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Abstract. In the paper, we study approximation properties of the Malmquist-Takenaka-Christ-
ov (MTC) system. We show that the discrete MTC approximations converge rapidly under mild
restrictions on functions asymptotic at infinity. This makes them particularly suitable for solving
semi- and quasi-linear problems containing Fourier multipliers, whose symbols are not smooth at
the origin. As a concrete application, we provide rigorous convergence and stability analyses of a
collocation MTC scheme for solving the nonlinear Benjamin equation. We demonstrate that the
method converges rapidly and admits an efficient implementation, comparable to the best spectral
Fourier and hybrid spectral Fourier/finite-element methods described in the literature.
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1. Introduction. In the paper, we consider the nonlinear equation, proposed
by T.B. Benjamin in his study of internal waves arising in a two fluid system, see [6].
The equation reads

(1.1a) ut = −αux + βH[uxx] + γuxxx − δ(u2)x, u(0) = u0, x ∈ R,

where α, β, γ and δ are real parameters and

H[u](x) = p.v.
π

∫
R

u(y)

y − xdy,

is the standard Hilbert transform. The problem is formally Hamiltonian, i.e.

(1.1b) ut = J∇G(u),

where J = −∂x is the skew-symmetric first order automorphism of the Hilbert scale
Hs(R), s ∈ R and

(1.1c) G(u) = 1
2

∫
R

(
α|u|2 − βuH[ux] + γ|ux|2 + 2δ

3 u
3
)
dx.

In recent years, problem (1.1) has received significant attention in both analytic
and numerical communities. The well-posedness analysis of (1.1a) can be found in
[15, 24, 25]. In particular, the arguments of [15], indicate that (1.1a) is globally well-
posed, provided the initial data u0 is in Hs(R), with s ≥ − 3

4 . The global classical
solutions are obtained if u0 ∈ Hs(R) and s ≥ 3. The study of traveling wave solutions
is initiated in [6]. The existence of such solutions for all admissible values of the model
parameters is affirmatively settled by several authors (see e.g. [14, 30] and references
therein), while their stability is discussed in [4, 6, 30].
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On the numerical side, a variety of techniques, suitable for integrating (1.1), as
well as for finding associated traveling waves, is described in the literature. Among
others, we mention the pseudo-spectral Fourier-type schemes used in [4, 23], the hy-
brid Fourier-type/finite-difference scheme of [12] and the hybrid Fourier-type/finite-
element methods employed in [17, 18]. In all the techniques listed above, the spatial
domain is truncated to a large interval [−L,L], the resulting stationary and/or non-
stationary Benjamin equation, equipped with periodic boundary conditions, is solved
numerically. However, as observed by a number of authors, due to the jump discon-
tinuity in the Fourier symbol of the operator H, the exact solutions decay at most
algebraically at infinity.1 This is a serious technical obstacle as an accurate numerical
approximation of such solutions requires very large values for the truncation param-
eter L (see e.g. the discussion and numerical experiments in [12, 17]).

In the paper, we adopt an alternative approach. We approximate solutions di-
rectly in the real line using a family of rational orthogonal functions proposed indepen-
dently by F. Malmquist [27], S. Takenaka [36] and, in context of spectral methods, by
C.I. Christov [16]. The Malmquist-Takenaka-Christov (MTC) system has a number of
attractive computational features. As observed by J. Weideman [38], the MTC func-
tion are eigenfunctions of the Hilbert transform; the system behaves well with respect
to the product of its members [16]; the MTC differentiation matrices are skew sym-
metric and tridiagonal, while computing of the discrete spectral MTC coefficients can
be accomplished efficiently via discrete Fast Fourier Transform (FFT) [16, 39, 38]. In
fact, it is observed recently in [22] that the MTC system is the only complete rational
orthogonal basis in L2(R) that possesses the last two properties.

Unfortunately, not much is known about the convergence rate of the MTC-Fourier
series. Some preliminary results in this direction are obtained in [8, 38], where it is
shown that the convergence rate is geometric, provided functions under consideration
are analytic in an exterior of some neighborhood of {i,−i} in the complex plane.
However, as noted in [22, 38], these results have limited applications, specifically in
the context of differential equations.

In the paper, we derive several error bounds describing convergence of the contin-
uous and discrete MTC-Fourier expansions. It turns out that the convergence rate is
controlled solely by the regularity and asymptotics of the Fourier images of functions in
R\{0}, while allowing square integrable singularities at the origin. As a consequence,
and in contrast to the Hermite or algebraically mapped Chebyshev bases [9, 13, 19] in
L2(R), the MTC-Fourier approximations converge spectrally under very mild restric-
tions on the functions decay at infinity. The latter circumstance makes them partic-
ularly suitable when dealing with semi- and quasi-linear equations containing Fourier
multipliers, whose symbols are not smooth at the origin (e.g. the Hilbert/Riesz trans-
forms, fractional derivatives, e.t.c.). In the concrete case of the Benjamin equation
(1.1), the MTC semi-discretization yields a spectrally convergent collocation scheme
that admits an efficient practical implementation, comparable to the best spectral-
Fourier and hybrid spectral-Fourier/finite-element methods, described in the litera-
ture.2

The paper is organized as follows: In Section 2, we fix the notation and provide a
basic function theoretic setup that is used in our analysis. Section 2 contains a tech-
nical result, for which we have no immediate references. For the readers convenience,
we sketched the proof in Appendix A. A detailed discussion of the MTC basis and its

1For a recent study of the interplay between regularity and asymptotic of solutions see [37].
2Similar technique is employed recently in [10, 11] for the closely related Benjamin-Ono equation.
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approximation properties is the main subject of Section 3. A convergence analysis of
the MTC collocation scheme suitable for numerical integration of (1.1) is presented
in Section 4. Numerical experiments, illustrating computational performance of our
scheme, are reported in Section 5. Section 6 is reserved for concluding remarks.

2. Preliminaries. This section is introductory. Here, we fix a notation and
provide a basic function theoretic setup pertinent for our calculations.

Notation. Throughout the paper, symbols

F [ϕ](ξ) = ϕ̂(ξ) = 1√
2π

∫
R
e−iξxϕ(x)dx,

F−1[ϕ̂](x) = ϕ(x) = 1√
2π

∫
R
eiξxϕ̂(ξ)dξ,

denote the normalized Fourier transforms and its inverse. Letters x and ξ are reserved
for the physical and the frequency variables, respectively. Symbol ∗ denotes the
standard Fourier convolution. Letter c stands for a generic positive constants, whose
particular value is irrelevant.

Weighted Lebesgue spaces. Let Ω ⊆ R be measurable and let w ∈ L1,loc(Ω) be
a.e. positive in Ω. We employ

Lpw(Ω;B) := Lp(Ω, wdx;B), 1 ≤ p ≤ ∞,

to denote weighted Lebesgue spaces with values in a Banach space B, we write shortly
Lpw(Ω), when B is either of R or C. In the sequel, we deal with power weights
wpr(x) = xpr, r > − 1

p . For such weights, we use the shortcut Lpr(R+). When r = 0,
we write simply Lp(Ω).

Variable weight Sobolev spaces. The error analysis of Section 3 in a natural way
gives rise to a scale of variable weight Sobolev spaces. For real valued functions, these
are defined by3

Hs
r (R) = {f ∈ ReS ′ | ‖f‖Hsr (R) <∞}, s > − 1

2 , r ≥ 0,(2.1a)

‖f‖2Hsr (R) = 1
2‖f‖2L2(R) + ‖P±[κ±r,`f ]‖2

H̊s(R)
,(2.1b)

where ReS ′ is the space of real valued tempered distributions, P± are Fourier multi-
plier (projectors) associated with the Heaviside functions ĥ±(ξ) = 1±sgn(ξ)

2 , κ±r,`(·) =
1√
2π

(i` ± ·)r and H̊s(R) is the standard homogeneous Sobolev space of order s, see
e.g. [7]. The meaning of parameters s, r and ` is straightforward. Parameter s > 0
controls regularity of f , while r describes its asymptotic at infinity. The positive scal-
ing parameter ` is used in practical simulations to control the distribution of spatial
nodes and to tune up the convergence rate.

Basic properties of the variable weight Sobolev space Hs
r (R) are contained in the

following

Lemma 2.1. Hs
r (R), with s > − 1

2 and r ≥ 0, are Hilbert spaces. Further,

(2.2a) Hs0
r0 (R) ↪→ Hs1

r1 (R),

3For s ∈ N, the Hs
r (R)-norm is equivalent to ‖f‖L2(R) +

∑s
m=0 ‖κ

±
r−s+m,`f

(m)‖L2(R), i.e. ‖ ·
‖Hsr (R) is a Sobolev-like norm, where weak derivatives of different orders are integrated against
different weights, hence the name.
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provided

(2.2b) − 1

2
< s1 ≤ s0 ≤ s1 + r0 − r1, 0 ≤ r1 ≤ r0.

Finally, for s0, s1 > − 1
2 , r0, r1 ≥ 0 and θ ∈ (0, 1), we have

(2.3) [Hs0
r0 (R), Hs1

r1 (R)]θ = H
(1−θ)s0+θs1
(1−θ)r0+θr1

(R),

where [·, ·]θ denotes the standard complex interpolation functor of A. Calderon [7].

Proof. (a) In terms of Fourier images, (2.1b) reads

(2.4) ‖f‖2Hsr (R) = ‖f̂‖2L2(R±) + ‖J−r∓ [f̂ ]‖2L2
s(R±), J−r∓ [f̂ ] =

√
2π
(
κ̂±r,` ∗ f̂

)
.

Note that supp κ̂±r,` ⊂ R∓. Hence, for real valued distributions (whose Fourier images
are Hermitian) the choice of sign in (2.1b), (2.4) is irrelevant.

Operators J r∓[·](ξ), ξ ∈ R±, defined in (2.4), are known as one-sided Bessel po-
tentials in the half line, [32]. In the context of the Laguerre basis in R+, weighted
spaces of such potentials are discussed in [5]. In particular, it is shown that

L2,r
s (R±) := J r∓[L2

s(R±)], s > − 1
2 , r ≥ 0,

equipped with the norm

‖ · ‖L2,r
s (R±) = ‖J−r∓ [·]‖L2

s(R±),

are Banach spaces.4 Since L2(R) ∩ ReS ′ distributions are regular, we conclude that
the quantity ‖ · ‖Hsr (R) is a norm in Hs

r (R). The completeness of Hs
r (R) follows from

the completeness of L2,r
s (R±) ∩ L2(R±). In view of (2.4), the bilinear form

〈f, g〉Hsr (R) = 〈f̂ , ĝ〉L2(R+) + 〈J−r∓ [f̂ ],J−r∓ [ĝ]〉L2
s(R+)

is the inner product in Hs
r (R). Hence, the first claim of Lemma 2.1 is settled.

(b) Embedding (2.2) is the direct consequence of (2.4) and the embedding in-
equality (21) from [5].

(c) Interpolation identity (2.3) follow from [7, Theorem 5.6.3] and formula

(2.5) [Lp,r0s0 (R+), Lp,r1s1 (R+)]θ = L
p,(1−θ)r0+θr1
(1−θ)s0+θs1

(R+), 1 < p <∞,

if we view Hs
r (R) as a retract of the vector valued Banach space H̃s

r (R) = {(u, v)|u ∈
L2(R), v̂ ∈ L2,r

s (R−) ∩ L2,r
s (R+)}.

