
Instability Zones in the Dynamics of a Quantum Mechanical Quasiperiodic Parametric
Oscillator

Subhadip Biswas∗

Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK.

Pratyusha Chowdhury
Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.

Jayanta K Bhattacharjee†

Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India.
(Dated: September 27, 2019)

Quasi-periodically driven quantum parametric oscillators have been the subject of several recent
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I. INTRODUCTION

The quantum parametric oscillator has drawn a fair
amount of attention because of its relevance in the physics
of ion traps [1] as well as in the study of the longtime
properties of periodically driven quantum system [2] [3].
A particular issue about the quantum parametric oscilla-
tors is the existence of regions of instability in the plane
spanned by amplitude and frequency of modulation. The
mean position of an initially prepared wave packet diverges
in certain regions of the plane. More importantly, the vari-
ance and hence the energy of the oscillator increases indef-
initely in certain regions of the plane. The mean position
diverging implies that the particle escapes from the trap.
The average energy increasing indefinitely is also undesir-
able. It is consequently important to know the zones where
these divergences occur. Recent work [4]-[6] has established
quite clearly that the variance and the mean diverge in the
same regions of the frequency-amplitude plane leading to
the situation that if the particle is trapped its energy will
be finite..

While references [4] and [5] have dealt with the variance,
it should be noted that reference [6] has dealt with a more
physical quantity which is the energy expectation value and
shown that the region of divergence of mean position and
the average energy are the same. We show the connection
between the variance and the average energy in Sec II.

Over the last few years, there has been a fair amount
of discussion [7]-[9] on quasi-periodically driven quantum
systems. Some of it is related to the efforts to generalize
Floquet’s theorem to quasi-periodic case [10]-[12]. In this
work, we address the question of whether the instability re-
gions are identical for the mean position and the variance
and hence the energy for the quasiperiodically driven sys-
tem as well. To answer this question, we exploit the fact
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that the system is a simple harmonic oscillator and hence
the dynamics of the mean position and the variance (and
for that matter all the higher moments) are exactly known.
We look at the worst case scenario - the situation where
one of the driving frequencies is in the primary paramet-
ric situation i.e. the driving frequency is twice the natural
frequency and the other frequency which makes the drive
quasi-periodic is only slightly detuned leading to the most
spectacular instability zones. We show numerically and
through a perturbative analysis that the instability zones
for the mean and variance are identical in this situation.

The layout of the paper is as follows: In Sec II, we de-
rive the dynamics of the mean position and variance of
the quantum parametric oscillator for an arbitrary forcing
function f(t). If the natural frequency of the physical os-
cillator is ω, then the oscillator for the mean position has
the same natural frequency ω and satisfies the usual Math-
ieu equation, while the oscillator describing the dynamics
of the variance will be seen to have a natural frequency of
2ω (natural frequency is the frequency of the autonomous
system) and is described by a third-order non-autonomous
linear differential equation. For reasons which we will ex-
plain the quasiperiodic forcing function will be taken to
have frequencies Ω and Ω(1 + ε∆) where ε << 1. In the
case the mean has its primary resonance (for ε = 0) when
the response is with time period 2T = 2π

ω , where T = 2π
Ω .

The variance on the basis of Floquet’s theory would have,
for ε = 0, periodic orbits of period 3T, 2T and T where
T = 2π

2ω = π
ω is the natural period of the oscillator for the

variance, which is twice the natural period of the oscillator
for the mean position. It is around the periodic responses
that the instability zones exist. It was shown in Ref [5]
from harmonic balance arguments that there is no instabil-
ity zone around T = 3π

ω and so in Sec III we discuss the

case around T = 2π
ω , i.e. twice the natural frequency. Here

once again, a cancellation prevents the occurrence of any
instability zones. We show this from a perturbative calcu-
lation which is supported by numerical calculation of the
stability boundary. In Sec IV, we investigate the region
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near T = π
ω and it is here that one finds a variety of sta-

bility zones and they agree exactly with the corresponding
zones for the response near twice the natural period for the
dynamics of the mean. We conclude with a brief summary
in Sec V.

