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ABSTRACT

This study derived the vertical distribution of streamwise velocity in wide open channels by max-
imizing Tsallis entropy, in accordance with the maximum entropy principle, subject to the total
probability rule and the conservation of mass, momentum, and energy. Entropy maximizing leads to
a highly nonlinear differential equation for velocity which was transformed into a relatively weaker
nonlinear equation and then solved analytically using a non-perturbation approach that yielded a
series solution. The convergence of the series solution was proved using both theoretical and nu-
merical procedures. For the assessment of velocity profile, the Lagrange multipliers and the entropy
index were obtained by solving a system of nonlinear equations by Gauss-Newton method after
approximating the constraint integrals using Gauss-Legendre quadrature rule. The derived velocity
profile was validated for some selected sets of experimental and field data and also compared with
the existing velocity profile based on Tsallis entropy. The incorporation of the above constraints and
the effect of entropy index were found to improve the velocity profile for experimental as well as
field data. The methodology reported in this study can also be employed for addressing other open
channel flow problems, such as sediment concentration and shear stress distribution.

Keywords Maximum entropy principle · Tsallis distribution · Padé approximation · Open channel flow · Analytical
solution.

1 Introduction

Investigation into the velocity distribution in open channel turbulent flow leads to a variety of applications in the
field of sediment transport and hydrodynamics [1, 2]. An open channel is a conduit having free water surface in
contact with the atmosphere, such as rivers, streams, canals, ditches, etc. Transport phenomena in rivers/canals require
velocity/sediment concentration distribution often investigated empirically through laboratory and field experiments
as well as theoretically.

The vertical velocity profile was proposed by Prandtl [3] known as the classical log-law which is valid mostly in the
inner region (y/D < 0.2) and shows a deviation from the experimental data in the outer region (y/D > 0.2) of the
channel [4], where D is the flow depth and y is the vertical distance from the channel bed. The discrepancy of the
log-law in the outer region was addressed by Coles [5] through the wake function and later both log and wake laws
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were modified [6, 7]. Apart from log-law and log wake law, power law [8] is also widely used to describe the velocity
distribution along a vertical. However, these laws are all valid for wide-open channels, and for narrow open channels
where the maximum velocity occurs some distance below the free surface, both log law and power law fail to describe
the velocity distribution. Several researchers [9, 6, 10] modified the log-law to describe the velocity distribution in
narrow open channels.

The aforementioned studies employ deterministic methods that are based on the solution of RANS equation, and any
numerical model encounters difficulty in computation and the accuracy of solution is often questionable. Also, that
in the deterministic methods, the time-averaged velocity is considered and the uncertainty in flow is ignored. To
overcome these limitations, a probabilistic approach using information theory was applied first by Chiu [11] to the
study the distributions of velocity, shear stress, and sediment concentration. Chiu’s approach employed the Shannon
entropy theory together with the principle of maximum entropy [12, 13, 14]. The maximum entropy approach has been
extensively studied in different branches of science and engineering [15]. The concept of Chiu was further employed
to establish the relationship between mean and maximum velocities through an entropy parameter for determining
discharge in streams and rivers [16], to determine the cross-section of a straight threshold channel [17], to estimate the
depth-averaged sediment concentration based on the vertical concentration distribution [18], to derive the transverse
distribution of boundary shear stress in circular open channels [19], to calculate the hillslope sediment production
[20], to link Chiu’s entropy parameter and the geometric and hydraulic characteristics of river cross-sections [21],
to estimate river discharge at the Danshui River, the largest estuarine system in Taiwan [22], to find a relationship
between Chiu’s entropy parameter and the relative submergence in open-channel flows with large-scale roughness
[23], to formulate a model on velocity-dip-position in a flow cross-section [24], and so on [25].

The generalization of Shannon entropy was formulated by Tsallis [26], which is a non-extensive entropy and con-
tains an additional parameter (often called entropy index). Tsallis entropy has several important properties like it
takes on maximum value in the case of equiprobability and is pseudo-additive for independent subsystems, and
these properties make Tsallis entropy important in the field of science and engineering (details is available at
http://tsallis.cat.cbpf.br/biblio.htm). In hydraulics, following the work of Chiu [11], the concept of
Tsallis entropy was explored for studying 1D and 2D velocity distributions in open channels by [27] and [28], re-
spectively. They found that the velocity profile obtained from Tsallis entropy captured the near-bed data better than
that from Shannon entropy. The idea was further extended by Cui and Singh [29, 30] with some modification to the
hypothesized cumulative distribution function (CDF) in the space domain. Besides studies on velocity, Tsallis entropy
was successfully applied to other problems of hydraulics and hydrology also [31, 32, 33, 34, 35, 36]. However, studies
on open channel flow velocity using Tsallis entropy considered, for mathematical convenience, the constraints based
only on the total probability rule and mass conservation, and also concluded a fixed value of the entropy index based
on a data-fitting procedure without any physical justification. It can be concluded from the literature that in general the
Tsallis entropy index is considered to be an adjustable parameter which leads to a proper resulting distribution while
validating with experimental observations [37], except for a few cases such as [38] and [39]. Therefore, the primary
objective of the present study is to derive a streamwise velocity profile in open channels using Tsallis entropy by
incorporating the constraints based on the total probability rule and the conservation of mass, momentum, and energy.
In addition, the study includes the effect of entropy index for modelling velocity in open channels rather than treating
it as a fixed value. Since most of the open channel flow problems do not contain a small parameter in the governing
equation, the differential equation is solved using a non-perturbation approach. Further, the effect of additional con-
straints and the entropy index is investigated through sets of experimental and field data available in the literature and
by comparing the derived velocity profile with the existing velocity profile.