We remark that for s0 = s1 = 0, (2.5) is well known. Proving (2.5) in general,
even in the basic settings of the half-line, is a delicate issue5 which is of an independent
interest. For readers convenience, we sketch the proof in Appendix A.

To conclude this section, we note that Hs
0(R) = Hs(R), where Hs(R) is the

standard Sobolev spaces, as defined in [3]. When s > − 1
2 , the latter is known to be

a Banach algebra. As shown below, the property extends to Hs
r (R), with s > 1

2 and
r ≥ 0, this fact is crucial for the analysis of Section 4.

4 In fact, only the case ` = 1 and R+ is treated their, but the extension to R− and arbitrary
` > 0 is straightforward.

5 Specifically, when either of s0, s1 is outside the range
(
− 1

p
, 1
p′
)
.
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Lemma 2.2. Assume s > 1
2 and r ≥ 0. Then Hs

r (R) is a Banach algebra, i.e. for
any f, g ∈ Hs

r (R)

(2.6) ‖fg‖Hsr (R) ≤ c‖f‖Hsr (R)‖g‖Hsr (R),

with c > 0 independent of f and g.

Proof. (a) Using the elementary estimate |ξ0 + ξ1|s ≤ c
(
|ξ0|s + |ξ1|s

)
,6 combined

with the standard convolution Young inequality, for any two Hermitian functions
f̂ , ĝ ∈ L2

s(R±) ∩ L2(R±) = L2(R±, (1 + |ξ|2s)dξ) =: L̄2
s(R±), we have

‖f̂ ∗ ĝ‖L2
s(R±) ≤ c

(
‖f̂‖L1(R±)‖g‖L2

s(R±) + ‖f‖L2
s(R±)‖ĝ‖L1(R±)

)
.

By our assumption s > 1
2 , hence the direct application of Hölder’s inequality yields

‖f̂‖L1(R±) ≤ ‖(1 + |ξ|2s)− 1
2 ‖L2(R+)‖f̂‖L̄2

s(R±) ≤ c‖f̂‖L̄2
s(R±)

and we conclude
‖f̂ ∗ ĝ‖L2

s(R±) ≤ c‖f̂‖L̄2
s(R±)‖ĝ‖L̄2

s(R±).

(b) We let

L̄2,r
s (R±) := J r∓[L̂2

s(R±)] = L2,r
s (R±) ∩ L2,r

0 (R±)

and observe that L̄2,r1
s (R±) ↪→ L̄2,r0

s (R±), whenever 0 ≤ r0 ≤ r1 (see [5, formula
(21)]). By definition, P+ + P− = I, where I is the identity operator. Therefore,

P+[κ−r,`fg] = P+[κ−r
2 ,`
f ]P+[κ−r

2 ,`
g] + P+[κ−r

2 ,`
f ]P−[κ−r

2 ,`
g] + P−[κ−r

2 ,`
f ]P+[κ−r

2 ,`
g].

Finally, κ−r
2 ,`

=
∑ r

2
i=0

(
r/2
`

)
(2i`)

r
2−iκ+

i,`, provided
r
2 is a positive integer. These facts,

combined with part (a) of the proof, yield the bound

‖f̂ ∗ ĝ‖L2,r
α (R±) ≤ c

r
2∑

i,j=0

‖f̂‖L̄2,i
s (R±)‖ĝ‖L̄2,j

s (R±)

≤ c‖f̂‖
L̄

2, r
2

s (R±)
‖ĝ‖

L̄
2, r

2
s (R±)

, r
2 ∈ N.(2.7)

(c) We note that for any s > − 1
2 , w = 1 + |ξ|2s ∈ Aloc

+,2(R+) ∩ Aloc
∞ (R) (see

Appendix A). Hence, by Corollary A.8 in Appendix A,

[L̄2,r0
s (R+), L̄2,r1

s (R+)]θ = L̄2,(1−θ)r0+θr1
s (R+),

θ ∈ (0, 1), r0, r1 ≥ 0, s > − 1
2 . Viewing the convolution product in the Fourier space

as a bilinear map from L̄
2, r2
s (R+) × L̄2, r2

s (R+) to L2,r
s (R+), s > 1

2 , r ≥ 2 and making
use of the classical multilinear complex interpolation theorem of A. Calderon (see e.g.
[7, Theorem 4.4.1]), we infer from (2.7)

‖f̂ ∗ ĝ‖L2,r
s (R+) ≤ c‖f̂‖L̄2, r

2
s (R+)

‖ĝ‖
L̄

2, r
2

s (R+)
, s > 1

2 , r ≥ 2.

6 Which holds for all ξ0, ξ1 ∈ R and s > −1, with an absolute constant c > 0 that depends on s
only.
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By virtue of [5, formula (21)],

‖f̂‖
L̄

2, r
2

s (R±)
≤ ‖f̂‖

L
2, r

2
0 (R±)

+ ‖f̂‖
L

2, r
2

s (R±)
≤ c‖f̂‖L2,r

s (R±), 0 ≤ s ≤ r
2 ,

while the direct application of the convolution Young inequality in the Fourier space,
followed by [5, formula (21)], for all s > − 1

2 and r ≥ 0 gives

‖fg‖L2(R) ≤ c
(
‖f‖L2(R)‖ĝ‖L̄2

s(R±) + ‖f̂‖L̄2
s(R±)‖g‖L2(R)

)
≤ c
(
‖f‖L2(R)‖g‖L2(R) + ‖f̂‖L2,r

s (R±)‖ĝ‖L2,r
s (R±)

)
.

Combining the last three inequalities, we conclude that (2.6) holds, with 1
2 < s ≤ r

2
and r ≥ 2.

(d) To complete the proof, we remark that in the standard non-weighted Sobolev
settings (r = 0), (2.6) holds for any s > 1

2 , see [3]. Hence, the interpolation identity
(2.3) and part (c) of the proof, combined together, yield (2.6) for any r ≥ 0.

3. Continuous and discrete MTC approximations. The Malmquist-Take-
naka-Christov functions {φn}n≥0 are defined as Fourier preimages of the classical
Laguerre functions.7 That is, for k ≥ 0, we have

F [φ2k](ξ) = φ̂2k(ξ) =
√
`√
2
ϕ0,`
k (ξ), k ≥ 0,(3.1a)

F [φ2k+1](ξ) = φ̂2k+1(ξ) = −i
√
`√
2

sgn(ξ)ϕ0,`
k (ξ), k ≥ 0,(3.1b)

where

(3.2a) ϕs,`k (ξ) = e−
`|ξ|
2 L

(s)
k (`|ξ|), k ≥ 0, ` > 0

and L
(s)
k (·) are the standard generalized Laguerre polynomials [2]. Note that for

s > −1, the collection {ϕs,`k }k≥0 provides a complete orthogonal basis in the weighted
space L2

s
2
(R+). In particular,

(3.2b) 〈ϕs,`k , ϕs,`m 〉L2
s
2

(R+) =

∫
R+

ϕs,`k (ξ)ϕs,`m (ξ)ξsdξ = 1
`s+1

Γ(n+s+1)
Γ(n+1) δkm, k,m ≥ 0.

Straightforward calculations show that

φ2k(x) = 2
√

`
π Im (2x+i`)k

(2x−i`)k+1 = 2√
π`

sin (2k+1)θ
2 sin θ

2 ,(3.3a)

φ2k+1(x) = 2
√

`
π Re (2x+i`)k

(2x−i`)k+1 = 2√
π`

cos (2k+1)θ
2 sin θ

2 ,(3.3b)

where x = `
2 cot θ2 , θ ∈ (0, 2π) and ` > 0. As evident from (3.1) and (3.2), the system

{φn}n≥0 is a complete orthonormal basis in L2(R) and

〈φk, φm〉L2(R) = δkm, k,m ≥ 0.

In context of spectral methods, functions φn, n ≥ 0, were discovered by C.I.
Christov [16] in an attempt to obtain a computational basis that behaves well with

7For an alternative definition, and historical remarks see [22, 39, 38] and references therein.
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respect to the product of its members. In particular, the following holds

φ2kφ2m = 1
2
√
π`

(
φ2(k+m) − φ2(k+m)+2 + φ2(m−k) − φ2(m−k)−2

)
,(3.4a)

φ2k+1φ2m+1 = 1
2
√
π`

(
−φ2(k+m) + φ2(k+m)+2 + φ2(m−k) − φ2(m−k)−2

)
,(3.4b)

φ2kφ2m+1 = 1
2
√
π`

(
φ2(k+m)+1 − φ2(k+m)+3 + φ2(m−k)+1 − φ2(m−k)−1

)
.(3.4c)

The system {φn}n≥0 has a number of attractive computational features, e.g. in view
of (3.3), the MTC functions are connected with the trigonometric basis and hence
direct and inverse spectral transforms can be computed efficiently via Fast Fourier
Transform (FFT) algorithm [8, 16, 22, 39, 38]. Differentiation and computing of the
Hilbert transform are also easy [22, 39, 38]

d
dxφ2k = k+1

` φ2k+3 − 2k+1
` φ2k+1 + k

`φ2k−1,(3.5a)
d
dxφ2k+1 = −k+1

` φ2k+2 + 2k+1
` φ2k − k

`φ2k−2,(3.5b)
H[φ2k] = φ2k+1, H[φ2k+1] = −φ2k.(3.5c)

In the context of the Benjamin equation, identity (3.5c) is particularly important.8
As far as we are aware, the only rigorous approximation result related to the

MTC basis is the geometric convergence rate of the continuous MTC-Fourier series
for functions analytic in the exterior of a neighborhood of {i,−i} in C (see [8, 38],
the discussion in [22] and references therein). Unfortunately, in context of differential
equations (and in particular of (1.1)) the result is not very informative. In the sequel,
we derive several alternative error bounds directly in Hs

r (R) settings. The estimates
form a necessary theoretical background for the convergence analysis of an MTC
pseudo-spectral scheme, presented in Section 4.

3.1. Projection errors. Let n be a positive integer, Pn be the finite dimensional
linear space spanned by {φk(x)}nk=0, x ∈ R and P̂n be the finite dimensional space

spanned by
{
e−

`|ξ|
2 xξ

}n
k=0

, ξ ≥ 0. In connection, with Pn and P̂n, we define two
families of orthogonal projectors Pn : L2(R) → Pn and P̂sn : L2

s
2
(R+) → P̂n, s > −1,

n > 0:

Pn[f ] =

n∑
k=0

φkf̂k, f̂k = 〈f, φk〉L2(R),

P̂sn[f ] =

n∑
k=0

`s+1Γ(k+1)
Γ(k+s+1) ϕ

s,`
k f̂s,`k , f̂s,`k = 〈f, ϕs,`k 〉L2

s
2

(R+).

By virtue of (2.4) and (3.1), for real valued functions we have

(3.6) ‖(I − Pn)[f ]‖2Hsr (R) =
∥∥(I − P̂0

dn2 e)[f̂ ]
∥∥2

L2(R+)
+
∥∥(I − P̂0

dn2 e)[f̂ ]
∥∥2

L2,r
s (R+)

.