II. THE EQUATION OF MOTION

The one dimensional parametric oscillator is governed by
the Hamiltonian H given by

H =
p2

2m
+

1

2
mω2x2(1 + εf(t)), (2.1)

where m is the mass of the oscillator, p its momentum, x
its coordinate and ω the frequency of the vibration. The
restoring force is modified by the time dependent function
f(t) which has an amplitude ε. In this work we will consider
quasiperiodic f(t) which can be written as,

f(t) = cos(Ωt) + µ cos(1 + ε∆)Ωt. (2.2a)

This is a special case (in many ways most interesting as
we show at the end of this section) of the general form

f(t) = cos(Ωt) + µ cos(1 + α)Ωt, (2.2b)

where α is an irrational number.
The Schrödinger equation, corresponding to the Hamil-

tonian of Eq. (2.1) is i~
∂Ψ

∂t
= HΨ, where Ψ(x, t) is the

space and time dependent wave function of the system. For
any operator O we can write down the Heisenberg equation

i~
dO
dt

= i~
∂O
∂t

+ [O,H], (2.3)

where the first term on the right hand side is nonvanish-
ing only if the operator O is explicitly time dependent and
[O,H] is the commutator OH − HO. Taking the expec-
tation value of the operators in the above equation in any
state Ψ(x, t), we have

i~
d

dt
〈O〉 = i~〈∂O

∂t
〉+ 〈[O,H]〉, (2.4)

where 〈· · · 〉 =
∫

dx Ψ∗(x, t)(· · · )Ψ(x, t). As mentioned in
the introduction, our focus here will be on the expectation
value of the position operator which in this case actually
follows the classical equation of motion(this happens for all
quadratic Hamiltonians) and the variance which is a purely
quantum mechanical object and has no classical analogue
except when one considers a bunch of initial conditions in
classical dynamics [13].

The dynamics of 〈x〉, the expectation value of the posi-
tion operator is found from Eq. (2.4) which gives

d

dt
〈x〉 =

1

i~
〈[x,H]〉 =

〈p〉
m
, (2.5)

while,

d

dt
〈p〉 =

1

i~
〈[p,H]〉 = −mω2〈x〉(1 + εf(t)). (2.6)

The above equations lead to

d2

dt2
〈x〉+ ω2[1 + ε cos(Ωt) + εµ cos(1 + ε∆)Ωt]〈x〉 = 0,

(2.7)

which is exactly the classical quasi-periodic Mathieu equa-
tion ([14]; [15]).

Our primary interest here is in studying the variance
and comparing its dynamics with that of the mean so far
instability zones are concerned. To find the dynamics of V ,
we write

d

dt
〈x2〉 =

1

2i~m
〈[x2, p2]〉 =

〈xp+ px〉
m

. (2.8a)

d

dt
〈p2〉 =

mω2

2i~
〈[p2, (1 + εf(t))x2]〉

= −mω2(1 + εf(t))〈xp+ px〉. (2.8b)

d

dt
〈xp+ px〉 =

1

i~
〈[xp+ px,

p2

2m
+

1

2
mω2x2(1 + εf(t))]〉

= 2
〈p2〉
m
− 2mω2〈x2〉(1 + εf(t)). (2.8c)

Combining the above equations, we get

d2

dt2
〈x2〉 = 2

〈p2〉
m2
− 2ω2〈x2〉(1 + εf(t)). (2.9)

Another derivative leads to

d3

dt3
〈x2〉 =

2

m2

d〈p2〉
dt
− 2ω2 d〈x2〉

dt
(1 + εf(t))− 2ω2εḟ〈x2〉

=− 4ω2(1 + εf(t))
d

dt
〈x2〉 − 2ω2εḟ〈x2〉.

(2.10)

Identical steps lead to

d3

dt3
〈x〉2 = −4ω2(1 + εf(t))

d

dt
〈x〉2 − 2ω2εḟ〈x〉2, (2.11)

and hence for the variance V = 〈x2〉 − 〈x〉2,

d3V

dt3
+ 4ω2(1 + εf(t))

dV

dt
+ 2ω2εḟV = 0. (2.12)

This is dynamics of the variance and with the form of
f(t) as given in Eq. (2.2a), we get

d3V

dt3
+ 4ω2 dV

dt
+ 4εω2[cos(Ωt) + µ cos Ω(1 + ε∆)t]

dV

dt

−2ω2εΩ[sin(Ωt) + µ(1 + ε∆) sin Ω(1 + ε∆)t]V = 0.