2 Mathematical Formulation

2.1 Probability Distribution of Velocity

Let us consider an open channel with a flow of depth D and width B where the time-averaged normalized streamwise
velocity û is assumed to be a random variable having the PDF f(û). Then, the Tsallis entropy ([26]) of û can be
written in a continuous (differential) form as

Hq0 [f (û)] =
1

q0 − 1

∫

û∈Θ

f (û)
[

1− (f (û))
q0−1

]

dû (2.1)

where û = u/umax, umax being the maximum velocity in a given flow cross-section, Θ = [0, 1] is the domain of
û, q0 is the real parameter known as Tsallis entropy index. In the limit as q0 → 1 in Eq. (2.1), the Shannon entropy
is recovered. Tsallis entropy attains its maximum when the PDF f (û) is uniform for any value of q0. Moreover, the
function Hq0 is concave for q0 > 0 and convex for q0 < 0 ([40]).

2
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The objective is to determine the velocity distribution by applying the principle of maximum entropy to Tsallis entropy
Eq. (2.1), subject to the specified constraints. The constraints can be prescribed in accordance with the conservation of
mass, momentum, and energy which can be computed from observations. The PDF f(û) satisfies the total probability
rule, i.e.,

∫

û∈Θ

f (û) dû = 1 (2.2)

Now the constraints based on conservation of mass, momentum, and energy can be defined, respectively, as

m1 =

∫

û∈Θ

ûf (û) dû = û (2.3)

m2 =

∫

û∈Θ

û2f (û) dû = û2 = βû
2

(2.4)

m3 =

∫

û∈Θ

û3f (û) dû = û3 = αû
3

(2.5)

where û = ū/umax is the dimensionless mean velocity, β is the momentum distribution coefficient, and α is the
energy distribution coefficient. It has been shown that the first-, second-, and third-order moments given by Eqs. (2.3),
(2.4), and (2.5) represent the hydrodynamic transport of mass, momentum, and energy, respectively ([41, 42]). The
higher-order moments can indeed be defined similarly; however, for velocity modeling Eqs. (2.2)-(2.5) represent a
complete set of constraints as they are based on the total probability rule and the basic conservation laws.

Following Jaynes’ principle of maximum entropy ([13, 14]), the velocity distribution can be obtained by maximizing
the Tsallis entropy function Eq. (2.1) subject to the constraints Eqs. (2.2)-(2.5). To that end the Lagrangian function
is constructed as

L (f,λ) =
1

q0 − 1

∫

û∈Θ

f (û)
[

1− (f (û))
q0−1

]

dû+ λ0

(∫

û∈Θ

f (û) dû− 1

)

+

N0
∑

i=1

λi

(∫

û∈Θ

ûif (û) dû−mi

)

(2.6)

where N0 = 3, the number of constraints; and λi, i = 0, 1, . . . , N0 are the Lagrange multipliers. Application of the

Euler-Lagrange equation ∂L
∂f

− d
dû

(

∂L
∂f ′

)

= 0 to Eq. (2.6) produces the PDF of velocity as

f (û) =

(

q0 − 1

q0

[

1

q0 − 1
+

N0
∑

i=0

λiû
i

])

1

q0−1

(2.7)

The cumulative distribution function (CDF) of velocity can be obtained from Eq. (2.7) as

F (û) = Prob
(

Û ≤ û
)

=

û
∫

0

f (û) dû =

û
∫

0

(

q0 − 1

q0

[

1

q0 − 1
+

N0
∑

i=0

λiû
i

])

1

q0−1

dû (2.8)

2.2 Connection with the Space Domain

The aim is to find the spatial distribution of streamwise velocity in open channels. The nature of velocity distribution
in open channels exhibits different characteristics based on channel-type. The ratio of channel width B to flow depth
D, known as aspect ratio, divides open channels into two categories, namely, wide and narrow channels. When
B/D < 5 the channel is narrow, for B/D > 10 it is wide, and for other cases, it depends on the nature of the surface
roughness. In narrow open channels, the maximum velocity occurs below the water surface due to the presence of
strong secondary currents that arise by the effect of the sidewall of the channel ([1]). As the primary objective of the
present work is to check the effects of constraints and the entropy index on the velocity profile, we restrict our analysis
to the case of wide channels where the velocity varies in the vertical direction only, and the maximum velocity appears
at the water surface. Now, the connection between the probability and the space domain is made by assuming that
there exists a relation of the type

u = g (y) , g being an arbitrary function (2.9)

3
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It can be assumed that all the values of y between 0 to D are equally likely so that PDF of y follows a uniform
distribution

f1 (y) =

{

1
D

for 0 ≤ y ≤ D
0 otherwise

(2.10)

Using Eq. (2.9), the distribution of u can be written as

f (u) = f1 (y)

∣

∣

∣

∣

dy

du

∣

∣

∣

∣

=
1

D

dy

du
(2.11)

Using the definition, the PDF of û can be obtained from Eq. (2.11) as follows

f (û) = umaxf (u) =
dŷ

dû
(2.12)

Further, the CDF can be obtained as

F (û) = Prob
(

Û ≤ û
)

=

û
∫

0

f (û) dû =

g−1(û)
∫

g−1(0)

f (g (y))
dû

dy
dy =

y
∫

0

f1 (y) dy =
y

D
(2.13)

Physically Eq. (2.13) represents the fraction of total cross-section area in which the velocity is less than or equal to
û. It may be noted that this concept can also be extended to the case of two-dimensional distribution of velocity by
hypothesizing a generalized coordinate system ([41, 42]).

2.3 Governing Differential Equation for Velocity

Equating Eqs. (2.7) and (2.12), the streamwise velocity profile is governed by the following differential equation:

dû

dŷ
=

(

q0 − 1

q0

[

1

q0 − 1
+

N0
∑

i=0

λiû
i

])

1

1−q0

subject to û (y = 0) = 0 (2.14)

Eq. (2.14) is a highly non-linear ordinary differential equation, and depends on the entropy index and the Lagrange
multipliers. An analytical solution of the equation may be a challenging task due to the strong nonlinear term on the
right side. The determination of entropy index and Lagrange multipliers is essential for assessing the velocity profile.

