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Abstract

Solitons and cavitons (localized solutions with singularities) for the nonlocal Whitham
equations are studied. The equation of a fourth order with a parameter in front of fourth
derivative for traveling waves is reduced to a reversible Hamiltonian system defined on a two-
sheeted four-dimensional space. When this parameter is small we get a slow-fast Hamiltonian
system. Solutions of the system which stay on one sheet represent smooth solutions of
the equation but those which perform transitions through the branching plane represent
solutions with jumps. They correspond to solutions with singularities — breaks of the first
and third derivatives but continuous even derivatives. The system has two types of equilibria
on different sheets, they can of saddle-center or saddle-foci. Using analytic and numerical
methods we found many types of homoclinic (and periodic as well) orbits to these equilibria
both with a monotone asymptotics and oscillating ones. They correspond to solitons and
cavitons of the initial equation. When we deal with homoclinic orbits to a saddle-center
the values of the second parameter (physical wave speed) is discrete but for the case of a
saddle-center it is continuous. The presence of majority such solutions displays the very
complicated dynamics of the system.

1 Introduction

Nonlinear nonlocal Whitham equation

ov oV o [ ., N
BN +V8x = 5 /d:UR(:E—:B)V(x,t)

m@:/ﬁwfm%

—0o0

(1)

represents a wide class of equations which are of great interest for nonlinear wave theory. It
combines the typical hydrodynamic nonlinearity and an integral term descriptive of dispersion
of the linear theory. The kernel of the integral term is conventionally defined by the dispersion
relation w = kR(k) with

(2)



Eq. |D with R = (1+ k%)~ was proposed by G. Whitham instead of Korteweg-de Vries equation
in order to describe sharp crests of the water waves of a greatest height [I].

The usage of relatively simple Whitham type equations appeared to be very fruitful for
various physical applications. A number of special cases of Eq. were examined in detail.
Among them are the Benjamin-Ono [2] [3] and Joseph [4] equations describing internal waves in
stratified fluids of infinite and finite depth. These equations appeared to be integrable by the
inverse scattering technique and the behavior of their solutions has been studied rather well.
The Benjamin-Ono and Joseph equations are however the only representatives of the Whitham
equations possessing this property [5]. Another widely known equations of that class were studied
not so exhaustively, although the literature on the subject is quite extensive. A list of well-known
Whitham equations involves the Leibovitz one for the waves in rotating fluid [6], the Klimontovich
equation for magnetohydrodynamic waves in non-isothermal collision-less plasma [7], equations
for shallow water waves [I], capillary [I0] and hydroelastic [II] waves. The review on nonlinear
nonlocal equations in theory of waves is presented in detailed monograph [§].

The characteristic feature of conservative Whitham equations is the existence of solitary wave
solutions. For all just listed equations these solutions are smooth except some limiting cases of
peaking for the waves of greatest amplitude. Besides, the amplitudes and velocity spectra of
solitons can be bounded or not. But in any case the spectra are continuous. These properties
are believed to be typical, but, as will be shown below, they are not essential for the solitons of
Whitham equations.

Here we examine a particular case of the Whitham equation with a resonance dispersion
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That equation has been proposed for nonlinear acoustic waves in simple peristaltic systems [45].
With small D? it is also applicable to the waves in a medium with internal oscillators [12]. A
tentative analysis of some peculiarities of solitons to that equation has been performed in a short
communication [13].
We study here specific features of solitary wave solutions to Eqs.—. It is shown that this
equation possesses both smooth and singularity involving solitons with exponential asymptotics,
bound states of solitons and solitary waves with oscillating asymptotics. The velocity spectra of

exponentially localized solitons turn out to be discrete ones.

2 Equation for traveling waves and its reduction

Hereafter we shall study an ordinary differential equation that obtained by the inversion of
integral operator defined by Eqs — and transferring to the traveling wave solutions. The
result takes the form of the fourth order differential equation

1
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with traveling coordinate y = x + At, boundary conditions lim S(y) = 0, as |y| — oo, and
parameters D? << 1, 0 < A < 1. Thus, physically treated, the problem of searching for
solutions of this type can be thought as a nonlinear boundary value problem for the parameter
A

This equation for very small D? is of the singularly perturbed type similar to many such
equations, see, for instance, [10, 30} 14} 10} [32] 37, 211, 16]. Another feature of this equation is its
relation with the class of implicit differential equations [9]. To see this, let us introduce, similar
to [38], new variables u; = S, us = ', vy = —S' — D2S" vy = DS”. Then the equation is
reduced to the Hamiltonian system

uy = ug, v] =u; — V(uy), Duhy=ve, Dvh = —uy — vy, (5)

where V' (u1) is given by solving the equation 2u; = 2AV + V2 w.r.t. V. This system is also re-
versible w.r.t. the involution L : (u1,v1,u2,v2) — (u1, —v1, —ug, ve), i.e. if (u1(y), v1(y), u2(y),v2(y))
is a solution to the system, then (u1(—y), —vi(—y), —u2(—y),v2(—y)) is as well [19]. The fixed
point set Fiz(L) of L is 2-plane v; = ug = 0.

The quadratic equation for V(u;) has generally either two or no real solutions, so function
V is two-valued. To keep this into account in more convenient way, let us consider the space R®
with coordinates (u1,v1,ug,v2, V) and its smooth 4-dimensional submanifold M given by real
solutions of the equation V2 +2AV — 2u; = 0. This is a two-sheeted submanifold with respect to
the projection 7 : (u1,v1, uz, ve, V) — (uy,v1,us,ve), its image is half-space u; > —A?/2. Both
sheets are glued along 3-dimensional branching 3-plane u; = —A?/2, V = —\. The shape of this
submanifold is the direct product of a parabola and a 3-plane.