A comprehensive discussion of the Laguerre-type projectors P̂sn, s > −1, is found in
[5]. In particular, for s0, s1 > − 1

2 and r0, r1 ≥ 0, Theorems 1 and 2 of [5] give the
bounds9 ∥∥(I − P̂s0n )[f̂ ]‖

L
2,r0
s1
2

(R+)
≤ c(`n)r0+

s0−s1−r1
2 ‖f̂‖

L
2,r1
s0+r1

2

(R+)
,(3.7a)

s1 ≤ s0 + r0, r1 ≥ s0 − s1 + 2r0(3.7b)

8 For the closely related Benjamin-Ono equation, this property is used explicitly in [10, 11].
9In fact, only the case of ` = 1 is treated in [5]. Nevertheless, trivial modifications of arguments

yield (3.7), (3.8) for any ` > 0.
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and ∥∥(I − P̂s0n )[f̂ ]‖
L

2,r0
s1
2

(R+)
≤ c(`n)

s1−s0−r1
2 ‖f̂‖

L
2,r1
s0+r1

2

(R+)
,(3.8a)

s1 ≥ s0 + r0, r1 ≥ s1 − s0.(3.8b)

Combining (3.6), (3.7), (3.8) and (2.1), we have

Lemma 3.1. Assume s > −1 and r0, r1 ≥ 0. Then

‖(I − Pn)[f ]‖Hsr0 (R) ≤ c
(
`n
2

)r0−r1−s‖f‖Hr12r1
(R), − 1

2 < s ≤ r0
2 ≤ s+r1

2 ,(3.9a)

‖(I − Pn)[f ]‖Hsr0 (R) ≤ c
(
`n
2

)s−r1‖f‖Hr12r1
(R), 0 ≤ r0

2 ≤ s ≤ r1.(3.9b)

with a constant c > 0 independent of n and/or f .

Lemma 3.1 provides a complete description of the MTC projection errors inHs
r (R)

settings. In particular, it explains a peculiar disparity in the asymptotic of the MTC-
Fourier coefficients of closely related holomorphic functions f(x), g(x) = eiξ0xf(x),
ξ0 ∈ R, see e.g. examples and discussion in [22, 39, 38].

By virtue of Lemma 3.1, |f̂k| → 0 spectrally (faster than any inverse power of
k), provided f̂(ξ) is smooth in R± and decreases faster than any inverse power of
|ξ| at infinity. Since ĝ(ξ) = f̂(ξ − ξ0), the latter condition is violated if f̂(ξ) has an
integrable singularity at the origin. This is particularly the case when f(x) is rational,
with poles in the upper and lower complex half planes.

3.2. Interpolation errors. Operators Pn are hard to use in practice as the inte-
grals of the form 〈f, φn〉L2(R) are impossible to compute in most realistic applications.
The practical approach consists in replacing the inner products with quadratures. In
the no boundaries setting of the real line R, it is natural to use Gaussian quadra-
tures. The quadrature approximation leads to a rational interpolation process, whose
properties are briefly discussed below.

For n = 2p− 1, we let

〈f, φk〉 ≈ f̄k = π
4`p

2p−1∑
m=0

(`2 + 4x2
m)φk(xm)f(xm),(3.10a)

xm = `
2 cot

(
2m+1

4p π
)
, 0 ≤ m ≤ 2p− 1.(3.10b)

The discrete inner product (3.10) is exact, provided f ∈ Pn. In practice, we use the
discrete spectral coefficients f̄k and approximate f by

(3.11) In[f ] =

n∑
k=0

f̄kφk.

Directly from (3.3), (3.10) and (3.11), it follows that

(3.12) In[f ](xm) = f(xm), 0 ≤ m ≤ 2p− 1,

i.e. In[·] is an interpolation operator.
Computational properties of In are very similar to those of rational Gauss-

Chebyshev interpolants, discussed in [34] and the generalized Gauss-Laguerre inter-
polants of [5]. In particular, we have
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Lemma 3.2. Assume f ∈ Pn, s > − 1
2 and r ≥ 0. Then

(3.13) ‖f‖Hsr (R) ≤ c
(
n
2`

)r+|s|−min{0,2s}‖f‖L2(R),

with a constant c > 0 independent of n and/or f .

Proof. Since f ∈ Pn, n = 2p− 1, we have f̂ ∈ P̂p, ξ ∈ R+. In [5, Lemma 6], it is
shown that for such functions

‖f̂‖L2,r
s (R+) ≤ c(`p)r−min{0,2s}‖f̂‖L2

s(R+),

‖f̂‖L2
s(R+) ≤ c(`p)|s|‖f̂‖L2(R+).

In view of (2.4), these inequalities imply (3.13).

Lemma 3.3. Assume s > 1
2 . Then

(3.14) ‖In‖Hs(R)→L2(R) ≤ c
(
`n
2

)
,

with c > 0 independent of n.

Proof. Since the discrete inner product (3.10) is exact for f ∈ Pn, we have

‖In[f ]‖2L2(R) = π
4`p

2p−1∑
m=0

(`2 + 4x2
m)f2(xm).

In view of the classical Sobolev embedding [3], ‖f‖L∞(R) ≤ cs‖f‖Hs(R), s > 1
2 . Con-

sequently,

‖In[f ]‖2L2(R) ≤ csπ
4`p

[2p−1∑
m=0

(`2 + 4x2
m)
]
‖f‖2Hs(R)

= c
[2p−1∑
m=0

`2

sin2
(

(2m+1)π
4p

)]‖f‖2Hs(R) = cS2
n‖f‖2Hs(R).

In [34, Lemma 4] it is shown S2
n = 2(2`p)2. Hence, (3.14) is settled.

The interpolation error bounds are obtained combining Lemmas 3.1-3.3.

Corollary 3.4. Let s > − 1
2 , r0 ≥ 0, ε > 0 and r1 ≥ r0 + |s|. Then,

(3.15) ‖(I − In)[f ]‖Hsr0 (R) ≤ c
(
`n
2

) 3
2 +ε+r0+|s|−max{0,2s}−r1‖f‖Hr12r1

(R),

with a constant c > 0 independent of n and/or f .

Proof. In view of Lemmas 3.2 and 3.3, we have

‖(I − In)[f ]‖Hsr0 (R) ≤ ‖(I − Pn)[f ]‖Hsr0 (R) + ‖In(I − Pn)[f ]‖Hsr0 (R)

≤ ‖(I − Pn)[f ]‖Hsr0 (R) + c
(
`n
2

)r0+|s|−min{0,2s}‖In(I − Pn)[f ]‖L2(R)

≤ ‖(I − Pn)[f ]‖Hsr0 (R) + c
(
`n
2

)1+r0+|s|−min{0,2s}‖(I − Pn)[f ]‖
H

1
2

+ε(R)
.

Hence, (3.15) is the direct consequence of Lemma 3.1.
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4. An MTC collocation scheme. To obtain a spatial semi-discretization, for
a given n = 2p − 1, p ∈ N, we approximate the automorphism J by the finite
dimensional skew symmetric map Jn = −Pn∂xPn : Pn → Pn and replace (1.1) with

ūt = Jn∇ūGn(ū), ū(0) = In[u0],(4.1a)

Gn(ū) = 1
2

∫
R

(
α|ū|2 − βūH[Jnū] + γ|Jnū|2 + 2δ

3 ūIn[ū2]
)
dx,(4.1b)

where ū ∈ Pn. Note that if n = 2p−1, the operator Jn is non-degenerate. This follows
from identities (3.5a)-(3.5b) and the fact that the eigenvalues of the differentiation
matrix −Jn are given explicitly by ±i ξn` , 1 ≤ k ≤ p, where ξk are roots of the
classical Laguerre polynomial Lp(x) (see the proof of Lemma 4.1 below and [39]).
As a consequence, the finite dimensional semi-discrete system (4.1) of ODEs is again
Hamiltonian.

By construction, the semi-discrete vector field ∇Gn(ū) is smooth and hence the
initial value problem (4.1a) is locally well-posed. Unfortunately, the only conserved
quantity10 Gn(ū) is indefinite. As a consequence, we have insufficient amount of
a priori information to establish uniform global bounds on the growth rate of the
numerical solution ū. To alleviate the problem, we proceed indirectly. Instead of
estimating ū, we compare it to the reference solution ũ = Pn[u] ∈ Pn, where u (the
exact classical solution to (1.1)) is assumed to be globally defined and regular.11

4.1. Auxiliary estimates. In our analysis, we make use of three technical es-
timates. The first one is a discrete analogue of the classical Gagliardo-Nirenberg
inequality, the second is used to estimate discrete power nonlinearities and the last
one is an extension of the classical Gronwall’s Lemma.

Lemma 4.1. Let u ∈ Pn, n = 2p− 1. Then

‖ux‖L2(R) ≤ c
(
`n
2

) 1
2 ‖Jnu‖L2(R),(4.2a)

‖u‖L∞(R) ≤ c
(
`n
2

) 1
4 ‖u‖

1
2

L2(R)‖Jnu‖
1
2

L2(R),(4.2b)

where c > 0 is an absolute constant.

Proof. Identities (3.5) imply

‖ux‖2L2(R) = ‖Jnu‖2L2(R) + p2

`2

[
|û2(p−1)|2 + |û2p−1|2

]
,

where ûk = 〈u, φk〉L2(R), 0 ≤ k ≤ n. Our main task is to bound the sum |û2(p−1)|2 +
|û2p−1|2.

Let ûe = (û0, . . . , û2(p−1))
T and ûo = (û1, . . . , û2p−1)T be Rp vectors that contain

the even and the odd MTC-Fourier coefficients of u ∈ Pn. Then, by virtue of (3.5), the
even and the odd MTC-Fourier coefficients of −Jnu are given by 1

`Dûo and − 1
`Dûe,

respectively, where D = (dij) ∈ Rp×p is the symmetric three-diagonal matrix, whose
entries are given by dii = −2i−1, di,i+1 = di+1,i = i, 0 ≤ i ≤ p. Using the three-term

10This is in contrast with the exact classical solutions, where, in addition to the Hamiltonian, the
L2(R) norm is preserved.

11 The approach is a manifestation of an elementary observation that in the Cauchy problem
y′ = ys, y(0) = y0, s > 1, the blow up time is inverse proportional to the size of the input data. The
idea is widely used in numerical analysis, see e.g. [26] for an application in the context of spectral
methods.
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recurrence formula for the classical Laguerre polynomials Ln(x) (see [2, 39]), we find
that

D = QΛQT , Λ = diag(ξ0, . . . , ξp−1), Qij =

√
ξjLi(ξj)

p|Lp−1(ξj)| ,

where ξi, 0 ≤ i ≤ p − 1, are the (strictly positive) roots of Lp(x) and that matrix
Q ∈ Rp is orthogonal.

Let ep be the standard unit vector in Rp and | · |, · denote the usual Euclidean
norm and the inner product in Rp. With this notation, we obtain

|û2(p−1)|2 + |û2p−1|2 = |ep · ûe|2 + |ep · ûo|2

≤ `2|Λ−1QT ep|2‖Jnu‖2L2(R).

Note that
cξi ≤ (i+1)2

p ≤ Cξi, 0 ≤ i ≤ p− 1,

for some absolute constants c, C > 0 (see e.g. [29, formula (2.3.50), p. 141]). Hence,

|Λ−1QT ep|2 = 1
p2

p−1∑
i=0

1
ξi
≤ c

p

and (4.2a) follows. Bound (4.2b) follows from (4.2a) and the standard Gagliardo-
Nirenberg inequality.

Lemma 4.2. Assume v ∈ Pn, m > 0, 2 ≤ k ≤ 5 and 1 ≤ r ≤ 2. Then∣∣〈In[ũm], In[vk]〉L2(R)

∣∣ ≤ c( `n2ε ) k−2
6−k ‖v‖

2(k+2)
6−k

L2(R) + ε(k − 2)‖Jnv‖2L2(R),(4.3a) ∣∣〈In[ũm], In[vrJnv]〉L2(R)

∣∣ ≤ cε− 2
3−r
(
`n
2ε

) r−1
3−r ‖v‖

2(r+1)
3−r

L2(R) + ε‖Jnv‖2L2(R),(4.3b)

where ε > 0 is arbitrary and c > 0 depends on k and ‖ũ‖L∞(R) only.