2.4 Determination of Entropy Index and Lagrange Multipliers

For determining the Lagrange multipliers, one can substitute the PDF given by Eq. (2.7) in the constraint Eqs. (2.2)-
(2.5). Apart from the multipliers, the entropy index is an additional parameter when modelling velocity using Tsallis
entropy. Previous studies included only the mass conservation constraint, and considering test cases for the entropy
index q0, they concluded its best value to be 3/4 and 2 for 1D and 2D velocity distributions, respectively ([27, 28]).
Later, Cui and Singh ([30, 29]) extended their work by introducing some empirical parameters in the hypothesized CDF
and determined the best choice for q0 to be 3 for both 1D and 2D velocity distributions. However, their approaches are
only heuristic, based on data, and do not provide any physical justification for the entropy index. Here we aim to find
the physical justification for the entropy index and hence we incorporate three constraints to formulate the velocity
distribution model, i.e., N0 = 2 and use the energy constraint to close the system. This way the constraint equations
lead to a system of four equations with four unknowns λi’s for i = 0, 1, 2 and q0, and a complete set of constraints is
included for analyzing the velocity profile.

Putting N0 = 2 in Eq. (2.7), f(û) can be substituted in the constraints to determine the parameters. However, the
integrands may not be performed analytically. To that end, first the Gauss-Legendre quadrature rule is applied to
approximate the integrals, and then a system of four equations with four unknowns λi’s and q0 is obtained. The
Gaussian quadrature rule approximates the definite integral of a function as a weighted sum of functional values at
some specified points within the domain of the integration. A general N -point Gaussian-Legendre quadrature rule for
the function Ψ over the domain [−1, 1] can be written as

1
∫

−1

Ψ(x) dx =

N
∑

K=1

wN,KΨ(xN,K) + EN (Ψ) (2.15)

where xN,K and wN,K are the nodes and weights, respectively, for K = 1, 2, . . . , N . The first term on the right side
of Eq. (2.15) represents the numerical approximation of the integral and the second term is the error. Eq. (2.15) is
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exact for polynomial functions of degree less than or equal to 2N − 1. To apply the rule over an arbitrary interval

[η1, η2], one can simply use the change of the variable t = η1+η2

2 + η2−η1

2 x so that the Gauss-Legendre quadrature
becomes

η2
∫

η1

Ψ(t) dt = η2−η1

2

1
∫

−1

Ψ
(

η1+η2

2 + η2−η1

2 x
)

dx ≈
N
∑

k=1

wN,KΨ
(

η1+η2

2 + η2−η1

2 xN,K

)

(2.16)
The Gauss-Legendre quadrature formula is a powerful technique for approximating the definite integrals. There are
many algorithms available to determine the nodes and weights of the formula. Here we use the MATLAB script
available at https://in.mathworks.com/matlabcentral/fileexchange. This script uses the Legendre-Gauss
Vandermonde Matrix, and calculates the nodes and weights by computing the zeros of the Legendre polynomial using
recurrence relation along with the Newton-Raphson method. Now, applying the aforementioned technique to the
constraints Eqs. (2.2)-(2.5) after substituting the PDF given by Eq. (2.7) with N0 = 2, one can arrive at the following
system of nonlinear equations

ϕ1 (λ0, λ1, λ2, q0) ≡ G1 (λ0, λ1, λ2, q0)− 1 = 0 (2.17)

ϕ2 (λ0, λ1, λ2, q0) ≡ G2 (λ0, λ1, λ2, q0)− û = 0 (2.18)

ϕ3 (λ0, λ1, λ2, q0) ≡ G3 (λ0, λ1, λ2, q0)− βû
2
= 0 (2.19)

ϕ4 (λ0, λ1, λ2, q0) ≡ G4 (λ0, λ1, λ2, q0)− αû
3
= 0 (2.20)

where Gi’s for i = 1, 2, 3, 4 are the Gauss-Legendre quadrature-based approximations for the integrals of Eqs. (2.2)-
(2.5), respectively. For solving the nonlinear system, Eqs. (2.17)-(2.20) can be represented in vector form as ϕ (ζ) = 0

where ϕ (ζ) = [ϕ1 (ζ) , ϕ2 (ζ) , ϕ3 (ζ) , ϕ4 (ζ)]
′

and ζ = [λ0, λ1, λ2, q0]. Here each ϕi (ζ) for i = 1, 2, 3, 4 is smooth.
The solution methodology is now described below.

Newton’s method is used for handling the situation in the above framework ([43]). Since ϕ : R
4 → R

4 is continuously
differentiable, for two vectors ζ and ζ + p in the domain, we have

ϕ (ζ + p) = ϕ (ζ) +

1
∫

0

J (ζ + tp) p dt (2.21)

where J (ζ) = ϕ′ (ζ) is the Jacobian matrix. A linear model may be developed by approximating the second term on
the right-hand side of Eq. (2.21) as J (ζ) p, and then can be written in an iterative form as

Mk (p) = ϕ (ζk) + J (ζk) p (2.22)

where ζk is the approximate solution of the system at the kth iteration. Newton’s method in its pure form chooses the

step pk such that Mk (pk) = 0, which eventually results in pk = −J(ζk)
−1

ϕ (ζk). The iterative process is updated
as αk+1 = αk + pk, and then continued until || ϕ (ζk) || is smaller than some desired tolerance limit. However, in
Newton’s method, the computation of J (ζ) may be expensive or sometimes it is difficult to obtain. Also, the method
may behave erratically if the starting point is far from the solution point. Besides, if J (ζk) is singular for some k,
the Newton-step pk may not even be defined. To avoid the computation of J (ζ), one may adopt the logic of the
quasi-Newton method that approximates J (ζ) at each iteration and mimics the behavior of the true Jacobian matrix

([44]). Let Bk be the approximate matrix of J (ζ) at the kth iteration, which can be used to form a linear model similar
to that of Newton’s method as

Mk (p) = ϕ (ζk) +Bkp (2.23)

When Bk is nonsingular, one obtains pk = −B−1
k ϕ (ζk) after setting Eq. (2.23) to zero. Then, at each step, the

approximate matrix is modified using Broyden’s formula as

Bk+1 = Bk +
(yk −Bksk) s

′

k

s
′

ksk
(2.24)

where sk = ζk+1 − ζk, and yk = ϕ (ζk+1)−ϕ (ζk). But it is shown ([45]) that to ensure the convergence of the quasi-
Newton method, an assumption that the initial approximate B0 must be close to the Jacobian matrix at the solution ζ∗,
is taken. However, some implementation of this Broyden’s quasi-Newton method proposes B0 = J(ζ0).

