terms of τ , i.e.
∫
~ψ
(
∂g
∂t

+ ~u · ∂g
∂~x

)
dΞ = ~0 is used to transform time derivatives
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into spatial derivatives), the prediction flux is

~F =
τ ′

τ ′ + h

∫
ux



1

ux

uy

uz
1

2
~u2


glrdΞ +

h

τ ′ + h


ρUx

ρUxUx + p

ρUyUx

ρUzUx

(ρE + p)Ux



+ q(κ)



0

− 2µSxx

− 2µSxy

− 2µSxz

− 2µ~Sx · ~U − k
∂T

∂x



. (55)

For the calculation about the moments of the Maxwellian distribution func-
tion, one can refer to reference [18] for some instruction.

The present prediction solver based on Eq. 55 is efficient compared to
the solver of GKS [18]. It is accurate as an NS solver in the continuum flow
regime and has enhanced stability in large Kn number case. It is not accurate
for rarefied flow calculation, but as mentioned before, it’s unrealistic for a
solver based on macroscopic variables to provide a very precise flux in large
Kn number case. As a prediction solver, stability is the most important.
The accuracy of the final solution obtained from the present method only
depends on the microscopic scheme described in Section 2.1.

3 Numerical results and discussions

More test cases will be added during the preparation of the final paper.

3.1 Lid-driven cavity flow

The test case of lid-driven cavity flow is performed to test the efficiency
of the present method, and to test if the viscous effect can be correctly
simulated by the present method. Three cases Re=1000 and Kn=0.075, 10
are considered, involving gas flows from continuum regime to free molecular
regime. The Mach number, which is defined by the upper wall velocity
Uwall and the acoustic velocity, is 0.16. The Shakhov model is used and the
Prandtl number Pr=2/3. The hard sphere (HS) model is used, with heat
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index ω=0.5 and molecular scattering factor α=1. On the wall of the cavity,
the diffuse reflection boundary condition with full thermal accommodation
[23] is implemented. For the physical space discretization, as shown in Fig. 2,
a nonuniform 61×61 mesh with a mesh size 0.004L (L is the width of the
cavity) near the wall is used for the case Re=1000 while a uniform 61×61
mesh is used for the cases Kn=0.075, 10. For the velocity space discretization,
as shown in Fig. 3, a 1192 cells’ unstructured mesh is used, where the central
area is refined to reduce the ray effect. For the iteration strategy, in each step
n, 60 turns of m loop and 3 turns of l loop are performed, while 40 times and
6 times of SGS iterations are executed for each turn of the m loop and the l
loop respectively. The prediction step ∆tn+1

i in Eq. 29 is set as +∞ in this set
of test cases. The convergence criterion is that the global root-mean-square
of the infinite norm about the macroscopic residual vector defined by Eq. 27
is less than 10−9. Computations are run on a single core of a computer with
Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz. The computational efficiency
compared with the implicit multiscale method in reference [17] is shown in
Tab. 1. It can be seen that in the continuum flow regime (case of Re=1000),
the present method is one order of magnitude faster than the implicit method
of reference [17]. Considering that the implicit method of reference [17]
is two orders of magnitude faster than explicit UGKS (discussed in [17])
in the continuum flow regime, the present method should be thousands of
times faster than explicit UGKS in the continuum flow regime. For the
cases Kn=0.075, 10, the present method is only one to two times faster than
the method of reference [17]. This efficiency is reasonable because in the
continuum flow regime the prediction scheme (them loop) gives very accurate
predicted macroscopic variables and the numerical system converges rapidly,
while for the rarefied flow the prediction scheme fails to be so precise and the
slight efficiency increase compared with the method of reference [17] is due to
the improved iteration strategy (namely, the l loop) of the present method.
The results of the present method for this set of test cases are shown in
Fig. 4, Fig. 5 and Fig. 6. The present results agree very well with the results
of GKS and UGKS.
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Figure 1: The general framework of the method.
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(a) Nonuniform mesh for Re=1000 (b) Uniform mesh for Kn=0.075, 10

Figure 2: Physical space mesh (61×61) for cavity flow simulations.

Figure 3: Velocity space mesh (1192 cells) for cavity flow simulations.
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(a) Streamlines (b) Uy along the horizontal central line
and Ux along the vertical central line

Figure 4: Cavity flow at Re=1000. The reference result is calculated by
GKS [18] without discretization of velocity space (identical to Navier-Stokes
solution).
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(a) Temperature contours, color band:
UGKS, dashed line: present

(b) Heat flux, circle: UGKS, line: present

(c) Streamlines (d) Uy along the horizontal central line
and Ux along the vertical central line

Figure 5: Cavity flow at Kn=0.075. The reference result is calculated by
UGKS [6].
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(a) Temperature contours, color band:
UGKS, dashed line: present

(b) Heat flux, circle: UGKS, line: present

(c) Streamlines (d) Uy along the horizontal central line
and Ux along the vertical central line

Figure 6: Cavity flow at Kn=10. The reference result is calculated by UGKS
[6].
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Table 1: Comparison of the efficiency between the implicit method in refer-
ence [17] and the present method for cavity flow simulations.

Case
Velocity
space

Implicit method [17] Present
Speedup

Steps Time (s) Steps Time (s)
Re=1000 1192 865 1102 23 74.4 14.8
Kn=0.075 1192 117 150 28 93.3 1.6
Kn=10 1192 173 225 33 114.3 2.0
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