Proof. Let wi = π
4`p (`2 + 4x2

i ), 0 ≤ i ≤ 2p − 1, where xi is defined in (3.10b).
Since quadrature (3.10a) is exact in Pn and in view of Lemma 4.1, we have

∣∣〈In[ũm], In[vk]〉L2(R)

∣∣ ≤ n∑
i=0

wi|ũ(xi)|m|v(xi)|k

≤ ‖ũ‖mL∞(R)‖v‖k−2
L∞(R)‖v‖2L2(R)

≤ c‖ũ‖mL∞(R)‖vx‖
k−2

2

L∞(R)‖v‖
k+2

2

L2(R)

≤ c
(
`n
2

) k−2
4 ‖ũ‖mL∞(R)‖Jnv‖

k−2
2

L2(R)‖v‖
k+2

2

L2(R).

Hence, Young’s inequality, with exponents 4
k−2 and 4

6−k , yields (4.3a). The proof of
(4.3b) is identical.

Lemma 4.3. Let u ∈ C[0, T ] be non-negative. Assume that

(4.4a) u(t) ≤ f(t) + a

∫ t

0

u(s)ds+ b

∫ t

0

(t− s)u(s)ds, t ∈ [0, T ],

where a, b > 0 and f(t) is integrable and non-negative. Then

(4.4b) u(t) ≤ f(0) + e
a+
√
a2+4b
2 t

∫ t

0

[
1 + b

2 (t− s)2
]
f(s)ds, t ∈ [0, T ].
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Proof. Let U(t) = eλt
∫ t

0
(t− s)u(s)ds, where λ = −a+

√
a2+4b
2 is the negative root

of the quadratic equation λ2 + aλ− b = 0. Then (4.4a) is equivalent to

U ′′(t) ≤ (a+ 2λ)U ′(t) + f(t), U(0) = U ′(0) = 0, t ∈ [0, T ].

Since a+ 2λ < 0, integrating twice, we obtain

e−λtU(t) =

∫ t

0

(t− s)u(s)ds ≤ e−λt
∫ t

0

(t− s)f(s)ds.

Upon substitution into (4.4a), we have

u(t) ≤ f(t) + e−λtb
∫ t

0

(t− s)f(s)ds+ a

∫ t

0

u(s)ds,

which, combined with the standard Gronwall’s inequality, gives (4.4b).

4.2. Stability. Now, we turn to the study of the numerical error e = ũ − ū.
Applying operator Pn to both sides of (1.1), subtracting (4.1) and passing to the
quadrature (as we did in Lemma 4.2), we infer

et = Jn∇e
[
Gn(−e) + En(e, t) +Dn(e, t)

]
, e(0) = e0.(4.5a)

En(e, t) = 2δ
〈
ũ(t), In[e2]

〉
L2(R)

,(4.5b)

Dn(e, t) =
〈
e, α(I − Pn)

[
u](t) + βH

[
(∂x + Jn)u

]
(t),

− γ(∂xx − J 2
n )[u](t) + δ

(
u2(t)− In

[
ũ2
]
(t)
)〉
L2(R)

,(4.5c)

where ∇e denotes the gradient with respect to variable e. Equation (4.5a) is not
Hamiltonian. Nevertheless, differentiating and using the skew-symmetry of the dis-
crete automorphism Jn, we obtain

d
dt

[
Gn(−e) + En(e, t) +Dn(e, t)

]
= ∂t[En(e, t) +Dn(e, t)],

which, after integration in time, gives

|Gn(−e)| ≤ |Gn(−e0)|+ |En(e0, 0)|+ |Dn(e0, 0)|
+ |En(e, t)|+ |Dn(e, t)|

+

∫ t

0

∣∣∂t[En(e(s), s) +Dn(e(s), s)]
∣∣ds.(4.6)

We use (4.6) to control the L2(R) norm of Jne.
Lemma 4.4. Let γ > 0, 0 < ε < γ

4 and

(4.7a) ‖e‖L2(R) ≤
(
`n
2ε

)− 1
4 ,

in some interval [0, T ]. Then for each t ∈ [0, T ], we have

‖Jne‖2L2(R) ≤ c
(
|Gn(−e0)|+ |En(e0, 0)|+ |Dn(e0, 0)|

+ ‖e‖2L2
n(R) +

∫ t

0

‖e‖2L2
n(R)ds

+ ‖∇eDn(e, t)‖2L2(R) +

∫ t

0

‖∇e∂tDn(e, t)‖2L2(R)ds
)
,(4.7b)

where c > 0 depends on α, β, γ, δ, ‖ũ‖L∞(R) and ‖ũt‖L∞(R) only.
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Proof. We bound each term in (4.6) separately. First, we use the Cauchy-Schwartz
inequality, unitarity of H and Lemma 4.2 to obtain

Gn(−e) ≥
(
γ
2 − ε

)
‖Jne‖2L2(R) − c1‖e‖2L2(R) − c1

(
`n
2ε

) 1
3 ‖e‖ 10

3 ,

with c1 > 0 that depends on the parameters α, β, γ and δ only. Using Lemma 4.2,
we have also

|En(e, t)| ≤ c2‖e‖2L2(R),

|∂tEn(e, t)| ≤ c3‖e‖2L2(R),

where c2 > 0 depends on δ and ‖ũ‖L∞(R) and c3 > 0 depends on δ and ‖ũt‖L∞(R)

only. The quantity Dn(e, t) is linear in e and by the Minkowski inequality,

2|Dn(e, t)| ≤ ‖e‖2L2(R) + ‖∇eDn(e, t)‖2L2(R),

2|∂tDn(e, t)| ≤ ‖e‖2L2(R) + ‖∇e∂tDn(e, t)‖2L2(R).

Hence (4.7b) is the direct consequence of the above bounds, (4.6) and assumption
(4.7a).

We remark that the assumption γ > 0 appearing in Lemma 4.4 is not restrictive,
for if γ < 0 one can use −Gn(·) instead of Gn(·).

Theorem 4.5 (Stability). Assume that for some fixed C > 0, T > 0 and ε > 0,

max{‖ũ‖L∞([0,T ]×R), ‖ũt‖L∞([0,T ]×R)} < C,(4.8a)

‖e0‖L2(R) + |Gn(−e0)| 12 + |En(e0, 0)| 12 + |Dn(e0, 0)| 12
+ ‖∇eDn(e, t)‖L2([0,T ]×R) + ‖∂t∇eDn(e, t)‖L2([0,T ]×R)

= O
((

`n
2

)− 1+ε
4

)
,(4.8b)

uniformly for large values of n = 2p − 1 > 0. Then there exists c > 0, that depends
on C, T and parameters α, β, γ and δ of (1.1) only, such that

‖e‖C([0,T ],L2(R)) ≤ c
(
‖e0‖L2(R) + |Gn(−e0)| 12 + |En(e0, 0)| 12 + |Dn(e0, 0)| 12

+ ‖∇eDn(e, t)‖L2([0,T ]×R) + ‖∇e∂tDn(e, t)‖L2([0,T ]×R)

)
,(4.8c)

for all sufficiently large values of n > 0.

Proof. (a) We multiply both sides of (4.4a) by e, integrate with respect to x over
R and take into account the skew-symmetry of the automorphism Jn. This gives

1
2
d
dt‖e‖2L2(R) = −〈Jn[e], In[e2]〉L2(R)

− 〈Jn[e],∇eEn(e, t)〉L2(R) − 〈Jn[e],∇eDn(e, t)〉L2(R).

Lemma 4.2 and the Cauchy-Schwartz inequality give the bounds

|〈Jn[e], In[e2]〉L2(R)| ≤ ε‖Jne‖2L2(R) + c1
(
`n
2ε

)
ε−2‖e‖6L2(R),

|〈Jn[e],∇eEn(e, t)〉L2(R)| ≤ ‖Jne‖2L2(R) + c2‖e‖2L2(R),

|〈Jn[e],∇eDn(e, t)〉L2(R)| ≤ ‖Jne‖2L2(R) + c3‖∇eDn(e, t)‖2L2(R),
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where c1, c3 > 0 are absolute constants and c2 > 0 depends on ‖ũ‖L∞([0,T ]×R) only.
(b) In view of (4.8b) and local continuity of ‖e‖2L2(R), we see that (4.7a) holds

locally in some nonempty closed interval [0, τ0], 0 < τ0 ≤ T . Therefore, combining
our estimates from part (a) of the proof and using (4.7a) with ε = O(1), 0 < ε < γ

2 ,
we conclude that the following holds

1
2
d
dt‖e‖2L2(R) ≤

(
c1 + c2

)
‖e‖2L2(R)

+ (2 + ε)‖Jne‖L2(R) + c3‖∇eDn(e, t)‖2L2(R),

uniformly in [0, τ0]. Integrating the last formula with respect to time and combining
the result with Lemma 4.4, we obtain

‖e‖2L2(R) ≤ ‖e0‖2L2(R) + c4t
(
|Gn(−e0)|+ |En(e0, 0)|+ |Dn(e0, 0)|

)
+ c4

∫ t

0

(1 + t− s)‖e‖2L2(R)ds+ c4

∫ t

0

‖∇eDn(e, t)‖2L2(R)ds

+ c4

∫ t

0

(t− s)‖∇e∂tDn(e, t)‖2L2(R)ds,(4.9)

where t ∈ [0, τ0] and c > 0 depends on C > 0 and parameters α, β, γ and δ of the
model (1.1) only.

(c) Inequality (4.9) falls in the scope of Lemma 4.3, hence, definitely (4.8c) holds
in the small interval [0, τ0]. Furthermore, from the same Lemma 4.3, it follows that the
constant c > 0 in (4.8c) behaves like c′(1 + τ

3
2

0 )ec
′′τ0 , where c′, c′′ > 0 are independent

of n > 0 and τ0. The observation implies that ‖e(τ0)‖2L2(R) = O
((

`n
2

)− 1+ε
4

)
, i.e for

n > 0 sufficiently large, (4.7a) is satisfied at the endpoint τ0. In view of the last fact
and by continuity of ‖e‖2L2(R), we conclude that (4.9) can be extended to a larger
interval [0, τ1], 0 < τ0 < τ1 ≤ T , without increasing the size of the constant c4 > 0.

The assertion of Theorem 4.5 follows from the standard continuation argument.
Repeating the continuation step described above inductively, we construct an ascend-
ing sequence 0 < τ0 < τ1 < · · · ≤ T , such that (4.9) (with c4 > 0 being fixed) holds
in each [0, τi], i ≥ 0. Assuming τ∗ = sup τi < T , we arrive at the contradiction; for if
τ∗ < T , the continuation step extends (4.9) beyond the interval [0, τ∗].

4.3. Consistency and convergence. In what follows, we use the results of
Sections 2 and 3 to demonstrate that assumptions (4.8a), (4.8b) are satisfied, provided
the exact solution u is sufficiently regular. We begin with (4.8a).

Lemma 4.6. Assume u, ut ∈ L∞([0, T ], Hs
2s(R)), s > 1. Then

‖ũ‖L∞([0,T ]×R) ≤ c
[
1 +

(
`n
2

)1−s]‖u‖L∞([0,T ],Hs2s(R)),(4.10a)

‖ũt‖L∞([0,T ]×R) ≤ c
[
1 +

(
`n
2

)1−s]‖ut‖L∞([0,T ],Hs2s(R)),(4.10b)

where c > 0 is an absolute constant.