Neither Newton’s method nor Broyden’s method with unit step length can guarantee to converge to the solution unless
the starting point is in the vicinity of the solution. Hence, modification of these methods was required for their practical

5
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use, which paves the way of associating a line search technique to the existing concept of Newton-like methods. The
line search method searches for an improving point in Newton or quasi-Newton iteration. The most widely used
merit function related to the line search methods, which determines the acceptance of the new iteration in the case

of solving a system of nonlinear equation, is the sum of squares, i.e., f (ζ) = 1
2 ||ϕ (ζ)||2 = 1

2

4
∑

i=1

ϕ2 (ζi). Note that

any root ζ∗ of ϕ (ζ) = 0 satisfies f (ζ∗) = 0. Since f (ζ) is a positive function, every root is a minimizer of f (ζ).
However, a local minimizer of f (ζ) is not the root of ϕ (ζ) = 0 if f (ζ) is positive at the local minimizer. Despite this
fact, the merit function is successfully used for solving a system of nonlinear equations and has been implemented in
some software packages. One may directly use the MATLAB function fsolve for this purpose, which minimizes f (ζ)
through the Gauss-Newton method that can be realized as a modified Newton’s method with line search instead of
solving ϕ (ζ) = 0 in a straight forward way ([46]). The implementation of this function for the nonlinear system Eqs.
(2.17)-(2.20) is summarized in the ‘Results and Discussion’ section.

It may be noted that to determine the Lagrange multipliers and the entropy index by solving the system of equations,
expressions for the momentum and energy coefficients are needed. For that purpose, we considered two sets of
formulae available in the literature: one is based on the deterministic approach given by Chow ([1]), and the other is
based on Shannon entropy proposed by Chiu and Hsu ([47])

β = 1 +R0
2 (2.25)

α = 1 + 3R0
2 − 2R0

3 (2.26)

where R0 is given by

R0 =
umax

ū
− 1 (2.27)

Formulae given by Eqs. (2.25) and (2.26) were obtained considering a logarithmic velocity profile ([3]). On the other
hand, Chiu and Hsu ([47]) derived the following equations based on the velocity distribution obtained using Shannon
entropy

β =
(exp (Mc)− 1)

[(

Mc
2 − 2Mc + 2

)

exp (Mc)− 2
]

[(Mc − 1) exp (Mc) + 1]
2 (2.28)

α =
(exp (Mc)− 1)2

[(

Mc
3 − 3Mc

2 + 6Mc − 6
)

exp (Mc) + 6
]

[(Mc − 1) exp (Mc) + 1]
3 (2.29)

where the entropy parameter Mc was given implicitly as

ū

umax

=
exp (Mc)

exp (Mc)− 1
−

1

Mc

(2.30)

2.5 Analytical Solution for Velocity Equation

The governing differential equation for the streamwise velocity profile contains a strong nonlinear term as can be
seen from Eq. (2.14). For deriving the analytical solution of velocity equation, one may think of approximating the
nonlinear term using Taylor series expansion; however, it may not produce accurate results, as the approximation will
depend on the order of magnitude of the Lagrange multipliers as well as the entropy index. To that end, the Padé
approximant technique, which is considered to be the most accurate approximation of a function by a rational function
of a given order, can be used ([48]). This technique often produces a better approximation of a function than its Taylor
series. The [m,n] order Padé approximant of the non-linear term can be given as:

(

q0 − 1

q0

[

1

q0 − 1
+

2
∑

i=0

λiû
i

])
1

1−q0

≈

∑m
i=0 Ciû

i

1 +
∑n

j=1 Dj ûj
(2.31)

where Ci’s and Dj’s are the constants involving the Lagrange multipliers and the entropy index. The constants can be
determined equating the like power terms on both sides. As an example, the [2, 2] order Padé approximant is calculated
and can be written as follows

(

q0 − 1

q0

[

1

q0 − 1
+

2
∑

i=0

λiû
i

])
1

1−q0

≈
C0 + C1û

1 +D1û
(2.32)

where the constants are obtained as

C0 =

(

1− λ0 + q0λ0

q0

)
1

1−q0

(2.33)

6
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C1 =

(

1− λ0 + q0λ1

q0

)
1

1−q0

[

2λ0λ2 − 2λ2 − 2λ1
2 + q0

(

λ1
2 − 2λ0λ2

)

2λ1 (1− λ0 + λ0q0)

]

(2.34)

D1 =
2λ0λ2 − 2λ2 + λ1

2q0 − 2λ0λ2q0
2λ1 (1− λ0 + λ0q0)

(2.35)

Similarly, the higher-order Padé approximants can be obtained. Using the approximation Eq. (2.31) and rearranging,
the governing equation (2.14) now becomes



1 +

n
∑

j=1

Djû
j





dû

dŷ
−

m
∑

i=0

Ciû
i = 0 subject to û (ŷ = 0) = 0 (2.36)

It may be noted that the Padé approximant converts the strongly nonlinear original differential equation to a relatively
weaker nonlinear form. To be specific, Eq. (2.36) now contains integer-power nonlinearity and can be solved analyti-
cally by a non-perturbation method called the homotopy analysis method (HAM). The theoretical foundation of HAM
is based on the concept of homotopy from topology to generate a convergent series solution for nonlinear ODE/PDEs
(single or system). Since its inception ([49]), the method is shown to be a unified one which logically contains most of
the existing analytical methods, such as classical perturbation method, Adomian decomposition method, Lyapunov’s
small artificial parameter method, the Euler transform, etc. as special cases ([50]). Specifically, HAM distinguishes
itself from the other analytical approaches in three particular aspects: (i) its applicability is not directly confined to
the presence of small physical parameters in the governing equation and/or boundary conditions; (ii) it assures the
convergence of a non-linear differential equation in an efficient way through some convergence-control parameters;
and (iii) it has flexibility regarding the choice of base functions and the auxiliary linear operator of the homotopy. The
methodology is described briefly concerning Eq. (2.36) in the following.