(2.13)

The fact that the behaviour of the classical system is
striking was realized in the Ref ([14]).The dynamics of the
mean as shown in Eq. (2.7) has been extensively stud-
ied [14]-[17]. The dynamics of the variance as shown in
Eq. (2.13) has been investigated in [4]-[5] for µ = 0 (peri-
odic modulation). We note that from Eqs. (2.8a)-(2.8c),
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d
dt
〈E〉 = d

dt
〈 p

2

2m
+ 1

2
mω2x2(1 + εf(t))〉 = − 1

2
mω2ε〈x2〉 d

dt
f(t)

and hence the instability zones of 〈E〉 are linked to these of
〈x2〉. Our aim here will be to see how different the quasiperiodic
perturbation is from the periodic one given that for the mean,
the changes in the instability zone are drastic for µ 6= 0 (the
quasiperiodic case).

The technique of working with Eqs. (2.2a) and (2.2b) have
been carefully dealt with in Refs. [14] - [17]. Here we point out
the only feature that has not been explored in detail in those
papers. Every irrational number has an infinite continued frac-
tion expansion and stopping it at some point leads to a rational
number approximation. What happens to the stability zones as
one works with the rational approximants and approaches the
irrational number? We illustrate this limiting procedure with

the golden ratio
√

5−1
2

. The successive rational approximants

to the irrational α =
√

5−1
2

are α = 1
2
, 2

3
, 3

5
, 5

8
, 8

13
, . . . . con-

verging very quickly to α = 0.618 . . . For each of the rational
approximations, f(t) is a periodic function with a period T that
increases as the approximants converge to the irrational num-
ber. For α = 1

2
, f(t) has a period 4π

Ω
, for α = 2

3
the period is

6π
Ω

and so on. Floquet theory says that for α = 1
2
, the frequen-

cies around which one looks for instability in the response are
nΩ
4

(n = 1, 2, 3, . . . ), while for α = 2
3

one looks for instability

around nΩ
6

. The basic frequency ( Ω
4
, Ω

6
, . . . ) goes on decreasing

and eventually tends to zero as α becomes
√

5−1
2

. The fact that

one is required to look for resonances near nΩ
4

, does not mean
that there will be an instability zone for all ‘n′. For n = 1, it is
straightforward to see by repeating the steps shown in Sec. III,
that there is no instability zone around Ω

4
. There is a periodic

orbit of period 8π
Ω

(Floquet’s theorem) but it exists in the ε−ω
plane along the curve δ = − ε2

Ω2 where ω2 = Ω2

16
+δ for small val-

ues of ε. The primary instability zones are around Ω
2

(for n = 2)

and 3Ω
4

(for n = 3), followed by n = 4. This picture hardly
changes for the next approximant except that the significant in-
stability zones are around nΩ

6
with n = 3 and n = 5, followed

by n = 6. In the limiting (quasi periodic) situation the signifi-

cant zones are around n1Ω
2

(n1 = 1, 2) and n2

√
5+1
2

(n2 = 1, 2)
. The numerically obtained instability zones corroborate the
above statements. The point of the present paper is that the
instability zones of the variance (as obtained from the numeri-
cal or perturbative treatment of Eq. (2.13) ) yield the identical
instability zones. We show this numerically in Fig. (1), where
we have (to prevent crowding) shown the two cases of α = 1

2

and α = 8
13

. The case α = 8
13

is virtually identical to α = 0.618

and not very different from the first approximant α = 1
2
. We

repeat that the plots of instability zones from Eqs. (2.7) and
(2.13) coincide in all cases.

What we see from above is that when the frequencies Ω and
Ω(1 + ε∆) of Eq. (2.2a) are well separated, the instability zones
which are most prominent when originating from ω = Ω

2
or

Ω
2

(1 + ε∆) are also well separated. Only if ε∆ is made very
small, the instability zones overlap and can produce an immense
amount of fine structure as shown in Figs. (2) and (3). This is
what was noted by Rand et al. [14] and consequently it is im-
portant to establish that the two immensely complicated insta-
bility zones agree exactly for the mean (Eq. (2.7)) and variance
(Eq. (2.13)) both in a direct numerical investigation and in a
perturbative Krylov-Bogoliubov analysis. The instability zones
from the Krylov-Bogoliubov technique and direct numerical in-
tegration are shown in Sec. IV.