Proof. By the standard Gagliardo-Nirenberg inequality,

‖ũ‖2L∞(R) ≤ c‖ũ‖L2(R)‖ũx‖L2(R).

Since the Christov functions form a complete orthogonal basis in L2(R), we have
‖ũ‖L2(R) = ‖Pn[u]‖L2(R) ≤ ‖u‖L2(R). To bound the norm of ũx, we write

‖ũx‖L2(R) ≤ ‖ux‖L2(R) + ‖(I − Pn)[u]‖H1(R),
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and apply Lemma 3.1. This gives (4.10a). Bound (4.10b) follows along the same
lines.

Next, we show that each term in (4.8b) is small.

Lemma 4.7. Assume u, ut ∈ L∞([0, T ], Hs
2s(R)) and s ≥ 2 and ε > 0. Then

‖e0‖L2(R) ≤ c
(
`n
2

) 3
2 +ε−s‖u0‖Hs2s(R),(4.11a)

|Gn(−e0)| 12 ≤ c
(
`n
2

) 5
2 +ε−s(‖u0‖Hs2s(R) + ‖u0‖

5
3

Hs2s(R)

)
,(4.11b)

|En(e0, 0)| 12 ≤ c
(
`n
2

) 3
2 +ε−s‖u0‖

3
2

Hs2s(R),(4.11c)

|Dn(e0, 0)| 12 ≤ c
(
`n
2

) 7+2ε
4 −s(‖u0‖Hs2s(R) + ‖u0‖

3
2

Hs2s(R)

)
,(4.11d)

‖∇eDn(e, t)‖L2([0,T ]×R) ≤ c
(
`n
2

)2−s(
‖u‖L2([0,T ],Hs2s(R)) + ‖u‖2L4([0,T ],Hs2s(R))

)
,(4.11e)

‖∂t∇eDn(e, t)‖L2([0,T ]×R) ≤ c
(
`n
2

)2−s(
‖ut‖L2([0,T ],Hs2s(R)) + ‖ut‖2L4([0,T ],Hs2s(R))

)
.(4.11f)

In each inequality the generic constant c > 0 is independent of u, u0, T > 0 and
n > 0.

Proof. (a) Since e0 = In
[
(I−Pn)[u0]

]
, as in the proof of Corollary 3.4, we obtain

(4.11a).
(b) We employ the Cauchy-Schwartz inequality and Lemma 4.2 (with ε = 1) to

obtain

2|Gn(−e0)| ≤ c‖e0‖2L2(R) + c‖Jne0‖2L2(R) + c
(
`n
2

) 1
3 ‖e0‖

10
3

≤ c‖(I − In)[u0]‖2H1(R) + c‖(I − Pn)[u0]‖2H1(R) + c
(
`n
2

) 1
3 ‖e0‖

10
3 ,

with c > 0, depending on parameters α, β, γ and δ only. Hence, (4.11a) and Corol-
lary 3.4 imply (4.11b).

(c) From the definition of En(e, t) and Lemma 4.2, we have

|En(e0, 0)| ≤ 2|δ|‖ũ0‖L∞(R)‖e0‖2L2(R)

and (4.11c) is a consequence of Lemma 4.6 and (4.11a).
(d) The functional Dn(e0, 0) is linear in e0. Consequently,

|Dn(e0, 0)| ≤ ‖e0‖L2(R)‖∇eDn(e0, 0)‖L2(R)

and (4.11d) follows directly from (4.11a) and the proof of (4.11e) below.
(e) From (4.5c) we have

∇eDn(e, t) = α(I − Pn)[u] + βH
[
(∂x + Jn)[u]

]
− γ(∂2

x − J 2
n )[u] + δ

(
u2 − In

[
Pn[u]2

])
= αE1 + βE2 + γE3 + δE4.

We bound each term separately. First of all, by Lemma 3.1,

‖E1‖L2([0,T ]×R) ≤ c
(
`n
2

)−s‖u‖L2([0,T ],Hs2s(R)).
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Further, using the definition of Jn, we obtain

‖E2‖2L2(R) = ‖∂x(I − Pn)[u]‖2L2(R) + n+1
2`

(
|ûn−1|2 + |ûn|2

)
≤ ‖(I − Pn)[u]‖2H1(R) + c

(
`n
2

)
‖(I − Pn−2)[u]‖2L2(R),

so that by Lemma 3.1,

‖E2‖L2([0,T ]×R) ≤ c
(
`n
2

)1−s‖u‖L2([0,T ],Hs2s(R)).

Similar calculations give also

‖E3‖L2(R) ≤ ‖(I − Pn)[u]‖H2(R) +
(
`n
2

)
‖(I − Pn−2)[u]‖L2(R)

and
‖E3‖L2([0,T ]×R) ≤ c

(
`n
2

)2−s‖u‖L2([0,T ],Hs2s(R)).

Finally,
E4 = (I − In)[u2] + In[u2 − Pn[u]2] = E41 + E42.

First, we employ Lemma 2.2 and Corollary 3.4 to obtain

‖E41‖L2([0,T ]×R) ≤ c
(
`n
2

) 3
2 +ε−s‖u‖2L4([0,T ],Hs2s(R)).

Second, from Lemmas 2.2 and 3.2, we infer

‖E42‖L2(R) ≤ c( `n2
)
‖(I − Pn)[u](I + Pn)[u]‖

H
1
2

+ε(R)

≤ c( `n2
)(

2‖u‖
H

1
2

+ε([R])
+ ‖(I − Pn)[u]‖

H
1
2

+ε(R)

)
‖(I − Pn)[u]‖

H
1
2

+ε(R)
.

The last bound and Lemma 3.1 yield

‖E42‖L2([0,T ]×R) ≤ c
(
`n
2

) 3
2 +ε−s‖u‖2L4([0,T ],Hs2s(R)).

Combining all our estimates together, we arrive at (4.11e). To obtain (4.11f), replace
u with ut.

Combining Theorem 4.5 and Lemmas 4.6, 4.7, we obtain

Corollary 4.8 (Convergence). Assume u, ut ∈ L∞([0, T ], Hs
2s(R)), s > 11

4 and
ε > 0. Then the numerical solution ū satisfies

‖u− ū‖L∞([0,T ],L2(R)) ≤ c
(
`n
2

) 5
2 +ε−s(

‖u0‖Hs2s(R) + ‖u0‖
5
3

Hs2s(R) + ‖u‖H1([0,T ],Hs2s(R))

)
,(4.12)

uniformly for large values of n > 0, with c > 0 that depends on the terminal time
T > 0, parameters α, β, γ and δ of the model (4.1) and on the regularity of the exact
solution u only.

Proof. Note that

‖u− ū‖L2(R) ≤ ‖e‖L2(R) + ‖(I − Pn)[u]‖L2(R).

Hence (4.12) follows from Lemma 3.1 and the fact that under the assumption s > 11
4 ,

the numerical error e = ũ− ū fells in the scope of Theorem 4.5.

To conclude this section, we remark that if u, ut ∈ L∞([0, T ], Hs
2s(R)), for any

s > 11
4 , then, according to Corollary 4.8, the convergence rate is spectral, i.e. the semi-

discretization error ‖u − ū‖L∞([0,T ],L2(R)) decreases faster than any inverse power of
n > 0.
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5. Implementation and simulations. The semi-discretization (4.1) leads to
a finite dimensional system of ODEs whose solution is not known explicitly and itself
requires an appropriate numerical treatment. Below, we discuss briefly a suitable
time-stepping algorithm and then switch to simulations.

5.1. Implementation. The semi-discretization (4.1) can be written in the form

(5.1) Y ′ = (αJ + βHJ2 − γJ3)Y + JF (Y ) = DY + JF (Y ), Y (0) = Y0,

where, the neutral symbol Y ∈ Rn+1, n = 2p− 1, represents either the vector

Y = (ū0, . . . , ū2p−1)T ,

of the discrete MTC-Fourier coefficients or the vector of physical values

Y = (ū(x0), . . . , ū(xn))T ,

computed at the nodal points xm, 0 ≤ m ≤ n. The square skew-symmetric ma-
trices J,H ∈ R(n+1)×(n+1) provide suitable realizations of the discrete operators Jn
and PnHPn, respectively. The concrete form of J and H depends on the particular
representation of Y . For instance, in the MTC-Fourier (frequency) space J and H
have simple two-by-two block structure with nonzero three-diagonal, respectively di-
agonal, blocks in the reverse block diagonal (see identities (3.5)), while both matrices
are dense in the physical space. The nonlinearity F (Y ), representing In[ū2], is given
explicitly by

F (Y ) = δ(ū2(x0), . . . , ū2(xn))2,

in the physical space.
Time-stepping. The spectrum of operator J , computed explicitly in the proof of

Lemma 4.1 (see also [39]), indicates that (5.1) is stiff and hence, fully explicit time-
stepping schemes cannot be unconditionally stable. Furthermore, since the nonlin-
earity F (Y ) is multiplied by J , the semi-implicit splitting-type schemes that separate
stiff and nonstiff components of the vector field (see e.g. discussion in [34], in con-
nection with the nonlinear Schrödinger equation) are also not plausible here. From
the prospective of numerical stability, we are forced to use fully implicit A-stable
algorithms.

In our simulations, we make use of the implicit 4-stage 8-order Gauss-type Runge-
Kutta method (IRK8 in the sequel)

c A
bT

, b, c ∈ R4, A ∈ R4×4,

of J. Kuntzmann and J. Butcher, (for the concrete values of the coefficients A, b and
c see [21, Table 7.5, p. 209]). A single IRK8 time step of length τ , applied to (5.1),
reads

Z1 =
(
I − τ [A⊗D]

)−1
(
1⊗ Y0 + τ [A⊗ J ]G(Z1)

)
,(5.2a)

Z1 = (Y T1,1, . . . , Y
T
1,4)T , G(Z1) = (F (Y1,1)T , . . . , F (Y1,4)T )T ,(5.2b)

Y1 = Y0 + τ

4∑
i=1

biF (Y1,i),(5.2c)
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where 1 = (1, 1, 1, 1)T and ⊗ is the standard Kronecker product. We observe that the
spectrum of A contains two pairs of complex conjugate eigenvalues with a nontriv-
ial real part and therefore, from Lemma 4.1 we deduce that the spectrum of matrix(
I − τ [A ⊗D]

)−1
[A ⊗ J ] is uniformly bounded with respect to the space discretiza-

tion parameter n > 0. Further, the theory of Section 4 indicates that for smooth
exact solutions of the Benjamin equation (1.1), the semi-discrete nonlinearity F (Y )
is bounded uniformly in n > 0 along the trajectories of (5.1). Hence, the fully dis-
crete scheme (5.2) is unconditionally stable. Moreover, it follows that for a fixed Y0,
moderately small values of time step τ and independently of n > 0, the nonlinear
map, defined by the right-hand side of (5.2a), is a contraction. As a consequence, the
nonlinear equation (5.2a) can be solved efficiently via basic fixed point iterations. The
observation is important from practical point of view as Newton-type iterations are
prohibitively expensive for large values of n > 0. We note also that the exact flow ϕt,
generated by (5.1), is symplectic. The IRK8 scheme is known to be symmetric and
symplectic [21], hence, the discrete flow of (5.2) preserves this property automatically.