Let us write the governing Eq. (2.36) as follows

N [û (ŷ)] = 0 subject to û (0) = 0 (2.37)

where N is a non-linear operator or the operator of the original equation, û (ŷ) is the unknown function, and ŷ is the
independent variable. Now, the so-called zeroth-order deformation equation can be constructed as follows

H (Φ (ŷ; q) ; q, ~, H) = (1− q)L[Φ (ŷ; q)− û0 (ŷ)]− q~H(ŷ)N [Φ (ŷ; q)] = 0 subject to Φ (0; q) = 0
(2.38)

where H (.) is the homotopy function, q ∈ [0, 1] is the embedding-parameter, ~ is a non-zero auxiliary parameter, L
is a linear operator, and H ( ŷ) is a non-zero auxiliary function. The core idea of HAM is that a continuous mapping
is described to relate the solution û (ŷ) and the unknown function Φ (ŷ; q), with the aid of the embedding parameter q.
Mathematically, as q varies from 0 to 1, Φ (ŷ; q) varies from the initial approximation û0 (ŷ) to the final solution û (ŷ),
i.e., at q = 0, Φ (ŷ; q) = û0 (ŷ) and at q = 1, Φ (ŷ; q) = û (ŷ). It may be noted that unlike a perturbation approach
(or similar other analytical methods) HAM is not directly dependent on a small parameter present in the governing
equation and/or boundary conditions; here, the homotopy parameter q plays the role of a small parameter. One can
now define

ûm (ŷ) =
1

m!

∂mΦ (ŷ; q)

∂qm

∣

∣

∣

∣

q=0

(2.39)

where
∂mΦ(ŷ;q)

∂qm

∣

∣

∣

q=0
is called the m-th order deformation derivative. Using Maclaurin series expansion, one can

expand Φ (ŷ; q) in a power series with respect to the embedding parameter q as follows

Φ (ŷ; q) = Φ (ŷ; 0) +
∞
∑

m=1

1

m!

∂mΦ (ŷ; q)

∂qm

∣

∣

∣

∣

q=0

qm (2.40)

Assume that L, H (ŷ), û0 (ŷ), and ~ are so properly chosen that the series Eq. (2.40) converges at q = 1. Then, at
q = 1, the series becomes

û (ŷ) = û0 (ŷ) +

∞
∑

m=1

ûm (ŷ) (2.41)

Eq. (2.41) provides the explicit relationship between the initial approximation û0 (ŷ) and the final solution û (ŷ).
However, to obtain the explicit solution, the higher-order approximations ûm (ŷ) for m ≥ 1 need to be determined.
Differentiating the zeroth-order deformation equation m times with respect to q, and setting q = 0, and then dividing
by m!, the higher-order approximations ûm (ŷ) can be obtained as follows

L [ûm(ŷ)− χmûm−1(ŷ)] = ~H(ŷ)Rm

(−→
ûm−1

)

subject to ûm = 0 (2.42)

7
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where

χm =

{

0 when m = 1,
1 otherwise

(2.43)

and

Rm

(−→
ûm−1

)

=
1

(m− 1)!

∂m−1N [Φ (ŷ; q)]

∂qm−1

∣

∣

∣

∣

q=0

(2.44)

It can be seen from Eq. (2.42) that the HAM converts the original non-linear equation into an infinite system of linear
equations. The convergence of the series solution based on HAM depends on the choice of the initial approximation,
linear operator, and the auxiliary function. Liao ([50]) proposed generalized rule of solution expression, rule of
coefficient ergodicity, and rule of solution existence to choose the functions appropriately. Following the theory and
the rules mentioned above, the HAM-based analytical solution for Eq. (2.36) is derived here.

For solving the governing equation (2.36), we choose the base functions

{ŷmexp [nC1ŷ] |m, n = 0, 1, 2, 3, . . .}

to represent the solution û (ŷ), i.e.,

û (ŷ) =

∞
∑

m=0

∞
∑

n=0

bm,nŷ
mexp [nC1ŷ] (2.45)

where bm,n are the coefficients. Eq. (2.45) provides us with the so-called rule of solution expression. Accordingly, the
nonlinear and linear operators are chosen as

N [Φ (ŷ; q)] =



1 +

n
∑

j=1

DjΦ
j (ŷ; q)





∂Φ (ŷ; q)

∂ŷ
−

m
∑

i=0

CiΦ
i (ŷ; q) (2.46)

L [Φ (ŷ; q)] = ω
∂Φ (ŷ; q)

∂ŷ
(2.47)

where ω is an additional convergence-control parameter. Using Eq. (2.46), for [4, 4] order Padé approximation,

Rm

(−→
û m−1

)

can be obtained from Eq. (2.44) as follows

Rm

(−→
û m−1

)

= û′

m−1 +D1

m−1
∑

j=0

ûj û
′

m−1−j +D2

m−1
∑

j=0

ûm−1−j

j
∑

k=0

ûkû
′

j−k

+D3

m−1
∑

j=0

ûm−1−j

j
∑

k=0

ûj−k

k
∑

l=0

ûlû
′

k−l +D4

m−1
∑

j=0

ûm−1−j

j
∑

k=0

ûj−k

n
∑

l=0

ûn−l

l
∑

p=0

ûpû
′

l−p

− C0 (1− χm)− C1ûm−1 − C2

m−1
∑

j=0

ûjûm−1−j − C3

m−1
∑

j=0

ûm−1−j

j
∑

k=0

ûkûj−k

− C4

m−1
∑

j=0

ûm−1−j

j
∑

k=0

ûj−k

k
∑

l=0

ûlûk−l (2.48)

Applying the inverse of the linear operator Eq. (2.47) and using the given boundary condition, the higher-order terms
can be calculated from Eq. (2.42) by the following relation

ûm (ŷ) = χmûm−1 (ŷ) +
~

ω

ŷ
∫

0

H (ŷ)Rm

(−→
ûm−1

)

dŷ (2.49)

where Rm’s are given by Eq. (2.48). It may be noted that the auxiliary function is selected as H(ŷ) =1 to avoid
computational difficulty. This can always be done if one selects an optimal linear operator ([51]). Finally, the M -th
order HAM-based approximate analytical solution can be obtained explicitly as

û (ŷ) ≈ ûSUM (ŷ) =

M
∑

j=0

ûj (ŷ) (2.50)

8
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Table 1: Characteristics of the selected data sets.