For purely periodic f(t) of period T = 2π
Ω

in Eq. (2.12), the
periodic orbit can occur with periods 3T, 2T and T . This is be-
cause Eq. (2.12) can be written as third order traceless dynam-

ical system having the structure Ẋl =
∑3
j=1 Aij(t)Xj , where

FIG. 1. Numerical solution of Eq. (2.7) with f(t) from
Eq. (2.2b) with µ = 0.5, α = 0.5 and α = 8

13
, Ω = 2π in

the ε − ω parameter space. Coloured points are the unstable
solution and white region corresponds to stable solution of the
Mathieu equation. The instability zones of V obtained from
Eq. (2.13) with the same set of parameters mentioned above
yield same region of the above figure.

Aij(t) has zero trace and period T . We see from a harmonic
balance that at lowest order there will be no instability zone
around the orbit of period 3T and hence in the next section, we
look for orbits of periodicity 2T .

III. IN THE VICINITY OF ORBITS OF PERIOD
2T

The natural frequency of the oscillator Eq. (2.13) is 2ω and
hence if we have 2ω to be in the vicinity of Ω

2
where Ω = 2π

T
,

we can expect a strong resonance in the system. Accordingly,
we set the frequency ω near Ω

4
and write

ω =
Ω

4
+ δ, (3.1)

where δ << O(1) and can be expressed in a power series in ε as

δ = δ1ε+ δ2ε
2 + · · · . (3.2)

To O(ε), we can now rewrite Eq. (2.13) as

d3V

dt3
+

Ω2

4

dV

dt
+ 2Ωεδ1

dV

dt
= − εΩ

2

4
[cos(Ωt)+

µ cos Ω(1 + ε∆)t]
dV

dt
+
εΩ3

8
[sin(Ωt)+

µ(1 + ε∆) sin Ω(1 + ε∆)t]V. (3.3)

We propose to use the Krylov-Bogoliubov technique to explore
the dynamics V (t) for ω in the vicinity of Ω

4
. Accordingly, we

note that for ε = 0, the solution of Eq. (3.3) is

V0 = A0 +A1 cos

(
Ωt

2

)
+B1 sin

(
Ωt

2

)
, (3.4)

where A0, A1 and B1 are constants. To take the O(ε) term
into account, we assume that A0, A1 and B1 will become slowly
varying functions of time with the structure of the solution at
the leading order unchanged. Slowly varying implies that as we
take derivatives of A0, A1 and B1, only the first order derivative
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will be retained, while the higher order ones will be ignored. We
thus try a solution for V (t) of the form (correct to O(ε))

V (t) = A0(t) +A(t) cos

(
Ωt

2

)
+B(t) sin

(
Ωt

2

)
. (3.5)

We insert this in Eq. (3.3), noting that (keeping in mind that
derivatives of A0, A and B can only be of the first order)

V̇ (t) = Ȧ0(t) +

(
Ȧ+B

Ω

2

)
cos

(
Ωt

2

)
+

(
Ḃ −AΩ

2

)
sin

(
Ωt

2

)
. (3.6a)

V̈ (t) =

(
ΩḂ −AΩ2

4

)
cos

(
Ωt

2

)
−
(

ΩȦ+B
Ω2

4

)
sin

(
Ωt

2

)
. (3.6b)

...
V (t) = −

(
3Ω2

4
Ȧ+B

Ω3

8

)
cos

(
Ωt

2

)
−
(

3Ω2

4
Ḃ −AΩ3

8

)
sin

(
Ωt

2

)
. (3.6c)

We simplify anticipating that Ȧ0, Ȧ and Ḃ will be propor-
tional to ε (slowly varying implies the derivative is small) and

accordingly ignore all terms which are like εȦ0, εȦ and εḂ etc.
Use of standerd trigonometric identities lead to Eq. (3.3) taking
the form (correct to O(ε) on the right hand side)

Ω2

4
Ȧ0 −

Ω2

2
Ȧ cos

(
Ωt

2

)
− Ω2

2
Ḃ sin

(
Ωt

2

)
= εΩ2δ1

[
A sin

(
Ωt

2

)
−B cos

(
Ωt

2

)]
+
εΩ3

8

[
A0 sin(Ωt) +A sin

(
3Ωt

2

)
−B cos

(
3Ωt

2

)
+µA sin

(
3Ω

2
+ εΩ∆

)
t− µB cos

(
3Ω

2
+ εΩ∆

)
t

]
.