On each sheet (upper one V(u1) = —A 4+ v/AZ + 2u; and lower one V = —X\ — /A2 + 2uy)
the system generates its own differential system. In the half-space u; > —A2/2 on every sheet
the Peano theorem on the existence of solutions is valid [31], but in the open half-space u; >
—\2/2 the usual theorem of existence and uniqueness of solutions works, so, despite of the non-
smoothness of the function v/A2 4+ 2u; on the boundary, through every point in the closed sheet
of the open half-space an orbit passes and the only orbit through the point on a sheet over
the open half-space. There are two questions here: 1) how does one need to adjoin orbits from
different sheets in order to preserve continuity of S(y), when the related orbits hit the boundary
of a sheet, i.e. they satisfy the equality u1(yo) = —A?/2 and for this yo we have us(yo) # 0, and
2) about possible non-uniqueness for orbits through boundary points where u; = —\?/2 (and
V==\).

The inequality ua(yp) # 0 means that the related orbit must leave a sheet or enter to a sheet,
in dependence on the sign us(yo). Indeed, the restrictions of both vector fields to the branching
plane u; = —A?/2 coincide. Hence, if u2(yo) > 0 at the boundary point, then the orbit looks
inward the region u; > —A?/2 on both sheets and should enter to both of them (we remind
u) = ug). But it is impossible, if u1(y) (i.e. S(y)) varies continuously in y near this value yo.

If, on the contrary, one gets ua(yo) < 0, then the orbits look outward in both sheets and

should leave an either sheet. Thus, in order to preserve continuity of u; we need to use the



reversibility of vector fields and make jumps on the boundary of both sheets in accordance to
the action of L. How does this save the situation, one can see as follows. Suppose uz(yg) > 0 at
the boundary point Xo = (u1(%0), v1(%0), u2(¥0), v2(y0)), u1(yo) = —A2/2, the vector field looks
inward. For uy # 0, the boundary point does not belong to the set Fiz(L) and its L-image is
another boundary point X(()l) = L(Xo) with coordinates (u1(yo0), —v1(yo), —u2(y0),v2(yo)). Thus,
the vector field at X[()l) looks outward the region u; > —\?/2. So, suppose we move for y < o, as
y increases to yg, in the lower sheet along the orbit which hits the branching plane at the point
X(()l). Next we jump to the point L(X(()l)) = X and move further in the upper sheet along the
orbit through the point Xy. In this motion the value of u; = S varies continuously, but uy = S’
undergoes a jump at y—yo. There is a pairing composed orbit, where we move first for y < yo
on the upper sheet till the point X(()l), then jump to Xy and go further on the lower sheet along
the orbit through Xg. Observe that if an orbit in a sheet does not cross the branching point
its behavior is defined by the smooth (in fact — analytic) vector field and any tool working in
this case can be used. Our main concern below will be on solutions to which are homoclinic
orbits to equilibria that exist in the system. As we shall see, these solutions are symmetric but
they can be either smooth or with singularities (they cross the branching plane several times).
Smooth homoclinic orbits we call sometimes solitons and those with singularities cavitons. Here
we follow our terminology in [13].

In order to facilitate simulations, we can eliminate jumps as follows. The submanifold M is
the graph of a smooth function u; = AV + V?2/2 in variables (V,v1,uz,v2). Let us rewrite the
system in variables (r,v1,ug,v2), r =V 4+ A

= ug, vy = A1 —\/2) — 7 +12/2, Dub = v, Dvh = —(ug + v1).

The system obtained has singularities along 3-plane r = 0 (it is not defined). For upper sheet
we get 7 = V + X = VA2 4+ 2u; > 0, but for lower sheet the sign is opposite r = V 4+ X\ =
—vVA24+2u; < 0. In order to eliminate the singularity, we multiply equations 2-4 at r and
change the “time” to s, ds = dy/r, obtaining a smooth differential system. The orbits and
direction of moving along orbits of this smooth system coincide on the upper sheet r > 0 with
those for orbits of the initial system , but on the lower sheet r < 0 the true direction of moving
along orbits is opposite. In particular, this approach allows one to assert that through any point
of the boundary r = 0, if this point is not singular, a unique orbit can pass on either sheet. This
smooth system looks as follows

dr dvy dus dv

7 Uo, I A1 =MN2)r —r°+71°/2, Dds rvg,DdS r(ug + v1). (6)

Additional equilibria of the system, appeared due to the change of “time”, fill the plane r = 0,
us = 0.

The system @ is Hamiltonian and reversible w.r.t. the involution L : (r,vi,ug,vy) —
(r, —v1, —ug,v2) with the smooth Hamiltonian

1 1 1
H = ugvy + §(u§ +03) = X1 —\/2)r?/2 + §r3 — §r4.
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The symplectic structure here is not standard and defined by the matrix J

[an}
o O O =
[en}
S
|
—_

—rD™1 0

It is seen that this structure degenerates at r = 0.

The transition to the smooth system sets the question: what are interrelations between orbits
of the smooth system @ and orbits of the initial system on the upper and lower sheets? The
answer is the same as was done above: for orbits not crossing the plane r = 0 the behavior is
the same as for its counterpart. For r > 0 direction in y and direction in s are the same, for
r < 0 orbits are the same but direction of motion is opposite. Situation for orbits crossing r = 0
appears as before: if an orbit from upper sheet (r > 0) hits the plane r = 0 at a point Xy the
true motion is described as above. We make jump by the action of L, X; = L(Xj) and after that
we continue by the orbit through X in the lower sheet (r < 0). If we start from the lower sheet,
the procedure is similar. At such transformation the function S varies continuously, as well as
its Syy, Syyyy but Sy and Sy, change their signs. This leads to the solutions with a singularities
(sharpening). The shape of a dependence S(y), its smoothen variant is plotted on Fig. ,b and
the projection on (7, ug)-plane is on Fig. 2l The explanations on the orbit behavior will be given
below.