Data Set
Mean

velocity
ū (m/s)

Maximum
velocity

umax (m/s)

Entropy
parameter

Mc

Momentum
coefficient

β

Energy
coefficient

α
Eq. (2.25) Eq. (2.28) Eq. (2.26) Eq. (2.29)

Vanoni ([53])
Run 15 1.153 1.360 6.5060 1.0322 1.0308 1.0851 1.0829
Run 20 0.941 1.176 4.8059 1.0624 1.0546 1.1560 1.1452

Einstein and
Chien ([54])

Run C3 1.960 2.288 6.9280 1.0280 1.0271 1.0746 1.0732
Run S5 2.226 2.802 4.6454 1.0670 1.0579 1.1662 1.1538

Davoren ([55])
Run 1 2.285 2.807 5.2260 1.0522 1.0471 1.1327 1.1254

Run 10 2.258 2.790 5.0770 1.0560 1.0500 1.1400 1.1320

It can be noticed from Eq. (2.40) that HAM itself is a kind of generalized Taylor series at q = 1. Hence, if the initial
approximation is chosen accurately enough, then one can obtain the rapid convergence of the series ([52]). To that
end, preserving the rule of solution expression as well, the following initial approximation was selected

û0 (ŷ) =
C0

C1
[exp (C1ŷ)− 1] (2.51)

Eq. (2.51) is indeed the solution of the part of the original equation. For the sake of completeness, the theoretical
convergence analysis for the series solution Eq. (2.50) is shown in Appendix A.

3 Results and Discussion

The velocity model developed above requires the determination of entropy index, momentum and energy coefficients,
and Lagrange multipliers which is done using experimental and field data. Then, the HAM-based approximate an-
alytical solution is validated with the numerical solution. Finally, the derived velocity model results are compared
with experimental and field data and also with the existing equation based on Tsallis entropy. Each of these steps is
discussed in what follows.

3.1 Laboratory and Field Data

For validating the derived velocity profile, relevant sets of experimental and field data from the literature were utilized.
The present study considers the vertical distribution of streamwise velocity, where the velocity increases monotonically
from the channel bed, and the maximum velocity appears at the water surface. To that end, the most cited laboratory
data of Vanoni ([53]) and Einstein and Chien ([54]) were chosen, while the field data were collected from Davoren
([55]). The velocity data of Vanoni ([53]) were collected from the experiments carried out in two series: clear water
and sediment-mixed fluid. The aspect ratio of the experimental channel varied from 5 to 11.9 and maximum velocity
appeared at the free surface. On the other hand, Einstein and Chien ([54]) conducted near-bed (up to 50% of the
flow depth starting from channel bed) experiments in a painted steel flume for both clear water and sediment-laden
flow. The sediment-mixed fluid experiment was having sediment particles with three different sizes. Further details
are available in [54]. Field data of Davoren ([55]) was for a river with a live bed. The flow velocities were measured
downstream from a hydropower plant, which resulted in steady uniform flow over an appreciable period of time. The
relevant flow parameters for some selected data sets are reported in Table 1.

3.2 Validation of the HAM-Based Approximate Series Solution

The HAM-based series solution Eq. (2.50) was validated by comparing it with the numerical solution for a relevant
set of data. It can be observed that the series solution based on HAM depends on two convergence-control parameters,
namely ω and ~, which need to be determined for assessing the solution. In the framework of HAM, the convergence
control parameters play one of the most vital roles. A suitable choice for the parameters leads the series solution
towards the exact solution over the entire domain. Also, unlike the other perturbation and non-perturbation methods,
these convergence-control parameters greatly enhance the radius and rate of convergence of the series solution ([50]).
For the determination of parameters, the squared residual error (∆m) method was used, in which ∆m at m-th order
approximation reads as

∆m =

∫

ŷ∈Ω

(N [û(ŷ)])2dŷ (3.1)

Here Ω is the domain which is [0, 1] for the present problem. In this method, for a particular order of approximation

m, the corresponding ∆m is minimized (i.e., ∂∆m

∂ω
= 0 and ∂∆m

∂~
= 0) to get two equations with two unknowns ~

and ω which determine the optimum values of convergence parameters. However, due to the analytical integration, Eq.

9
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Figure 1: Validation of the approximated series solution: (a) Squared residual error with different order of approxima-
tions of HAM-based series solution and (b) Comparison of 20th order HAM-based analytical solution with numerical
solutions of Eqs. (2.14) and (2.36).

(3.1) may sometime create a computational difficulty. To avoid this difficulty, the discrete squared residual error, Em,
is often calculated as follows

Em =
1

L+ 1

L
∑

j=0

[

N
(

m
∑

k=0

ûk(j∆ŷ)
)]2

(3.2)

where L+1 are the equally distributed discrete points. The homotopy series solution leads to the exact solution when
the squared residual error tends to zero. Therefore, for the convergence of solution, it is sufficient to check the residual
error Eq. (3.1) or (3.2) only.