(3.7)

Matching the coefficients of similar trigonometric terms on
the left and right sides of Eq. (3.5), we have

Ȧ0 = 0. (3.8a)

Ȧ = 2δ1Bε. (3.8b)

Ḃ = −2δ1Aε. (3.8c)

If we look at the ω − ε plane, then starting at the point at
ω = Ω

4
, the trajectory is periodic along the vertical line. Starting

form the ω = Ω
4

and if we move away a small distance δ1 from

ω = Ω
4

, the trajectory is quasi-periodic with the frequencies
Ω
2
± 2δ1ε. Thus there is no instability zone of Eq. (2.13) around

ω = Ω
4

to O(ε). This is exactly what had happened for the
purely periodic case of µ = 0 and no qualitative change occurs
for µ 6= 0.

IV. IN THE VICINITY OF ORBITS OF PERIOD
T

In this case, our natural frequency 2ω in Eq. (2.13) needs to
be close to the forcing frequency Ω and hence

ω =
Ω

2
+ δ =

Ω

2
+ εδ1 +O(ε2). (4.1)

We first recall the results for the mean position (Eq. (2.7)),
where we try the solution (Krylov-Bogoliubov)

〈x〉 = A(t) cos

(
Ωt

2

)
+B(t) sin

(
Ωt

2

)
, (4.2)

where A(t) and B(t) are slowly varying amplitudes. They are
easily seen to have the dynamics (with τ = ∆εtΩ)

∆
dA

dτ
=

(
δ1
Ω
− 1

8

)
B − µA

8
sin τ − µB

8
cos τ. (4.3a)

∆
dB

dτ
= −

(
δ1
Ω

+
1

8

)
A− µA

8
cos τ +

µB

8
sin τ. (4.3b)

FIG. 2. Zones of stable and unstable region obtained by nu-
merically integrating the slow flow Eqs. (4.3a) and (4.3b) for
µ = 0.1. Black points correspond to unstable regions, whereas
white regions are stable. The instability zones of V obtained
from Eqs. (4.12a) - (4.12c) for µ = 0.1 agree with black region
of the above figure. Dotted lines are plotted from the analytical
solution of Eq. (4.6) which has been discussed later.

These flows agree exactly with the results following from the
two-time scale technique of Rand et al. [14]. For µ = 0, the
results are in exact agreement with those known for the Math-
ieu equation. For µ 6= 0, the divergence zone changes. The
results in the case are first presented numerically. We show the
result with δ1 along the x−axis and ∆ (the quasi-periodicity
causing detuning parameter) along the y−axis. Each plot cor-
responds to different value of µ. We have considered three val-
ues of µ, namely µ = 0.1, 0.5 and 1. The instability zones are
shown in Figs. (2),(3) and (4). A comparison with the insta-
bility zones coming from the exact Eq. (2.7) and Eq. (2.13) is
shown in Fig. (5) and Fig. (6) respectively. It should be noted
that Figs. (2)-(4) correspond to the perturbation theory results
and are independent of ε and for different values of µ. What
these figures establish is that the instability zones of the mean
and variance coincide in perturbation theory. In Figs. (5) - (6)
we show how the full equation when plotted for definite but
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FIG. 3. Zones of stable and unstable region obtained by nu-
merically integrating the slow flow Eqs. (4.3a) and (4.3b) for
µ = 0.5. Teal coloured points correspond to unstable regions,
whereas white regions are stable. The instability zones of V
obtained from Eqs. (4.12a) - (4.12c) for µ = 0.5 agree with
coloured region of the above figure.

small ε show small deviations from the approximation but the
result that the instability zones coincide hold.

We have used Runge-Kutta method to solve two first order
coupled non-autonomous differential equations. Discretization
of first order ODE has the form yi+1− yi = hφ(yi, xi, h), where
h is the step size and φ is the increment function of f(x, y) in
the interval xi+1 ≥ x ≥ xi. Initially, at τ = 0 we choose the
initial value of yτ=0 as 0.001. We are looking at the values of
these functions at τ = 7000 with step size h = 0.001. Stable
oscillatory solution gives with amplitudes with ∼ 10−2 in the
white region, whereas, functional values yτ ≥ 101 corresponds
to divergent solution. Numerical solutions of yτ is shown in the
Figs. (9) - (10). All the values of the initial conditions that have
used to solve the equations are 0.001. Other initial values and
h do not affect the stability chart diagram.