Remark 1 It is worth remarking that when we deal with symmetric orbits (invariant w.r.t. the
action of L), even though they cross the plane r = 0, the orbits (curves in the phase space) with
be the same as for related orbits of the smooth system, since, due to symmetry, the passage to

the symmetric point occurs on the same orbit. We use this under simulations.

Figure 1: (a) Graph of a true 2-round soliton-caviton S(y); (b) and its smoothing r(s).

3 Slow system

Let us demonstrate this approach for the limiting system as D = 0 (slow system [9]). Then third

and fourth equation give the representation for the so-called slow manifold vo = 0,uy = —vy.
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Figure 2: Projection of smoothen soliton-caviton on (ug, r)-plane

Inserting them into the first and second equations we get the slow system in the half-plane

(5] Z—)\2/2
uy = —v1, V] =ur + A F VA2 + 2u, (7)

where upper sign corresponds to the upper system and lower sign does to the lower system. First
we investigate the systems on the upper and lower sheets separately and compare their behavior
with the smooth system obtained by the change of “time” y.

Both systems are Hamiltonian ones and reversible w.r.t. the symmetry (ui,v1) — (u1, —v1).
The upper system has two equilibria (0,0) and 2(1 — A), being a saddle and a center. The lower
system has not equilibria in the half-plane u; > —A?/2 and all their orbits go from the points
Uy = —)\2/2, |v1| < oo from negative v to hit this line at points with positive v;. An orbit on
the upper sheet hitting, as y increases, the line u; = —\2/2 at the point (—\2/2,v7), has to
be continued from the point (—A?/2, —v%) with the further increasing y. The similar is done
for orbits on the lower sheet. Under this procedure we get either periodic orbits (smooth, if it
belongs to the upper sheet, or with a sharpening, if this orbit intersects the line u; = —\?/2).
The phase portraits are the following (see, Fig. [3) where solid lined represent orbits of the upper
system and dashed line do those for the lower system.

Now let us go to the smooth system in variables (r,v1), here r can take any sign.

= —vp, v = A1 = N/2)r —r? +13/2. (8)

The Hamiltonian of the system is

h = ﬁ + M _ ﬁ + ﬁ
2 4 3 8
The system is also reversible with respect to the involution L : (r,v1) — (r, —v1). This implies

that if (r(s),v1(s)) is a solution, then (r(—s), —vi(—s)) as well.
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Figure 3: Slow manifold dynamics with jumps.

The equilibria of the system are v; = 0,7 = 0, A\, 2— A, of them the first and third are centers,
the second is a saddle with two separatrix loops. The left center corresponds to the point of the
glued system on the line u; = —\2/2 where v; = 0 (the point of tangency for orbits of the line).

Here all orbits, except for two loops and equilibria, are periodic ones. Thus we get the following
plot (Fig. 4).
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Figure 4: Phase portrait for smoothen system .

4 A=0

Here we consider first the degenerated limiting case A = 0 (in fact, physically not relevant).

This consideration is useful to compare with results for values A > 0. Thus, we get two systems



defined in the half-space uq > 0, on the upper sheet

uy = ug, v} = uy — \2u1, Dul = ve, Dvh = —uy — vy, 9)
with equilibria (0,0,0,0) and (2,0,0,0) and on the lower sheet

u) = ug, v] = uy + V2u1, Duhy = vy, Dvhy = —ug —v; (10)

with the only equilibrium (0, 0,0,0).
Smoothing the system in variables (r, vy, u2,v2) with changing time gives the system (r is
arbitrary)
=y, v] = —1r? +1r%/2, Duly = rvy, Dvh = —r(ug + v1). (11)

with integral Hy = ugvy + (u3 + v3)/2 + r3/3 — r1/8. Also the system is reversible w.r.t. the
involution L : (r, vy, u2,v2) — (r, —v1, —ug, v2), its fixed points plane is given as v; = ug = 0.

The system has a plane Py of equilibria r = us = 0. Only a curve from this plane belongs
to the level H = ¢. In particular, in the level H = 0 where orbits asymptotic to equilibrium at
the origin 7 = v1 = ugs = v = 0 lie, the intersection of Py with this level is given in coordinates
v1,v2 as straight line (v?,0).

The system obtained has a complex equilibrium O at the origin: all four its eigenvalues are
zeroth. Hence the study of its local orbit behavior is a rather complicated problem. In the first
turn we are interested in its orbits that enter and leave the equilibrium O as s — +o0o. Such
orbits, if they exist, have power asymptotics in s — co. Let us find these asymptotics using the
following ansatz

r=As"*(1+0(1), v = Bs ?(1+0(1)), ug = Cs (1 +0(1)), va = Es (1 +0(1)), (12)

with unknown coefficients A, B, C, E and exponents «, 3,7, to be found. Inserting these func-
tions into differential equations ([11)) we get exponents o« =4/3, 3 =5/3, y=7/3, § =2=6/3

and coeflicients

2\/ 4 8\/ 28
A=22"Dp3 p= BV” 352D, 0= 22X D3 = 5D (13)
The same calculation with the change s = —s; to get orbits tending O as s — —oo gives

naturally the same exponents but reverses signs for B and C staying signs of A, E the same.
This calculation shows that the system have to possess by one orbit entering the equilibrium O
as s — oo and one orbit entering O as s — —oo. Both these orbits belong to the half-space r > 0
since A > 0 in both cases. In particular, the dependence us in r is of power type us ~ r7/4,
This is seen in the Fig. bh where a homoclinic orbit found is shown (soliton). It is clearly seen
the tangency at the entrance to the equilibrium. The related homoclinic orbits for 0 < A < 1
enter and leave the equilibrium as s — +oo with different asymptotics that can be seen on the
Fig. Pp. This becomes clear below.