Now, a test case is performed to check the validity of the HAM-based approximate analytical solution. For that purpose,
[4, 4] order Padé approximation is considered where the values of the parameters are λ0 = −2.2077, λ1 = 4.5346,
λ2 = 0.0852, and q0 = 0.8873, and the Padé approximation coefficients are C0 = 20.7488, C1 = −56.1968,
C2 = 60.0071, C3 = −30.3244, C4 = 6.2342, D1 = 0.9227, D2 = 0.4612, D3 = 0.1431, and D4 = 0.0232.
With these parameters, the square residual errors given by Eq. (3.1) are plotted in Fig. 1a with different orders of
approximations of HAM-based solution. It is seen from the figure that the residual error ∆m decreases systematically
with the increasing order of approximation m, and hence the choice of operators and initial approximation is suitable
to guarantee the convergence pattern of the method.

Next, the HAM-based solution is verified with the numerical solutions of Eqs. (2.14) and (2.36). The original govern-
ing equation Eq. (2.14) was converted to a relatively weaker non-linear equation Eq. (2.36) using Padé approximation.
Therefore, solutions of both equations are compared with the HAM-based series solution in order to get a comparative
idea as well as the validity of the approximation made. The function ode45 of MATLAB was used for the numerical
solution. The convergence-control parameters were calculated using the squared residual error method described in
the aforementioned discussion. The 20th order HAM-based approximation along with numerical solutions are plotted
in Fig. 1b. Apart from the graphical presentation, a quantitative assessment is shown in Table 2 for some discrete
points within the domain. It can be observed from the figure and the table that the HAM-based approximate solution
Eq. (2.50) is close to the numerical solution of Eq. (2.36) obtained via [4, 4] Padé approximation. On the other hand,
the solution of the original governing equation Eq. (2.14) slightly differs from the solution of the approximated equa-
tion at the right end points of the domain. This deviation is attributed to the order of the Padé approximation; indeed,
further accuracy can be achieved if one sought for higher-order approximation. Overall, the [4, 4] Padé approximation
is seen to be an adequate approximation for the nonlinear term. Also, for engineering applications, the time taken
by the computer for some specific order of approximation is given in Table 3. It can be seen from the table that the
methodology can be performed efficiently without time complexity if a simple (proper) set of base function is selected.

3.3 Comparison with Experimental and Field Data

The proposed velocity model was validated by comparing it with selected sets of data, namely, Run 20, S5, and 1 of
Vanoni ([53]), Einstein and Chien ([54]), and Davoren ([55]), respectively. The Lagrange multipliers and the entropy
index needed to assess the model were calculated by solving the system of nonlinear equations Eqs. (2.17)-(2.20) using
the Gauss-Newton method after approximating the constraints integrals using a 25-point Gauss-Legendre quadrature
rule, and are reported in Table 4. The ‘fsolve’ command in MATLAB R2014b implements the Gauss-Newton method
for the given system of nonlinear equations. Here we used the command as its simplest structure, where we put
the system and the starting point. The inbuilt line search scheme in this MATLAB command relaxes the burden of
choosing a starting point close to the solution. Then, the HAM-based analytical solution of Eq. (2.36) was assessed

10
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Table 2: Numerical comparison between HAM-based approximation and numerical solution.

ŷ
Numerical
solution

Eq. (2.36)

HAM-based
approximation

Eq. (2.50)
Numerical

solution
Eq. (2.14)10th order 20th order

0 0.0000 0.0000 0.0000 0.0000
0.1 0.5547 0.5426 0.5534 0.5547
0.2 0.6964 0.6927 0.6956 0.6964
0.3 0.7772 0.7760 0.7763 0.7771

0.4 0.8332 0.8322 0.8324 0.8329
0.5 0.8756 0.8747 0.8748 0.8751
0.6 0.9097 0.9087 0.9088 0.9089
0.7 0.9382 0.9370 0.9373 0.9369

0.8 0.9626 0.9612 0.9617 0.9608
0.9 0.9840 0.9819 0.9832 0.9816
1.0 1.0031 0.9948 1.0017 1.0000

Table 3: Squared residual error and computational time for different order of approximations.

Order of
approximation

m

Squared residual
error ∆m

Time
(sec)

2 2.07× 10+0 0.306

4 4.85× 10−1 0.781

6 1.50× 10−1 1.667

8 5.30× 10−2 3.467

10 2.04× 10−2 7.842

12 8.43× 10−3 17.970

14 3.68× 10−3 41.822

16 1.69× 10−3 93.270

18 8.06× 10−4 203.834

20 3.98× 10−4 441.858

for comparison, and both the formulae for momentum (β) and energy (α) coefficients given by Eqs. (2.25)-(2.26) and
(2.28)-(2.29) were considered. The convergence-control parameters were determined using the squared residual error
given by Eq. (3.1). The Padé approximant coefficients were determined using the function ‘PadeApproximant’ of
MATHEMATICA and are reported in Table 5.

Fig. 2 compares the proposed model with Run 20 of Vanoni ([53]) data. 20th order HAM-based approximate solution
was considered for the model with both cases of β and α. It can be observed from the figure that the model for the
set of both β and α agreed well with the experimental data, specifically after 30% of the flow depth. The model
corresponding to β and α from Eqs. (2.25)-(2.26) performed better in the upper half of the channel while the other
profile dominated near the channel bed. In Fig. 3, a data set, namely Run S5 from the experiment of the sediment-
laden flow of Einstein and Chien ([54]) was compared with 20th and 25th order HAM-based approximations for the
model with β and α from Eqs. (2.25)-(2.26) and (2.28)-(2.29), respectively. It is seen from the figure that the model
for both cases estimated the experimental values well, though the near-bed prediction accuracy was superior for the
model with β and α from Eqs. (2.25) and (2.26). Fig. 4 shows the comparison of the model with field data (Run
1) from Davoren ([55]). Here 20th and 30th order HAM-based approximations were considered for the model with
β and α from Eqs. (2.25)-(2.26) and (2.28)-(2.29), respectively. It can be observed from the figure that the model
for both cases performed well in measuring velocity throughout the water column. Overall, it can be concluded that
the proposed model predicted the vertically distributed velocities in open channels well. It may be noted that the
information-theoretic concept, along with the maximum entropy principle in hydraulics, does not incorporate explicit
fluid mechanics processes; the physics can only be included through the constraints and the available data.