We would like to understand the existence of instability zones
from a perturbation theory approach for µ << 1 and then com-
pare with an exact numerical integration of Eq. (2.7). By an
inspection of Eqs. (4.3a)-(4.3b) from a self consistency perspec-
tive, we try out a solution of the form

A(τ) = α1 cos
(τ

2

)
+ β1 sin

(τ
2

)
. (4.4a)

B(τ) = α2 cos
(τ

2

)
+ β2 sin

(τ
2

)
. (4.4b)

where α1 , β1,α2 and β2 are functions of the time variable
τ . Inserting the above in Eqs. (4.3a)-(4.3b) and equating coef-

FIG. 4. Zones of stable and unstable region obtained by nu-
merically integrating the slow flow Eqs. (4.3a) and (4.3b) for
µ = 1. Blue points correspond to unstable regions, whereas
white regions are stable. The instability zones of V obtained
from Eqs. (4.12a) - (4.12c) for µ = 1 agree with blue region of
the above figure.

ficients of cos
(
τ
2

)
and sin

(
τ
2

)
, we get

∆α̇1 +

(
∆

2
+

µ

16

)
β1 −

[
δ1
Ω
− 1

8

(
1 +

µ

2

)]
α2 = 0. (4.5a)

∆β̇1 −
(

∆

2
− µ

16

)
α1 −

[
δ1
Ω
− 1

8

(
1− µ

2

)]
β2 = 0. (4.5b)

∆α̇2 +

(
∆

2
− µ

16

)
β2 +

[
δ1
Ω

+
1

8

(
1 +

µ

2

)]
α1 = 0. (4.5c)

∆β̇2 −
(

∆

2
+

µ

16

)
α2 +

[
δ1
Ω
− 1

8

(
1− µ

2

)]
β1 = 0. (4.5d)

The above set of equations have the form Ẋi = AijXj . The
border between stability and instability is obtained from the
condition that matrix A has a zero eigenvalue. This gives the
conditions

δ1
Ω

=



− 1

16

[√
(µ− 8∆)2 + 4 + µ

]
,

1

16

[√
(µ− 8∆)2 + 4− µ

]
,

− 1

16

[√
(µ+ 8∆)2 + 4− µ

]
,

1

16

[√
(µ+ 8∆)2 + 4 + µ

]
.

(4.6)

The above boundaries for µ = 0.1 are the same as the exact
numerical results shown in Fig. (2), whereas for larger values of
µ, boundaries are not exactly the same as described in Eq. (4.6).

We now turn to the dynamics of V and inserting Eq. (4.1)
for the frequency ω in Eq. (2.13) , obtain
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d3V

dt3
+ Ω2 dV

dt
+ 4Ωεδ1

dV

dt
= −εΩ2[cos(Ωt)+

µ cos Ω(1 + ε∆)t]
dV

dt
+
εΩ3

2
[sin(Ωt)+

µ(1 + ε∆) sin Ω(1 + ε∆)t]V. (4.7)

We will approach these again in the manner of sec. (III) and
for ε = 0, we write

V0 = A+B cos(Ωt) + C sin(Ωt), (4.8)

FIG. 5. Numerical solution of Eqs. (4.3a)-(4.3b) and Eq. (2.7)
with µ = 1, ε = 0.1, Ω = 2π in the ∆ − δ parametric space.
Magenta points are the unstable solution of slow-flow of Mathieu
equation i.e. Eqs. (4.3a)-(4.3b) and blue points are the unstable
solution of Mathieu equation i.e. Eq. (2.7). Inset is a blowup
of δ from -1.2 to -0.8 and ∆ from 0 to 1.5.

where A,B and C are constants. In the Krylov-Bogoliubov
spirit, we now make A,B and C slowly varying in time (i.e. Ȧ, Ḃ

and Ċ are of O(ε)) and proceeding exactly as in the previous
section, we have correct to lowest order in ε, for terms on the
left hand side of Eq. (4.7)

...
V = −3Ω2Ȧ cos(Ωt)− 3Ω2Ḃ sin(Ωt)

+Ω3A sin(Ωt)− Ω3B cos(Ωt). (4.9a)