Sometimes our simulations performed with the initial equation not with the system.

Then, to find symmetric homoclinic and periodic solution we sought for orbits which intersect



either one or two times the fixed point set F'izz(L). For initial differential equation this plane
defines by relations S’ = 0, 5" = 0. The 3-plane S’ = 0 is a cross-section for the majority of its
points, so zeroes of the graph S"(D?) give values of D? for which homoclinic orbits exist. As an

example, such plot is presented on Fig. Bp.
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Figure 5: (a) The projection of the homoclinic orbit on the plane (r,u2); (b) Graph S”/(D?).

As we shall see, the orbit behavior of the system reminds that for the case of a saddle-center
equilibrium in a Hamiltonian system in two degrees of freedom [39] 135, 28|, 47| (see details below).
Again, for small positive D system is slow-fast with slow variables (r,v;) and fast variables
(u2,v2). In this case it is informative to investigate slow and fast systems [21] separately. Slow
system is derived if we set D = 0 in the third and fourth equations, then we have either r = 0
or vy = 0,us = —vq. 3-plane r = 0 divides the phase space into two half-spaces » > 0 and r < 0.
We shall work in the half-space r > 0, here we get slow 2-plane vy = 0, us = —v;. On this plane
the slow system is given as

T =—v1, U] = —7“2 —|—7“3/2.

Its structure is plotted on Fig.2.

The fast systems is derived, if one changes s — s/D = 7, as a result small parameter D
arises as a multiplier in the first two equations. Then one sets D = 0 that makes variables
r,v1 be parameters. The third and fourth equation with parameters r% v{ have integral h =
(ug + v9)? + v3. The periods 27 /79 of these linear systems depend on r°. The motions in the
full system, as D > 0 small, in some thin neighborhood of the slow manifold is a combination
of two motions: the slow motion along the orbits of the slow system and fast rotation around
the slow orbit. This follows from results of [2I]. In particular, if one moves along the homoclinic
orbit of the slow system, then the orbit behavior looks very similar to that which is observed
near a homoclinic orbit to a saddle-center in a Hamiltonian system with two degrees of freedom
[39, 35].



5 M\ =#0: equilibria

Now we turn to the case D > 0 small enough. Omne of our main concern is to find soliton
solutions to the equation . This corresponds to homoclinic orbits for equilibrium that exists
on the upper sheet (see below). In fact, there are two equilibria on this sheet but only one of
them has outgoing and ingoing orbits (separatrices). The situation under consideration depends
heavily on the value of parameter A and changes at the ends of the segment \ € [0, 1].

For positive A in the half-space u; > —\2/2 both systems on 4-dimensional sheets V' > —\
and V < —A\ are analytic Hamiltonian ones

uy = ug, V] =up + X F VA2 + 2uy, Dub = ve, Dvh = —ug — vy, (14)
with related Hamiltonians

2 2 2
HZUQUl—%—/\U1+u2_2}—U2

1
- 3@2 + 2up)3/2,

So, all available methods can be applied to the study, in particular, it concerns existence of
homoclinic orbits and nearby dynamics. The equilibrium at the origin O(0,0,0,0) on the upper
sheet for 0 < A < 1 is a saddle-center, its eigenvalues are a pair of pure imaginary numbers
and two reals. Indeed, linearizing at O gives a linear Hamiltonian system, its characteristic
polynomial is

D%t + 02— (1= ))/A

with roots

2(1— )
A+ /A2 H4D2(1 - M)A

iiD_l\/(l +/1+4D2(1 = \)/N\)/2, i\/

Coordinates of the second equilibrium on the upper sheet are (2(1 — X),0,0,0), its characteristic
polynomial is

D%ct + o2+ (1-N)/(2-))

with pure imaginary roots (the elliptic point)

B 21— N)/(2-))
1++/1-4D2(1-N)/2-\)

2

,_ -1 I—IDP=N/C-N
L= 2D? 1927

As X approach to 1—0, both equilibria coalesce into one equilibrium with non semi-simple double
zero and two pure imaginary eigenvalues. The lower sheet does not contain equilibria at all.

5.1 Positive A > 1
For A > 1 two equilibria exist on the upper sheet, O and another one P, = (2(1 — A),0,0,0),
the latter exists for 1 < A < 2. Their characteristic equations are

A—1 1—-X

D20'4+O'2+T:0, D204+U2+m 0.
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On the lower sheet there is an only equilibrium P_ = (2(1 — X),0,0,0) which exists for A > 2
with the characteristic equation D?c?* + o2 + % = 0.
The types of these equilibria depend on the value of D?. These are as follows. For the upper

sheet we have
1. if 0 < D? < 1/4, then O is an elliptic point;

2. if D? > 1/4, then O is an elliptic point for 1 < A < A\g, A\g = 4D?/(4D? — 1), and O is a
saddle-focus for A > Ag;

3. Py exists for 1 < A < 2, within this interval it is a saddle-center.
For the lower sheet at P_

1. P_ exists for A > 2, within this interval: if 0 < D? < 1/4 it is a saddle-focus for 1 < A < X,
Ao =1+ 1/(1 —4D?), and is an elliptic point for 2 > X\ > Ao;

2. if D? > 1/4, then P_ is a saddle-focus for A > 2.

5.2 Negative \

Negative values of the parameter A also have physical sense. Let us first investigate the type of
the equilibrium at O. Here we have another distribution of equilibria on sheets in comparison
with A > 0.

On the upper sheet we have the only equilibrium S; = (2(1 — A),0,0,0) and on the lower
sheet the unique equilibrium is O = (0,0,0,0). Their types are as follows. The characteristic
equation for Sy is D?0* + 02+ (1 —)\)/(2—A) = 0 and for O is D?0* + 02 — (1 —\)/A = 0. For
S1 we get the following.