Computational complexity. A single fixed point iteration, applied to (5.2a), in-
volves: solving linear systems with matrix I − τ [A ⊗ D]; the matrix-vector multi-
plication with matrices D and J and finally; computing the nonlinearity F (Y ). In
view of the special structure of J and H, in the Fourier-Christov space each matrix-
vector operation requires O(n) flops, while computing of F (Y ) involves the use of the
discrete direct and inverse MTC-Fourier transforms (see formulas (3.10a) and (3.11),
(3.12), respectively). Because of (3.3) and (3.10b), both operations can be accom-
plished in O(n log2 n) flops via the direct and inverse discrete Fast Fourier Transforms
[8, 16, 22, 39, 38] and the cost of a single iteration is O(n log2 n). As noted earlier,
for any given tolerance ε the total number of such iterations is finite and depends on
the time step τ only. Hence, the overall complexity of a single time step of (5.2) is
O(n log2 n).

5.2. Simulations. Below, we provide several simulations illustrating the accu-
racy of (4.1) in several computational scenarios.

5.2.1. Slowly decreasing solutions. We begin with the generic situation whe-
re, due to the nature of the Fourier symbol in the linear part of (1.1), solutions decay
at most algebraically.

Example 1. First, we simulate (1.1) in time interval [0, 2], with α = β = γ = δ =
1. Since for these values of the model parameters, analytic formulas for solutions are
not available, we augment (1.1a) with a source term f(x, t). The latter is chosen so
that the exact solution reads

u(x, t) =

3∑
k=1

rk
a2
k+(x−xk,0−ckt)2 ,

r1 = 2, r2 = 1, r3 = 3, a1 = 1, a2 = 1, a3 = 2,

c1 = 1, c2 = −2, c3 = 0, x1,0 = −1, x2,0 = 1, x3,0 = 0.

Note that u(x, t) is smooth (in fact u ∈ Hs(R), s ∈ R), but has a polynomial decay rate
at infinity (u = O(|x|−2) at |x| → ∞). In view of this fact, accurate approximation of
such functions with the aid of standard trigonometric basis requires huge number of
spatial grid points. Nevertheless, straightforward calculations show that the quantity
FP+[u] is smooth and decreases exponentially in the positive half line R+. Hence,
u falls in the scope of the theory presented in Sections 3 and 4 and we expect rapid
error decay already for moderate values of n > 0.
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Figure 1. The left diagrams (top to bottom): the numerical solution of the Benjamin equation
(1.1) ū and the pointwise error |u− ū|, with n = 27 − 1. The right diagram: ‖u− ū‖L∞([0,T ];L2(R))
(orange, pentagon), ‖u− ū‖L∞([0,T ]×R) (teal, diamond).

The numerical results, for 24 − 1 ≤ n ≤ 29 − 1, ` = 23 and τ = 2 · 10−2, are
plotted in the right diagram of Fig. 1. Both ‖ · ‖L∞([0,T ],L2(R)) and ‖ · ‖L∞([0,T ]×R)

errors decrease spectrally (note that both curves are concave) as n increases. For
n > 27, the numerical errors settle near 10−11. This is a consequence of the inexact
time-stepping procedure employed in our calculations. Simulations, not reported here,
indicate that for n > 27 the error can be further reduced by choosing smaller time
integration steps.

To illustrate the quality of the approximation, we plot the numerical solution ū
and the associated pointwise error |u − ū|, obtained with n = 27 − 1, in the two left
diagrams of Fig. 1. It is clearly visible that the pointwise error does not exceed the
magnitude of 5 · 10−8 uniformly in the computational domain.

Example 2. In our second simulation, we keep the numerical parameters of Ex-
ample 1 unchanged, but make use of another source term which gives the following
exact solution

u(x, t) =

3∑
k=1

rk(x−xk,0−ckt)
a2
k+(x−xk,0−ckt)2 .

In this settings u(x, t) = O(|x|−1), as |x| → ∞. Nevertheless, the truncated Fourier
image FP+[u] has exactly the same qualitative features as in Example 1 and the
resulting convergence rate is spectral (see the left diagram in Fig 2). In the particular
case of n = 27 − 1, the numerical solution and the pointwise error are shown in the
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Figure 2. The left diagrams (top to bottom): the numerical solution of the Benjamin equation
(1.1) ū and the pointwise error |u− ū|, with n = 27 − 1. The right diagram: ‖u− ū‖L∞([0,T ];L2(R))
(orange, pentagon), ‖u− ū‖L∞([0,T ]×R) (teal, diamond).

top- and bottom-left diagrams of Fig. 2, respectively. The observed behavior is very
much alike to the one, reported in Example 1.

5.2.2. The Korteweg-de Vries scenario. The Benjamin equation (1.1) con-
tains two special case γ = 0 and β = 0, which are of independent interest. The first
one corresponds to the Benjamin-Ono equation, and is not considered here. In the
second case, we have the classical Korteweg-de Vries (KdV) equation. The latter is
known to be completely integrable and possesses a large number of special solutions.
For instance, when

α = β = 0, γ = −1, δ = −3,

the inverse scattering transform yields the so called N -solitons (see e.g. [1])

u(x, t) = −2∂xx ln det(I +A(x, t)),(5.3a)

A(x, t) =
(
bie

8λ3
i t e
−λix−λjx

λi+λj
, 1 ≤ i, j ≤ N

)
,(5.3b)

λi = 1
2

√
vi bi = 2λie

2φiλi , 1 ≤ i ≤ N,(5.3c)

which describe evolution of N traveling waves, whose velocities and the phases are
controlled by vi and φi, respectively. Directly from (5.3), it follows that N -solitons
are smooth and decay exponentially to zero as |x| increases. Hence, such solutions
fall in the scope of the theory developed in Sections 3 and 4.
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Figure 3. The left diagrams (top to bottom): the numerical solution of the Benjamin equation
(1.1) ū and the pointwise error |u− ū|, with n = 27 − 1. The right diagram: ‖u− ū‖L∞([0,T ];L2(R))
(orange, pentagon), ‖u− ū‖L∞([0,T ]×R) (teal, diamond).

Example 3. To illustrate the above statement, in (5.3) we let

v1 = 3
2 , v2 = 1

2 , φ1 = −3, φ2 = 0,

choose u0 according to (5.3), take ` = 23, τ = 10−2 and integrate (4.1) numerically in
time interval [0, 5]. The results of simulations (see in Fig. 3) are qualitatively similar
to those obtained in Examples 1 and 2. In particular, the plots of ‖ · ‖L∞([0,T ],L2(R))

and ‖·‖L∞([0,T ]×R) errors indicate that the convergence rate is spectral. Note however
that in the bottom-left diagram of Fig. 3 the pointwise error is smaller than in the
two previous Examples. This is connected with the exponential decay of the 2-soliton
at infinity (its accurate spatial resolution requires fewer grid points than in Examples
1 and 2).

By construction, the scheme (4.1) is conservative and the semi-discrete Hamilto-
nian Gn(ū) remains constant along the exact trajectories of (4.1). In order to test the
conservation properties of the fully discrete scheme, in the right diagram of Fig. 3,
we added the plot of the quantity maxt∈[0,T ] |Gn(ū0)− Gn(ū)|, measuring the largest
deviation in the Hamiltonian. We observe that the deviation remains several orders
of magnitude smaller than either of the ‖ · ‖L∞([0,T ],L2(R)) and ‖ · ‖L∞([0,T ]×R) errors,
until the latter settle near 10−11.

Example 4. We repeat calculations of Example 3, but this time with

v1 = 1, v2 = 1, v3 = 1
2 , φ1 = −4, φ2 = −2, φ3 = 0.
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Figure 4. The left diagrams (top to bottom): the numerical solution of the Benjamin equation
(1.1) ū and the pointwise error |u− ū|, with n = 27 − 1. The right diagram: ‖u− ū‖L∞([0,T ];L2(R))
(orange, pentagon), ‖u− ū‖L∞([0,T ]×R) (teal, diamond).

This scenario describes an elastic collision of three traveling waves, see the top-left
diagram in Fig. 4. The exact 3-soliton has exactly the same qualitative features as
the 2-soliton of Example 3, with the exception that now the exponential decay rate is
slightly slower. This manifests in larger numerical errors, see the bottom-left diagram
in Fig. 4.

5.2.3. Traveling waves. In our last two simulations, we model an interaction
of traveling waves. In the context of the Benjamin equation (1.1), the traveling wave
solutions are given by u(x, t) = vσ(x− ct), where vσ satisfies

vσ − 2σ
√

γ
α−cH[∂xvσ]− γ

α−c∂xxvσ + δ
α−cv

2
σ = 0, x ∈ R,(5.4a)

σ = β

2
√
γ(α−c)

, γ, δ, ν > 0, c < α.(5.4b)

For a rigorous treatment of (5.4), see [6, 4, 30, 23, 12, 17, 18] and references therein.
The exact solutions to (5.4), apart from the trivial case of α = 0, are not available.

In our simulations, the even traveling waves are constructed numerically. We employ
a simple continuation scheme, which works as follows: for a given α, β, γ, δ and c,
that satisfy (5.4b) and 0 ≤ σ < 1; (i) we let

v̄0 = In[v0], v0(x) = − 3(α−c)
2δ sech

(√
α−c
4γ x

)2
;
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Figure 5. Inelastic collision of two traveling waves, Example 5.

(ii) introduce a continuation grid 0 < σ1 < . . . < σN = σ and (iii) apply simplified
Newton’s iterations to the sequence of the discrete nonlinear problems

(5.5) v̄σj + 2σj

√
γ
α−cH[Jnv̄σj ]− γ

α−cJ 2
n v̄σj + δ

α−cIn[v̄2
σj ] = 0, 1 ≤ j ≤ N,

where for each j, v̄σj is restricted to be even. The iterations terminate when the L2(R)-

norm of the defect in (5.5) drops below the accuracy threshold of εn = 10−12
√

2(1−σ)
n .

A comprehensive analysis of (5.5) falls outside the scope of the present paper, we
mention only that in all our simulations the simplified Newton’s process converges
rapidly to the discrete solutions v̄σj but, as observed by many authors, the number
of iterations increases when σ approaches its upper bound of 1.

Example 5. We let n = 212 − 1, ` = 23, α = γ = δ = 1, c1 = 1
2 , c2 = − 1

2 ,
σ1 = 0.95, β = σ1

√
4γ(α− c1) and σ2 = β√

4γ(α−c2)
. As an initial condition, we take

the sum of two translated traveling waves

ū0(x) = v̄σ1
(x+ 20) + v̄σ2

(x− 20)

and integrate (4.1) numerically in time interval [0, 80]. With this settings, the so-
lution describes a collision of two traveling waves moving towards each other. The
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ū
0

−100 −80 −60 −40 −20 0 20 40 60 80 100
−1

−0.5

0

x

ū
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Figure 6. Inelastic collision of two traveling waves, Example 6.

collision occurs near t = 40, past that time the waves continue to move in the oppo-
site directions. The initial profile of the numerical solution and its profiles near the
collision time and at the terminal time are shown in the top three diagrams of Fig. 5.
As observed in [23, 17], an interaction of the Benjamin traveling waves is inelastic —
after collisions, numerical solutions develop a persistent small amplitude oscillating
tail. In agreement with these observations, the latter is clearly visible in the bottom
diagram of Fig. 5, where the magnified view of the terminal profile is presented.