Ω2V̇ = Ω2Ċ + Ω2Ȧ cos(Ωt) + Ω2Ḃ sin(Ωt)

−Ω3A sin(Ωt) + Ω3B cos(Ωt). (4.9b)

4Ωδ1εV̇ = 4Ωδ1ε(−ΩA sin(Ωt) + ΩB cos(Ωt)). (4.9c)

This yields

...
V + Ω2V̇ + 4Ωεδ1V̇ = Ω2Ċ − 2Ω2Ȧ cos(Ωt)

−2Ω2Ḃ sin(Ωt)− 4Ωδ1A sin(Ωt) + 4Ωδ1B cos(Ωt).

(4.10)

For the r.h.s. of Eq. (4.2) evaluation to O(ε) simply requires

using V0 and V̇0 in the r.h.s. of Eq. (4.2) and keeping the terms

which have the same structure as on the r.h.s. of Eq. (4.3a).
We finally arrive at

Ċ − 2Ȧ cos(Ωt)− 2Ḃ sin(Ωt)− 4δ1
Ω
A sin(Ωt)

+
4δ1
Ω
B cos(Ωt) +

εΩ

4
[B + µA sin(ε∆Ωt)

+ µB cos(ε∆Ωt)− 2µC sin(Ωt) (1 + µ cos(ε∆Ωt))

− 2µC cos(Ωt) sin(ε∆Ωt) ] . (4.11)

Defining τ = ε∆Ωt, we have correct to O(ε)

∆
dC

dτ
= −B

4
− µA

4
sin(τ)− µA

4
cos(τ). (4.12a)

∆
dA

dτ
=

2δ1B

Ω
− µC

4
sin(τ). (4.12b)

∆
dB

dτ
= −2δ1A

Ω
− µC

4
cos(τ)− C

4
. (4.12c)

FIG. 6. Numerical solution of Eqs. (4.12a)-(4.12c) and
Eq. (2.13) with µ = 0.5, ε = 0.1, Ω = 2π in the ∆−δ parametric
space. Teal coloured points correspond to the unstable solution
of slow-flow of variance equation i.e. Eqs. (4.12a)-(4.12c) and
blue points are the unstable solution of variance equation i.e.
Eq. (2.13). Inset is a blowup of δ from -1.2 to -0.8 and ∆ from
0 to 1.5.

Instability zones for µ = 0.5 for the variance V from
Eqs. (4.12a)-(4.12c) and the exact equation (Eq. (2.13)) are
shown in Fig. (6). The similarity with Fig. (5) should be noted.
We can also treat the above set of equations perturbatively as
follows.

In the absence of quasi-periodicity, we set µ = 0 and we
can explore the nature of A,B and C by solving the constant
coefficient linear system

∆Ċ = −B
4
. (4.13a)

∆Ȧ =
2δ1B

Ω
. (4.13b)

∆Ḃ = −2δ1A

Ω
− C

4
. (4.13c)
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FIG. 7. Numerical solution of Eq. (2.7) with µ = 1, ∆ = −0.5,
Ω = 2π in the ε−ω parametric space. Black points are the un-
stable solution and white region corresponds to stable solution
of the Mathieu equation. The instability zones of V obtained
from Eq. (2.13) with the same set of parameters mentioned
above yield same region of the above figure.

FIG. 8. Numerical solution of Eq. (2.7) with µ = 0.5, ∆ = −0.5,
Ω = 2π in the ε− ω parameter space. Black points are the un-
stable solution and white region corresponds to stable solution
of the Mathieu equation. The instability zones of V obtained
from Eq. (2.13) with the same set of parameters mentioned
above yield same region of the above figure.

FIG. 9. Numerical solution of Eqs. (4.3) and Eqs. (4.12) with µ = 1, ε = 0.1, Ω = 2π and for fixed value of ∆ = 1.51. Initial values
of the corresponding variables in the equations have taken all 0.001. For δ = 0.7155 solutions are diverging for both slow flow of
Mathieu and variance equation, whereas for δ = 0.7156 both solutions are oscillatory.