1. If 0 < D? < 1/4, then S, is an elliptic point for any A < 0;

2. if 1/4 < D? < 1/2, then Sy is an elliptic point for A\, < A < 0 and is a saddle-focus point

2D%-1,
for —00 < A < )\+, )\+ = —2w,

3. if D? > 1/2, then S, is a saddle-focus point for any A < 0.
For O we have

1. If 0 < D? < 1/4, then O is a saddle-focus for A\_ < A <0, A\_ =4D?/(4D? — 1), and O is
an elliptic point for —co < A < A_;

2. if D? > 1/4, then O is a saddle-focus for any A < 0.

Suppose some solution of the upper system hits the branching plane u; = —\?/2 at a finite
value yg of “time” y and its tangent vector at this point is directed outward, i.e. to the half-space

11



up < —A%/2, that is, 1(yo) = u2(yo) < 0. To continue this solution by means of the lower
system we apply to the point my = (=A2/2,v1(y0), u2(yo), v2(y0)) the involution

m_ = L(=X*/2,v1(y0), u2(y0), v2(y0)) = (=A*/2, —v1(y0), —u2(y0), v2(%0))-

At this symmetric point coordinates of u; and ¥ of the vector field change signs but coordinates
of ¥1 and 49 are the same. The lower vector field on the 3-plane u; = —\? /2 coincides with the
upper vector field. Now we proceed the orbit from the point m_ using the lower vector field for
y > yo, this trajectory enters to the half-space u; > —\2/2. If its continuation reach again the
branching plane, we do the same using upper vector field. As was said above, the value of S
does not change at these switchings but S’ and S” do. In this way we can get cavitons being
non-smooth homoclinic orbits which represent orbits joining stable and unstable separatrices of
the saddle-center and crossing 3-plane u; = —A?/2 under their journey.

In what follows, we perform simulations with the smooth system @ If some solution to this
system stay all time in the half-space r > 0, then this solution corresponds to the upper sheet
system. In particular, solitons correspond to homoclinic orbits of the equilibrium O(A,0,0,0).

Homoclinic orbits to O, which spend part time in the half-space r» < 0, correspond to cavitons.

6 Solitons and cavitons: homoclinic loops of saddle-center

The existence of homoclinic loops to a saddle-center is a rather delicate problem, since one needs
to find the merge of one-dimensional stable and unstable manifolds of the saddle-center within 3-
dimensional singular level of the Hamiltonian. This level is singular (it is not a smooth manifold
at any its point) because this level has a cone-type singularity at the equilibrium. Thus, such
a problem should be studied in a two-parameter unfolding generally. The task becomes easier,
if one considers reversible Hamiltonian systems and searches for symmetric homoclinic orbits.
Then generally an unfolding has to be one-parametric (in fact, this depends on the type of an
action of the reversible involution near a saddle-center, [39, [47]). If we investigate 2-parameter
families of reversible Hamiltonian systems, then one expects a possibility to construct curves
in the parameter plane along which the systems has homoclinic orbits to the related saddle-
centers. Remind that existence of a saddle-center for Hamiltonian systems is a structurally
stable phenomenon.

Since we are of interest with spectra on parameter A, for which the system has homoclinic
orbits to the saddle-center, we recall the result proved first in [47]. There a general one-parameter
unfolding of reversible Hamiltonian systems was studied under an assumption that it unfolds a
system with a homoclinic orbit to a saddle-center and for this orbit a genericity condition holds
found first in [39]. Then it was proved that the set of parameter values which correspond to
systems with symmetric homoclinic orbits to the saddle-center (not obligatory 1-round ones)
is self-limiting and self-similar: each point is an accumulation point for this set. It is worth
noting that our system can have both solitons and cavitons. On the mathematical language this

corresponds to the case when both unstable separatrices of the saddle-center can merge with

12



stable ones forming one or even two homoclinic loops. In case of one loop this can be impossible,
if one deals with the case B as was discovered in [39] and was indicated in [47].

The orbit structure of an analytic Hamiltonian system near a homoclinic orbit to a saddle-
center was studied first in [39, B4] and then this was extended to different situations including
reversible systems [35 47, 28] 29, 53 27]. The study is based on the reduction of instead of
studying the flow to the investigation of Poincaré map and its orbit structure generated by the
flow on some cross-section to a homoclinic orbit. This is heavily facilitated by the usage of a
local normal form near a saddle-center due to Moser [49]: there exists an analytic symplectic
local coordinates (x1,y1, z2,y2) such that the Hamiltonian H in these coordinates casts in the
form H = h(£,n), where h is an analytic function in variables & = x1y1, n = (23 + y3)/2,
h=0cf+wn+---, ow # 0. Such normal form is integrable, local functions &,7, as functions
in (z1,y1,x2,y2), are local integrals of the flow generated by Hamiltonian H. This easily allows
one to construct local map from a cross-section to stable separatrix to a cross-section to unstable
separatrix. This map has a singularity at the trace of of the stable separatrix but can be
redefined to get a continuous map everywhere and analytic at all points except for the trace of
the separatrix. Orbits of the system correspond to orbits of Poincaré map. so its studying gives
a complete information concerning orbit behavior of the flow. Principal elements of this picture
were found in |39, 47, 28, 29]. In particular, suppose a homoclinic orbit to the saddle-center exist
and some genericity condition holds for it, then each Lyapunov periodic orbit possesses within its
level of H four transverse homoclinic Poincaré orbits [39] implying the existence of complicated
(chaotic) dynamics nearby [52], [51].

Separatrices of the saddle-center are orbits (different from the equilibrium itself) on two
invariant analytic curves through the equilibrium, in Moser coordinates they are 1 = x9 = yo =0
and y; = z2 = y2 = 0 (strong stable W* and strong unstable W*" local manifolds). A two-
dimensional center manifold near the saddle-center is given as z; = y; = 0, it is filled with
Lyapunov saddle periodic orbits lying each in its own level of the Hamiltonian. These periodic
orbits are saddle ones in the related level of H.