Example 6. In our last example, we use n = 212 − 1, ` = 23, α = γ = δ = 1,
c1 = 3

4 , c2 = 1
10 , σ1 = 0.95, β = σ1

√
4γ(α− c1), σ2 = β√

4γ(α−c2)
,

ū0(x) = v̄σ1(x+ 30) + v̄σ2(x+ 4)

and [0, 80] for the time integration interval. The scenario describes propagation of
two traveling waves moving in the same direction and colliding near t = 40. The
numerical results are shown in Fig. 6, where as before, the top three diagrams contain
the solution profiles at the initial, near collision and the terminal times, while the
bottom diagram contains a magnified view of the solution at terminal time t = 80.
Once again, the small dispersive tails (of the amplitudes ≈ 10−4 before the slow wave
and ≈ 10−3 after the fast wave) are clearly visible.
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6. Conclusion. In the paper, we study in detail approximation properties of
the Malmquist-Takenaka-Christov (MTC) system. Theoretical analysis of Sections 3
indicates that the MTC approximations converge rapidly, provided Fourier images of
functions, being approximated, are regular away from the origin and decay rapidly at
infinity. The latter situation is generic for solutions of semi- and quasi-linear equations
containing Fourier multipliers, whose symbols are irregular at the origin. Typical ex-
amples are models involving Hilbert/Riesz transforms (e.g. the Benjamin and the
Benjamin-Ono equations), fractional derivatives (e.g. fractional dispersion or diffu-
sion), e.t.c. We believe that for such problems the spectral/collocation MTC schemes
have clear theoretical advantage over conventional trigonometric-Fourier, Hermite or
algebraically mapped Chebyshev spectral approximations.

It is worth mentioning, that unlike earlier approximation results [8, 38], we derive
MTC error bounds directly in the functional settings of Hs

r (R). As far as we are
aware, these results are new and can be used directly in a theoretical analysis of
spectral/collocation MTC schemes. As a concrete application, in Sections 4 and 5 we
provide a comprehensive treatment of the nonlinear Benjamin equation. In particular,
we demonstrate that the MTC collocation scheme converges rapidly and admits an
efficient implementation, comparable to the best spectral Fourier and hybrid spectral
Fourier/finite-element methods published in the literature up to the date.

Though in the paper we mainly deal with the analysis of the MTC system and
its applications, Appendix A contains some extensions of recent results in the theory
of weighted function spaces, which are of independent interest.

Appendix A. Proof of (2.5).
In this section, (2.5) is derived as as a consequence of a more general result,

concerning complex interpolation of weighted Bessel potential spaces in R+. In our
proof, we combine the notion of one-sided A±,p classes of [33] with the localization
ideas of [31].

A.1. Aloc
p,±(Ω) weights. Let Ω be an open subset of R and w ∈ L1,loc(Ω) be a.e.

positive function (weight) in Ω. With w and parameter 1 < p <∞, we associate new

weight w̄p = w−
p′
p , fix some t > 0 and define

[w]+p,t = sup
[a,b]⊂Ω,0<|b−a|<t, x∈(a,b)

w
1
p ([a, x])w̄

1
p′
p ([x, b])

|b− a| ,(A.1a)

[w]−p,t = sup
[a,b]⊂Ω,0<|b−a|<t, x∈(a,b)

w̄
1
p′
p ([a, x])w

1
p ([x, b])

|b− a| .(A.1b)

The Aloc
p,±(Ω), 1 < p <∞, class consists of all a.e. positive locally integrable functions

w in Ω, such that for some t < 0, the quantity [w]±p,t is finite.12 The following result
can be viewed as an analogue of [31, Lemma 1.2].

Lemma A.1. The classes Aloc
p,±(Ω) are well defined, i.e. independent of a partic-

ular choice of the cut-off parameter t > 0.

Proof. (a) Assume for a fixed t0 > 0, [w]+p,t0 = [w̄p]
−
p′,t0

is finite. Then for any
[a, b] ⊂ Ω, with 0 < |b − a| < t0 and any x ∈ (a, b), formula (A.1a), combined with

12 Aloc
p,±(Ω) class is the local version of A±,p weights of E. Sawyer, introduced in connection with

one-sided Hardy-Littlewood maximal functions in [28, 33]. The idea of localizing the Ap condition
of B. Muckenhoupt is due to V.S. Rychkov, see [31].
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Hölder’s inequality, implies

µp((x, b))w([a, x]) ≤ ([w]+p,t0)pµp([a, b])w([x, b]).

This allow us to conclude that

(A.2a)
(
|x−b|
|b−a|

)p
≤
(
([w]+p,t0)p + 1

)w([x,b])
w([a,b]) .

In complete analogy, formula (A.1b) implies

(A.2b)
(
|x−a|
|b−a|

)p′
≤
(
([w̄p]

−
p′,t0

)p
′
+ 1
) w̄p([a,x])
w̄p([a,b]) .

(b) Consider now an interval [a′, b′] ⊂ Ω, 0 < |b′ − a′| < 2t0 and chose a′ < a <
x1 < b < b′ so that |a − a′| = |x1 − a| = |b − x1| = |b′ − b|. By virtue of (A.2) and
(A.1a), we have the estimate

w
1
p ([a′, x1])w̄

1
p′
p ([x1, b

′]) ≤ c′µ([a′, b′]),

with c′ = 4[w]+p,t0
(
([w]+p,t0)p + 1

) 1
p
(
([w]+p,t0)p

′
+ 1
) 1
p′ . When x ∈ (a′, b′) is arbitrary,

the last inequality yields either

w
1
p ([a′, x])w̄

1
p′
p ([x, b′]) ≤ w 1

p ([a′, x])w̄
1
p′
p ([x, x1]) + w

1
p ([a′, x1])w̄

1
p′
p ([x1, b

′]),

for a′ < x < x1, or

w
1
p ([a′, x])w̄

1
p′
p ([x, b′]) ≤ w 1

p ([x1, x])w̄
1
p′
p ([x1, b

′]) + w
1
p ([a′, x1])w̄

1
p′
p ([x1, b

′]),

for x1 ≤ x < b′. In both cases, we obtain

w
1
p ([a′, x])w̄

1
p′
p ([x, b′]) ≤ c′′µ([a′, b′]),

where c′′ = [w]+p,t0

(
1 + 4

(
([w]+p,t0)p + 1

) 1
p
(
([w]+p,t0)p

′
+ 1
) 1
p′

)
. Hence, [w]+p,2t0 ≤ c′′ <

∞.

Properties of Aloc
p,±(Ω) and Ap,± weights are quite similar. In particular, the one-

sided local Hardy-Littlewood maximal functions

M+
t [f ](x) = sup

[x,b]⊂Ω,0<|b−x|<t
1
|b−x|

∫ b

x

|f |dx,(A.3a)

M−t [f ](x) = sup
[a,x]⊂Ω,0<|x−a|<t

1
|x−a|

∫ x

a

|f |dx,(A.3b)

are bounded from Lpw(Ω), 1 < p <∞, into itself, i.e

(A.3c) ‖M±t [f ]‖Lpw(Ω) ≤ ct,w‖f‖Lpw(Ω), 1 < p <∞, t > 0,

if and only if w ∈ Aloc
p,±(Ω). The claim follows e.g. from the verbatim repetition of

the arguments presented in [28, 33].13

13 In the context of local Muckenhoupt classes Aloc
p , such results are obtained via local extensions

of a weight w ∈ Aloc
p to w̄ ∈ Ap, see Lemma 1.1 in [31]. This approach is not plausible in the one-sided

settings, due to the asymmetric nature of (A.1), the adjoint weight w̄p might have non-integrable
singularities at the boundary points of Ω.
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A.2. Bessel potential spaces with Aloc
p,±(R±) weights. The Bessel potential

spaces in R± (see [5]) are defined as the images of the weighted Lebesgue spaces
Lpw(R±) under the action of one-sided Bessel fractional integrals J s∓[·], i.e. Lp,sw (R±) =
J s∓[Lpw(R±)], s ≥ 0, (see Section 2 also).

For a fixed t > 0 and ϕ± ∈ C∞0 (R), with suppϕ± ⊂ R± ∩ (−t, t), we define

Tϕ∓,t[f ](x) = ϕ∓ ∗ f, x ∈ R+.

Lemma A.2. Let ϕ ∈ C∞0 (− t
2 ,

t
2 ) be radially non-increasing. Assume ϕ = const,

x ∈ ( t4 ,− t
4 ),
∫
R ϕdx = 1 and define ϕ±(·) = ϕ(± t

2 + ·). Then

(A.4) ‖Tϕ∓,t‖Lpw(R+)→Lpw(R+) <∞,

provided 1 < p <∞ and w ∈ Aloc
p,±(R+).

Proof. (a) Under our assumptions, we have14

(A.5) |Tϕ∓,t[f ]| ≤ 2M±t [f ], x ∈ R+.

Indeed, any function ϕ that satisfy the above conditions is uniformly approximated
from the above by step functions ϕn =

∑n
i=0 aiχ(−ti,ti), where 0 < ai, t < 4ti < 2t,

and
∫
R ϕndx = 1. For such functions, we have

|Tϕ∓,t[f ]|(x) ≤
n∑
i=0

ai

∫ ∓ t2 +ti

∓ t2−ti
|f |(x− τ)dτ

≤
n∑
i=0

ai2ti
t+ 2ti

4ti
M±t [f ](x) ≤ 2M±t [f ](x).

(b) In view of (A.5) and the inclusion w ∈ Aloc
p,±(R+), the assertion is the direct

consequence of (A.3c).

Operators J s∓ are invertible for all s ≥ 0 in the class of smooth functions restricted
to R±, respectively (see [32]). We denote the associated inverses by J̄−s∓ . For 0 <
ε < 1 and ϕ∓ from Lemma A.2, let ϕ∓ε (·) = ε−1ϕ∓(ε−1·), J−sε,∓ = J̄−s∓ Tϕ∓ε ,t and

J−s∓ [f ] = lim
ε→0
J−sε,∓[f ].

Lemma A.3. Operators J−s∓ : Lp,sw (R±) → Lpw(R±), 1 < p < ∞, s ≥ 0, are
one-to-one, provided w ∈ Aloc

p,±(R±).

Proof. Straightforward calculations show that Tϕ∓ε ,t and J
s
∓ commute.15 There-

fore, for each f ∈ Lp,sw (R±) (by definition f = J s∓[φ] for some φ ∈ Lpw(R±)), we
have

‖J−sε,∓[f ]− φ‖Lpw(R±) = ‖Tϕ∓ε ,t[φ]− φ‖Lpw(R±) → 0, as ε→ 0.

The conclusion follows from the uniqueness of strong limits.

Lemma A.3 indicates that J s∓, s ≥ 0, are isomorphisms of the scales Lpw(R±) and
Lp,sw (R±), 1 < p < ∞, w ∈ Aloc

p,±(R±). Hence, Lp,sw (R±), 1 < p < ∞, equipped with
the norms ‖ · ‖Lp,sw (R±) := ‖J−s∓ [·]‖Lpw(R±), are Banach spaces.

14This is the one-sided analogue of the Proposition in [35, Section II.2.1].
15Note suppF [κ̂∓s,`], suppϕ∓ ⊂ R∓.
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A.3. Interpolation. Consider a regular vector valued one-sided singular inte-
grals of the form

(A.6a) Tκ± [f ](x) = (κ± ∗ f)(x), x ∈ R+,

where B0, B1 are two given Banach spaces, f : R+ → B0 and κ±(x) ∈ L(B0, B1). As
in the classical theory (see [35, 20]), we assume

(A.6b) Tκ± ∈ L(L2(R;B0), L2(R;B1)).