The solutions are of the form eλt with λ obtained from

Det


∆λ 0

1

4

0 ∆λ −2δ1
Ω

1

4

2δ1
Ω

∆λ

 = 0, (4.14)

leading to

λ

[
(∆λ)2 +

(
2δ1
Ω

)2
]
− λ

16
= 0. (4.15)

The three roots are found as ∆λ = 0 and (∆λ)2 +
4δ2

1

Ω2
=

1

16
. The latter yields ∆λ = ±

√
1

16
− 4δ2

1

Ω2
, and we have real

λ(instability) for |δ1
Ω
| < 1

8
. Thus in the zone

Ω

2
+
εΩ

8
to

Ω

2
− εΩ

8
,

we have diverging solutions of the variance V which is exactly

the same range for the divergence of 〈x〉 for µ = 0. For µ 6= 0,
the divergence zone of V changes and we want to find the diver-
gence of Eqs. (4.12a)-(4.12c) first numerically and then pertur-
batively. The results as before are best presented with δ1 along
the x−axis and ∆ ( the quasi-periodicity causing “de-tuning”
parameter) along the y−axis. The instability zone for µ = 0.5 is
shown in Fig. (6) and its striking similarity with Fig. (3) should
be noted. We show the instability zones for 〈x〉 and V on the
same plot in Figs. (2)-(4) to emphasize that the zones are iden-
tical. In Figs. (7) and (8) we show the instability zones for 〈x〉
and V in the ε− ω plane to show that the instability zones for
〈x〉 and V are identical in the ∆ vs. δ plane and in the ε vs. ω
plane for different values of µ.

We now turn to a perturbative treatment of the slow-flow
equations (Eqs. (4.12a)-(4.12c)) in the same manner as done for
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FIG. 10. Numerical solution of Eq. (2.7) and Eq. (2.13) with µ = 1, ε = 0.1, Ω = 2π and for fixed value of ∆ =
√

2 + 0.1. Initial
values of the corresponding variables in the equations have taken all 0.001. For δ = 0.7476 solutions are diverging for both Mathieu
and variance, whereas for δ = 0.7477 both solutions are oscillatory.

the slow flows of Eqs. (4.3a)-(4.3b). Accordingly we write

A(τ) = α1(τ) cos(τ) + β1(τ) sin(τ) + γ1(τ). (4.16a)

B(τ) = α2(τ) cos(τ) + β2(τ) sin(τ) + γ2(τ). (4.16b)

C(τ) = α3(τ) cos(τ) + β3(τ) sin(τ) + γ3(τ). (4.16c)

Inserting the equations Eqs. (4.16a)-(4.16c) in Eqs. (4.12a)-
(4.12c) and equating coefficients of 1, cos(τ) and sin(τ) we get a
9×9 matrix system of first order linear differential equations and
the instability boundaries are found from the condition for zero
eigenvalues. For µ = 0, the boundaries reduce exactly to those
given in Eq. (4.6). For µ 6= 0, the system cannot be solved and
does not shed any additional light implying that a perturbative
treatment of the slow flow equations are not always useful!

To provide further evidence that the boundaries for instability
zones of the mean and variance are identical we show the time
series of the slow flow for the mean (Eqs. (4.3)) and the variance
(Eqs. (4.12)) in Fig. (9). This figure clearly shows that at a
fixed µ, ε and ∆ a change of δ from 0.7155 to 0.7156 changes the
time series from diverging to oscillatory for both the mean and
the variance. This exercise has been repeated for a variety of
other parameter values. Finally, we need to address the question

of whether the slow flow answers agree with the exact answers
that can be obtained from Eq. (2.7) and (2.13). To this end,
we show a typical situation in Fig. (10). For a given µ, ε and
∆ it seems that change of δ from 0.7476 to 0.7477 changes the
stability characteristic of both the mean and the variance. That
this situation is always obtained is shown in Fig. (5) (mean) and
Fig. (6) (variance).

V. CONCLUSION

We have considered a quasiperiodically driven quantum para-
metric oscillator near the 2 : 2 : 1 resonance which produces the
most complicated instability pattern in the three-dimensional
space spanned by ε, ∆ and µ. Here ε and εµ are the ampli-
tudes of the quasiperiodic drives and ∆ is the detuning pa-
rameter for the quasi-periodicity. We find that in the entire
three-dimensional space, the instability zones of the mean po-
sition and the variance remain the same as they do in the two
dimensional (frequency and amplitude) space of the periodically
driven system. We establish this from perturbation theory and
exact numerical solution.
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