The continuation of an unstable separatrix by the flow within the singular level can lead to
its merge with one of two stable separatrices forming a homoclinic orbit to the saddle-center.
The local orbit structure of the flow near such orbit is rather well known since [39] (see also
[35, 28 147, 28, 29, [53]). The orbit behavior depends essentially on the case which is realized of
two possible ones here [39]. To explain this, let us remind the local structure of the Hamiltonian
near a saddle-center (see, Fig. [6}{g). We present here only related pictures (see details in [41]).
On these pictures it is seen the local behavior of orbits, as well.

The cases mentioned depend on how the homoclinic orbit connects cutting disks of two solid
cylinders: the orbit can connect disks from the same solid cylinder (case 1) or two different ones
(case 2). As simulations show that we deal with the case 2 for the system under study. Thus, two
separatrices going to the half-space » > 0 may form homoclinic orbits corresponding to solitons,
and two remaining going to the half-space r < 0 may form homoclinic orbits corresponding to
cavitons. Related orbits have been found, as an example, they are plotted in Fig[9,b. They
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Figure 7: ¢ <0

represent both solitons and solitons.

If the genericity condition mentioned above holds for a homoclinic orbit of the saddle-center,
then in the level H = 0 containing the equilibrium and the homoclinic orbit there exist also
countably many saddle long periodic orbits accumulating at the homoclinic orbit to the saddle-
center [39, 35]. As an example, such periodic orbit is shown on Fig. but its fact there are
many of them. For the system we study all this picture takes place at fixed values of parameters
D,, A\, for which a homoclinic orbit to a saddle-center exists.

When varying parameters D, A, the orbit structure of the flow varies. In particular, a homo-
clinic orbit to the saddle-center generically fails to exist (it is destroyed). Instead, multi-round
homoclinic orbits to O can arise [36]. Because saddle periodic orbits accumulate to the former
homoclinic loop, a situation may occur, when an orbit on an one-dimensional unstable manifold
of the saddle-center (which persists under small changes D, \) gets lie on the stable manifold of
some saddle periodic orbit « in the same level of H. Since the system under consideration is,
in addition, reversible, and if saddle-center O and saddle periodic orbit v are symmetric, then
pairing orbit of the stable manifold of the saddle-center gets lie by symmetry on the unstable
manifold of «v. Thus, in this case a heteroclinic connection is made up of two heteroclinic orbits,
a symmetric saddle-center and a symmetric saddle periodic orbit ~.

Such heteroclinic connection can be of two types in dependence of how two heteroclinic orbits
are displaced with respect to two local solid cylinders H = H(p), described above. Namely, they
can either intersect both the same cylinder (case 1) or one heteroclinic orbit intersects one

14



Figure 8: ¢ > 0
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Figure 9: (a) 1-round homoclinic, A = 0.5, D* = 0.23; (b) Unfolding of this 1-round soliton.

cylinder, but another one does another cylinder (case 2). Our simulations show that we deal
here with the case 2. This implies that orbits leaving the unstable manifold of v can return to lie
on its stable manifold only making at least one passage near two remaining stable and unstable
manifolds of the saddle-center. For our case this means that such orbits have to intersect the
plane r = 0 before they return to the stable manifold of . Existence of a heteroclinic connection
of the type indicated is shown in the Fig[I0] Studying an orbit behavior near this connection
was performed recently [40].

Another feature of the system under varying parameters (D, \) is the appearance of new
homoclinic orbits to the saddle-center. Due to reversibility of the systems and the type of action
of the reversor L locally (the intersection of the fixed point set of L with the singular level H = 0
is the curve through p) both homoclinic orbits (solitons) and cavitons are usually symmetric
orbits (i.e. invariant w.r.t. L). So, at a fixed D?, )\, 0 < A < 1, only one symmetric soliton can
exist and only one symmetric caviton. Under varying parameters these homoclinic orbits usually
are destroyed, but can exist multi-round homoclinic orbits which before closing make several
excursions near the former 1-round homoclinic orbits. Moreover, for a reversible system in the
plane of parameters (D?, \) there are usually countably many bifurcation curves accumulating
to the curve of 1-round homoclinic orbits [47, [29]. Our calculations show just this behavior, see,

Figs [[2{16]
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Figure 10: Heteroclinic connection in the singular level of H.

One more situation that can arise under varying parameters (D2, )), is the existence of non-
symmetric homoclinic orbits. By symmetry, if such an orbit exists, there is another homoclinic
orbit being the symmetric counterpart of the former. The existence of such nonsymmetric ho-
moclinic orbit requires the 2-parameter analysis, they exist at selected points (see Fig a,b.

Vi
o
°

a) b)

Figure 11: (a) Nonsymmetric soliton at (A = 0.0887472, D? = 0.247906); (b) Its unfolding.

7 Small positive 1 — \

Let us now study the problem for small positive 1 — A near the point (0,0,0,0) on the upper
sheet. As was said above, this equilibrium is degenerate at A = 1 with double zero eigenvalue

and two imaginary eigenvalues +iw. Let us scale the initial equation (/5)):

d d
A=1-¢& 1=¢y, —=ec—, S=eX, D="
dy dr €
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Figure 12: (a) Simplest caviton; (b) Its unfolding.
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Figure 13: (a) 2-round homoclinic orbit, A = 0.5, D* = 0.47; (b) Its unfolding — 2-hump soliton.
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Figure 14: (a) 2-round homoclinic orbit with sharpening, A = 0.5, D® = 0.188847; (b) Its unfolding — 2-hump

caviton.
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Figure 15: (a) 3-round homoclinic orbit, A = 0.1, D? = 0.315485; (b) Its unfolding — 3-hump soliton.
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Figure 16: (a) 3-round homoclinic orbit with sharpening, A = 0.5, D? = 0.181595; (b) Its unfolding — 3-hump

caviton.