In view of our applications, we consider only compactly supported kernels, i.e. kernels
with suppκ± ⊂ (−t, t)∩R±, which for all x, y, ȳ ∈ suppκ±, with |x| > 0 and |y− ȳ| ≤
1
2 |x− y|, satisfy

‖κ±(x)‖B0→B1
≤ c
|x| ,(A.6c)

‖κ±(x− y)− κ±(x− ȳ)‖B0→B1
≤ c |y−ȳ||x−y|2 .(A.6d)

In connection with Tκ± , we define

(A.7) Mκ± [·] = sup
ε>0
‖Tχ|x|>εκ± [·]‖B1

.

The following result is a straightforward adaptation of the classical "good-λ inequal-
ity" to the one-sided settings, see e.g. [35, Proposition 6, Section V.4.4] or [20,
Theorem 9.4.3].

Lemma A.4. Assume f ∈ L1(R+) satisfy supp f ⊂ ∪jIj, where |Ij | < t and
dist(Ij , Ik) ≥ 2t, j 6= k. For κ± as above and w ∈ Aloc

∞ (see [31]), there exists
0 < αw < 1 such that for any 0 < β < 1 one can find γ > 0 so that the following
holds

(A.8) w({Mκ± [f ] > ξ} ∩ {M∓4t[f ] ≤ γξ}) ≤ αww({Mκ± [f ] > βξ}),

for all ξ > 0.

Proof. (a) We consider the right-sided operatorsMκ− ,M+
t only. The proof in the

left-sided case is identical. Standard arguments (see [35, 20]) indicate that under our
assumptions, the level set Eβξ(f) = {Mκ− [f ] > βξ} is open. The support assumption
guarantee that every open connected component I of Eβξ(f) satisfies |I| < 2t. It is
sufficient to establish (A.8) for a single component I = (a, b), the general result follows
by summation.

(b) The set Î = I/{M+
4t[f ] > γξ}) is closed in the relative topology of I. If

the Lebesgue measure |Î| of Î is zero, (A.8) holds trivially. So assume |Î| > 0, let
x = min Î, x̂ = b+ (b− x), f1 = χ[x,x̂]f and f2 = (1− χ[x,x̂])f and observe that

w(Eξ(f) ∩ I) ≤ w(Eτξ(f1) ∩ I) + w(E(1−τ)ξ(f2) ∩ I), 0 < τ < 1.

We estimate each term separately.
To bound w(Eτξ(f1) ∩ I), we employ the standard weak-type inequality (see e.g.

[35, Corollary 2, Section I.7.3]) to obtain initially

λ(Eτξ(f1) ∩ I) ≤ c
τξ

∫ x̂

x

‖f‖B0
dy ≤ 2c

τξ |I|M+
4t[f ](x) ≤ 2cγ

τ |I|,
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and then, using the inclusion w ∈ Aloc
∞ ,

w(Eτξ(f1) ∩ I) ≤ αww(I),

with 0 < αw < 1, provided 1 < γ < 0 is sufficiently small.
(c) To bound w(Eτξ(f1) ∩ I), we note that in view of (A.6c) and (A.6d), for

y ∈ (x, b), we have ∥∥Tχ|x|>εκ− [f2](y)− Tχ|x|>εκ− [f2](b)
∥∥
B1

= 0,

if x̂ ≥ b+ t, or∥∥Tχ|x|>εκ− [f2](y)− Tχ|x|>εκ− [f2](b)
∥∥
B1

≤
∫ b+t

x̂+ε

‖f(z)‖B0
‖κ−(y − z)− κ−(b− z)‖B0→B1

dz

≤ c|b− y|
∫ b+t

x̂

‖f(z)‖B0

dz
(z−y)2

≤ c
∑
j≥0

|b−y|
|x̂−y+(2j−1)(b−y)|2

∫ x̂+(2j+1−1)(b−y)

x̂+(2j−1)(b−y)

‖f‖B0
χ[x̂,b+t]dz

≤ 4c
∑
j≥0

2−j

|x̂−x+(2j+1−1)(b−y)|

∫ x̂+(2j+1−1)(b−y)

x

‖f‖B0χ[x,b+t]dz

≤ 8cM+
3t[f ](x) ≤ 8cM+

4t[f ](x) ≤ 8cγξ,

when x̂ < b + t. In either case, since b /∈ Eβξ(f), taking supremum over ε > 0, we
obtain

Mκ− [f2](y) ≤ (β + 8cγ)ξ ≤ (1− τ)ξ, y ∈ (x, b),

provided 0 < γ < 1 is small and 0 < τ < 1 is chosen appropriately. Hence,
w(E(1−τ)ξ(f2) ∩ I) = 0 and we conclude that (A.8) holds.

Corollary A.5. For κ± as above and w ∈ Aloc
p,∓(R+) ∩ Aloc

∞ , 1 < p < ∞, the
following holds ∥∥Mκ±

∥∥
Lpw(R+;B0)→Lp(R+)

<∞,(A.9a) ∥∥Tκ±∥∥Lpw(R+;B0)→Lpw(R+;B1)
<∞.(A.9b)

Proof. (a) Consider f ∈ C∞0 (R+;B0) initially. Without loss of generality, we may
assume that f satisfies the support condition of Lemma A.4 (for any function in R
is a sum of at most four functions satisfying this condition). By our assumptions,
gε = Tκ±χ|x|>ε [f ] is compactly supported and smooth, with ‖gε‖L∞(R,B1) bounded
independently of ε > 0. Since w ∈ L1,loc(R+), we conclude that ‖Mκ± [f ]‖Lpw(R+) <
∞. Once this fact is established, we make use of Lemma A.4 and (A.3c) to obtain∥∥Mκ± [f ]

∥∥
Lpw(R+)

≤ c
∥∥M∓4t[f ]

∥∥
Lpw(R+)

≤ c′‖f‖Lpw(R+;B0),

for all f ∈ C∞0 (R+;B0). The standard density argument allows one to pass from
C∞0 (R+;B0) to Lpw(R+;B0). Hence, the bound (A.9a) is settled.

(b) Estimate (A.9b) is the direct consequence of (A.9a), as

‖Tκ± [f ]‖B1
≤Mκ± [f ] + c‖f‖B0

,

a.e. in R+, see e.g. [35, Section I.7.4].
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To proceed further, we employ the following local reproducing formula of V.
Rychkov (see [31] for the details)

(A.10a) δ =
∑
j≥0

ϕ±j ∗ ψ±j ,

where ϕ±0 , ψ
± ∈ C∞0 (R), with suppϕ±0 , suppψ± ⊂ (−t, t) ∩ R± for some t > 0,

have non vanishing zeroth moment; ϕ±(·) = ϕ±0 (·) − 2−1φ±0 (2−1·), ψ±(·) = ψ±0 (·) −
2−1ψ±0 (2−1·) and ϕ±j (·) = 2jϕ±(2j ·), ψ±j (·) = 2jψ±(2j ·), j ≥ 1. Furthermore, both
ϕ±0 and ψ±0 can be chosen so that

(A.10b)
∫
R
xkϕ±dx =

∫
R
xkψ±dx = 0, 0 ≤ k ≤ L,

for any given positive integer L > 0 (in the sequel, we employ symbol {ϕ}m to denote
the number of vanishing moments of a function ϕ).

For ϕ±0 as above, with {ϕ±}m ≥ max{0, s}, s ∈ R, we define

Ssϕ± [f ] =
(∑
j≥0

22js|ϕ±j ∗ f |2
) 1

2

, x ∈ R+.

Theorem A.6. For 1 < p <∞, s ≥ 0 and w ∈ Aloc
p,+(R+) ∩Aloc

∞ , we have

(A.11) ‖f‖Lp,sw (R+) ≈ ‖Ssϕ− [f ]‖Lpw(R+),

where ≈ means the bilateral estimate.

Proof. (a) To begin, we show that

(A.12) ‖f‖Lpw(R+) ≈ ‖S0
ϕ± [f ]‖Lpw(R+),

provided w ∈ Aloc
p,∓(R+) ∩Aloc

∞ .16

Define κ± : R+ → `2 by means of the formulas κ±(·) = {ϕ±j (·)}j≥0. Operator
T ±κ± : Lpw(R+)→ Lpw(R+; `2) fells in the scope of Corollary A.5. Hence,

‖S0
ϕ± [f ]‖Lpw(R+) = ‖Tκ±f‖Lpw(R+;`2) ≤ c‖f‖Lpw(R+),

provided w ∈ Aloc
p,∓(R+) ∩Aloc

∞ .
The converse inequality follows from the standard duality argument and the local

reproducing formula (A.10a). Indeed, for g ∈ Lp′(w̄p) supported in R+, we let g±(·) =
g(±·) and note that (g±)− = g∓. Then

|〈f, g〉| = |f ∗ g−|(0) =
∣∣∣∑
j≥0

(ϕ±j ∗ f) ∗ (ψ±j ∗ g−)
∣∣∣(0) ≤

∫
R+

S0
ϕ± [f ]S0

ψ∓ [g]dτ

≤ ‖S0
ϕ± [f ]‖Lpw(R+)‖S0

ψ∓ [g]‖
Lp
′
w̄p

(R+)
≤ c‖S0

ϕ± [f ]‖Lp(w)‖g‖Lp′w̄p (R+)
.

Hence, (A.12) is settled.

16 The proof of (A.12) is identical to that of Theorem 1.10 in [31], with the exception that, instead
of [35, Theorem 2 and its Corollary, Section V.4.2], we invoke Corollary A.5.
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(b) The general result follows from [31, Theorem 2.18], invertibility of J β− , Lem-
ma A.3 and (A.12). Indeed, letting

L̄p,sw (R+) = {f | supp f ∈ R+, ‖Ssϕ−‖Lpw(R+) <∞},

from [31, Theorem 2.18] we infer that J s−
[
L̄p,0w (R+)] ⊂ L̄p,sw (R+), β ≥ 0 and the

map is onto, as J s− is invertible. Hence, by (A.12) and Lemma A.3, L̄p,sw (R+) =

J β− [L̄p,0w (R+)] = J s−[Lpw(R+)] = Lp,sw (R+) as Banach spaces.

Remark A.7. The key feature of Theorem A.6, as compared to its analogue [31,
Theorem 1.10], is the use of condition w ∈ Aloc

p,+(R+)∩Aloc
∞ , instead of w ∈ Aloc

p . The
former class is significantly larger than the latter one. For instance, wα(x) = |x|α ∈
Aloc
p if and only if −1 < α < p

p′ , while wα(x) ∈ Aloc
p,+(R+) ∩Aloc

∞ , for all α > −1.

In view of Theorem A.6 and Remark A.7, the interpolation identity (2.5) is a
simple consequence of the following

Corollary A.8. Assume 1 < p <∞ and w0, w1 ∈ Aloc
p,+(R+) ∩Aloc

∞ (R+). Then

(A.13) [Lp,s0w0
(R+), Lp,s1w1

(R+)]θ = L
p,(1−θ)s0+θs1

w1−θ
0 wθ1

(R+), s0, s1 ≥ 0, θ ∈ (0, 1),

where [·, ·]θ denotes the standard complex interpolation functor of A. Calderon [7].

Proof. Directly from (A.1) and definition of Aloc
∞ weights in [31], it follows that

w1−θ
0 wθ1A

loc
p,+(R+) ∩ Aloc

∞ (R+), while, in view of Theorem A.6, Lp,sw (R+) is a retracts
of Lpw(R+; `s2). Hence, combining the arguments of [7, Theorem 5.1.2] and [7, Theo-
rem 5.5.3], we have the desired result.
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