As a result of these transformations we come to the following equation

4 2
Fﬂ% + % ~ X+ %XQ —2X(1 - gx + %X2) +et(-X +3X?% - gx?’ + gx‘*) 4y
(15)
that defines the behavior of solutions as A — 1 — 0. As above, let us reduce the equation to the
Hamiltonian system by means of the change of variables u; = X, up = X/, v; = — X' — k2X"",
vy = kX”. The equation is reduced to the slow-fast Hamiltonian system with respect to the

symplectic form dvy A duy + kdva A dug

r_ r_ 1,2 2 3 1,2 4 2 _ 5,3, 5,4
uy = ug, vy = —u1 + sui —eu1(l — Jur + suf) + " (—ur + 3uy — Juy + guy) + -,

16
kub = ve, Kvh = —(ug + v1). (16)

The Hamiltonian of the system is

1+0(?) 5 1+0(?) 4 n e(1+40E%) 4 e (1+0(E%) s

1
H = ugvi+= (u3 +v3) + 5 Ul G U 3 uy 3

2
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Figure 17: Saddle periodic orbit in the singular level of H.

In this form we get a problem about an orbit behavior near a ghost separatrix on an almost
invariant elliptic manifold where a saddle equilibrium with a homoclinic orbit exists. Such
problem was studied partially in [22].

The system is also reversible with respect to the involution L : (uy,vi,ug,va) —
(u1, —v1, —ug,v2) with its fixed point set Fiz(L) = {v; =0, uz = 0.}

In order to find a homoclinic orbit to the saddle-center it is important to keep in mind that
we have a reversible slow-fast Hamiltonian system whose fast system is a fast rotation. Indeed,
to get the fast system, we do the scaling of the independent variable 7/k = &, then the small
multiplier k appears in the right hand sides of the first and second differential equations. Then,
setting k = 0 we get uy,v; as parameters of the system of two remaining equations. They are
linear and have an equilibrium — center — on any leaf u; = u, v; = vY. Thus, all assumptions
of the theorem 1 from [2I] hold and therefore there is a neighborhood U of a compact region in
the slow plane uo = —v1, v9 = 0, where analytic Hamiltonian by an analytic symplectic change
of variables is transformed to the function H = Ho(I,u,v,s) + R(z,y,u,v, k), I = (2% + y?)/2,
|R| = O(g[—c/k]). Thus, in U the Hamiltonian is exponentially close to an integrable Hamiltonian
Hy with I being an additional integral. In particular, this theorem works for a region U which
contains on the slow plane the separatrix loop of the saddle. Also, in this case a theorem from
[22] holds which asserts the validity of the Moser normal form [49] for H in some neighborhood
of saddle-center of the size O(Ce¢). These two theorems allows two prove the following theorem
being an analog of the theorem 1 from [14]

Theorem 1 For a small positive k in the whole phase space a neighborhood of the order k of
the homoclinic orbit on the slow manifold exist such that two branches of stable and unstable
separatrices of the saddle-center which cut the cross-section xo = 0 first time are displaced on
the distance of the order Rexp|—c/k| with some positive constants R, c.

For € = 0 the equation above is the well studied, it also models the form of stationary water
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waves on the surface of a liquid with the surface tension [10] [30] 14], if we eliminate terms of
the order €2 and higher. It was proved for small & [14] this equation to have not localized
solutions, or, in other terms, no homoclinic solutions to the corresponding saddle-center exist
for the related slow-fast Hamiltonian system. Nevertheless, our simulations have shown the
existence of homoclinic orbits under varying ¢,k (see, as a hint, Fig). More exactly, the
following hypothesis seems to be valid

Hypothesis. There is a neighborhood of the point (0,0) on the parameter plane (k,¢) such
that a countable set of bifurcation curve exists which correspond to the existence of homoclinic
orbits of any roundness.

8 Homoclinic loops to saddle-focus

The calculations of equilibria and their types show, in particular, that if D? > 1/4, then for
positive A > Ag the equilibrium O on the upper sheet is the saddle-focus. The simulations
discovered the abundance of symmetric homoclinic orbits to this equilibrium (see Fig..
These homoclinic orbits are usually transverse in the following sense. The related singular
3-dimensional level of the Hamiltonian (containing the saddle-focus) includes both smooth 2-
dimensional stable and unstable manifolds of the saddle-focus and their intersection along the
homoclinic orbit is transverse within this level. The theory of the complicated orbit behavior near
a saddle-focus loop was developed by Shilnikov [50] for general systems and later adapted [18]
to cover the case of Hamiltonian systems (see also [19] 24, [I7] where some elements of complex
dynamics were proved for reversible systems. An overview of these results can be found in [25]).
It says that near a transverse homoclinic orbit there exists multi-pulse homoclinic orbits and a
complicated behavior of nearby orbits (hyperbolic subsets) [I8]. Moreover, varying levels of the
Hamiltonian leads to many bifurcations of hyperbolic sets, creations of elliptic periodic orbits,
etc. [421143]. Also, for the system under study there are those symmetric homoclinic orbits which
intersect during their travel the branching plane u; = —A?/2. Such homoclinic orbits can also
be named cavitons with oscillating asymptotics at infinity. Near them multi-pulse cavitons also
exist as well as a complicated orbit structure.

Let us prove the existence of two symmetric homoclinic orbits to the equilibrium O on the
upper sheet for small enough A — Ag. To do this, we use results of studying the Hamiltonian
Hopf bifurcation [46] and their realization for the Swift-Hohenberg equation [23] 26]. Recall that
the Hamiltonian Hopf bifurcation is the bifurcation in an one-parameter family of Hamiltonian
systems in two degrees of freedom having equilibria for all values of a parameter and at some
critical value of a parameter the related equilibrium has two double pure imaginary eigenvalues
each with the 2-dimensional Jordan box (non-semisimple case). The type of bifurcation that
occurs under transition through this critical value of the parameter depends on the sign of some
coefficient in the normal form of the Hamiltoniian near this equilibrium. In particular, if this
coefficient is positive, then for those values of the parameter, when the equilibrium is a saddle-
focus, the system, if it is, in addition, reversible, the saddle-focus gives the birth of two small
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Figure 19: (a) Saddle-focus homoclinics, D? = 0.36, A = —2, 2-rounded; (b) and its unfolding.

symmetric homoclinic orbits. The reversibility here guarantees their existence, otherwise, to find
such orbits is a very delicate problem related (for analytic systems) with exponentially small
splitting of stable and unstable manifolds of the saddle-focus |20].

We prove the result reducing our problem to that being similar to the problem as for the
Swift-Hohenberg equation. To that end, let us scale the traveling coordinate y = v¢, v = v/2D,
in the initial equation . After scaling and dividing at D? we get the equation

4D? 2D? 2D?
uV) 420" 4 u = (1—4D? + 3 Ju — 13 u? + G ud
In notations of [23] we get o = 1—4D2+%, B = —2)%2. The change © — —u allows one to make

B positive as in [23]. Thus we get the criterion of the birth of homoclinic orbit when crossing
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Figure 21: (a) Saddle-focus homoclinics, D* = 0.36, A = 3.5, 2-rounded and (b) its unfolding.

a = 0, i.e. we just get A = Ag. Nevertheless, the equation differs from [23], since coefficient
at the term with u3 is positive. So, we need to calculate the needed coefficient in the normal
form directly. We perform this calculation using the averaging. This was done long ago [44] but
unpublished.

We calculate the coefficient, we remark that saddle-foci appear as A > )Xo as D? > 1/4.
Denote —v =1 —4D? + % and consider v as small positive parameter. After scaling u = —ku
with & = v/2D/A%/? we come to the equation of the form (we preserve old notations)

uIV) 420" fu = —vu+ Bud+ud 4 (17)
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Let us write the equation in the form of two second order equations
u fu=uv, 0" +v=—-vut+pul+ud+ .
After scaling u — /v, v — vv and denoting pu = /v, we get the system
u’ +u=pw, V" 4+ v = pu® — p(u—u) + 0.
At 1 = 0 we have the system whose solutions are of the form

— g(fﬁ exp[2i€] + A% exp[—2i€]) + 28| A2

We add here new variables v/ = p,v’ = ¢ and differentiation of above equalities under an

u = Aexpli] + Aexp[—if], v = Bexpl[i&] + B exp[—if]

assumption that A, B are constant gives the relations for p, ¢ through A, A, B, B. We consider
these relations as the change of variables (u,v,p,q) — (A, A, B, B). Observe that this change of
variables depend 2m-periodically in &.

Performing this change of variables, we come to the system of four first order differential
equations in variables (A, A, B, B) which is the 27-periodic system in the so-called standard
form of the averaging method (see, [15]) X' = puF(X,§). Averaging this system in & gives the
average system Y’/ = puFy(Y),

27
1
F = — .
(1) = 5o [ PO
0
For our case we have
B A 27 + 232 - _
A = —i,ug, B = iu§[1 — %B]A\Q], A =cc., B =c.c. (18)

The coefficient we sought for is . It is positive that means the existence of the homoclinic

27+2/32
9
skirt in the system which is integrable and the existence of two symmetric homoclinic orbits
in the initial system due to its reversibility [33]. The structure of the averaged system is easily
restored if introduce real variables (a,b,c,d), A = a+ ib, B = ¢+ id. In these variables we have

a Hamiltonian system

27T +242

b
ad=c d= %(1 —L@®+v), bV =d, d = 1(1 —L(a* +b%)), L 5
with Hamiltonian ) ) s o
5~ s 11 6(a +b%)
and an additional integral K = ad — bc. The common level H = K = 0 gives the homoclinic

H:

skirt, i.e. one-parameter family of homoclinic orbits to the equilibrium O of a saddle type with
merged 2-dimensional stable and unstable manifolds.

In the similar way one can check that zero equilibrium O on the lower sheet for negative A
also gives the birth of homoclinic orbits to a saddle-focus as 0 < D? < 1/4 at A = \_.

As we have seen above, saddle-foci in the system exist both for negative A and for positive

A. Results of our simulations in these cases are plotted in Fig. for negative A. For positive
X we get the following plots, Fig.
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9 Conclusion

In this work we have studied localized traveling wave solutions of the nonlocal Whitham equation
by means of the reduction to a Hamiltonian system. This initial equation is of the fourth order
with a nonlinearity being double-valued. The reduction allows to derive a two degrees of freedom
Hamiltonian system but it defined on the two-sheeted space due to the type of nonlinearity. In
addition, the system is reversible with respect to some involution. This permitted to obtain a
clear geometric description of both smooth solutions and solutions with singularities and apply
to the problem of developed methods of the theory of Hamiltonian dynamics, in particular,
theory of homo- and heteroclinic orbits. The search for homolinic and heteroclinic orbits in
dynamical systems is a very nontrivial problem, being global in its own nature. Therefore,
numerical methods with the sharp set up allow to solve this problem for the concrete equation
like that under study. But the numerical search can be made much more rigorous if we have some
points in the parameter space (our (D?, \)) at which the system has degenerate equilibria. Then
bifurcation methods allows one to find homoclinic orbits through the bifurcation. We do this
using Hamiltonian Hopf bifurcation and calculation the needed coefficients in the local normal
form to determine the type of the bifurcation. All this together allowed one to investigate the

system with many details.
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