11



A PREPRINT - OCTOBER 29, 2019

Table 4: Values of the Lagrange multipliers and the entropy index for the velocity models for some selected sets of
data.

Data
Set

β and α from
Eqs. (2.25) and (2.26)

β and α from
Eqs. (2.28) and (2.29)

Singh and Luo
([27]) model

λ0 λ1 λ2 q0 λ0 λ1 λ2 q0 λ0 λ1 q0
Vanoni
([53])

Run 15 -3.4825 6.2386 0.0240 0.9652 -3.6251 6.4837 0.0175 1.0004 -2.6237 4.8642 0.750
Run 20 -1.7380 3.8497 0.1285 0.8320 -2.2176 4.7441 0.0703 1.0068 -1.5575 3.6334 0.750

Einstein
and Chien ([54])

Run C3 -3.8746 6.7247 0.0159 0.9754 -3.9820 6.9044 0.0123 0.9992 -2.8854 5.1583 0.750
Run S5 -1.5459 3.5606 0.1502 0.8039 -2.0876 4.5737 0.0801 1.0076 -1.4571 3.5139 0.750

Davoren
([55])

Run 1 -2.208 4.535 0.085 0.8870 -2.5540 5.1710 0.0510 1.0030 -1.8209 3.9435 0.750
Run 10 -2.0149 4.2466 0.1019 0.8599 -2.4085 4.9717 0.0596 0.9948 -1.7277 3.8344 0.750

Table 5: Padé approximant coefficients for some selected sets of data.

Data Set
Padé approximant coefficients

β and α from Eqs. (2.25) and (2.26) β and α from Eqs. (2.28) and (2.29)
(C0, C1, C2, C3, C4) (D1, D2, D3, D4) (C0, C1, C2, C3, C4) (D1, D2, D3, D4)

Vanoni ([53]) Run 20
(13.731, -35.980, 36.263,

-16.781, 3.041)
(0.359, 0.118, 0.026,

0.003)

(25.307, -60.792,
62.633, -33.485,

8.062)

(2.415, 2.497,
1.339, 0.323)

Einstein and Chien
([54])

Run S5
(11.744, -30.515, 30.195,

-13.546, 2.341)
(0.134, 0.052, 0.009,

0.001)

(22.210, -51.597,
51.385, -26.541,

6.170)

(2.324, 2.316,
1.196, 0.278)

Davoren ([55]) Run 1
(20.749, -56.197, 60.007,

-30.324, 6.234)
(0.923, 0.461,
0.143, 0.023)

(35.245, -92.119,
103.112, -59.802,

15.596)

(2.597, 2.894,
1.673, 0.436)
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Figure 2: Comparison of the HAM-based velocity profile Eq. (2.50) with Run 20 of Vanoni ([53]) data: 20th order
approximations for the model with Eqs. (2.25)-(2.26), and (2.28)-(2.29).
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Figure 3: Comparison of the HAM-based velocity profile Eq. (2.50) with Run S5 of Einstein and Chien ([54]) data:
20th and 25th order approximations for the model with Eqs. (2.25)-(2.26), and (2.28)-(2.29), respectively.
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Figure 4: Comparison of the HAM-based velocity profile Eq. (2.50) with Run 1 of Davoren ([55]) data: 20th and 30th

order approximations for the model with Eqs. (2.25)-(2.26), and (2.28)-(2.29), respectively.

3.4 Comparison with the Existing Equation using Tsallis Entropy

Here, we compare the proposed model with the existing model on Tsallis entropy to check the effect of additional
constraints as well as the entropy index on the vertically distributed velocity. Singh and Luo ([27]) considered only
the total probability theorem and the mass conservation constraint in their derivation and also concluded a fixed value
3/4 for the entropy index based on a data-fitting procedure. For the sake of completeness, the model proposed by [27]
is given here as follows:

û = −
λ0 +

1
q0−1

λ1
+

1

λ1

[

(

λ0 +
1

q0 − 1

)

q0

q0−1

+ λ1

(

q0
q0 − 1

)

q0

q0−1

ŷ

]

q0−1

q0

(3.3)

where the index q0 was chosen as 3/4, the Lagrange multipliers were obtained by solving the constraint Eqs. (2.2) and
(2.3). The proposed model was assessed for the set of both formulae of β and α given by Eqs. (2.25), (2.26), (2.28),
and (2.29). To check the prediction accuracies of each of the models, the relative error (RE) and root-mean-squared
error (RMSE) were calculated as follows

RE =
1

M0

M0
∑

i=1

∣

∣

∣

∣

ûobs (i)− ûcom (i)

ûobs (i)

∣

∣

∣

∣

(3.4)

RMSE =

√

√

√

√

1

M0

M0
∑

i=1

(

ûobs (i)− ûcom (i)

ûobs (i)

)2

(3.5)

where ûobs (i) and ûcom (i) are observed and computed values of the normalized velocity at the i-th data point, and
M0 is the total number of data points.

Two sets of data from each of Vanoni ([53]), Einstein and Chien ([54]), and Davoren ([55]) were selected for the
comparison. The numerical solution of the proposed model was considered here for both cases of β and α from Eqs.
(2.25)-(2.26) and (2.28)-(2.29). The Lagrange multipliers and the entropy index were obtained using the technique
mentioned in the previous section, and are reported in Table 4. Fig. 5 shows the comparison between the models for
Run 15 and Run 20 of the Vanoni ([53]) data, where it was observed that all three models predicted the velocity values
well throughout the water column; however, the proposed model was superior to the model of Singh and Luo ([27]) as
can be seen from the figures and RE, RMSE values reported in Table 6. In Fig. 6, the models are compared with Run
C3 (clear water flow) and Run S5 (sediment-laden flow) of Einstein and Chien ([54]). It is seen from the figure and
Table 6 that the proposed model performed better for Run C3 while for Run S5, the model of Singh and Luo ([27])
was superior. Fig. 7 depicts the comparison between the models for field data, namely, Run 1 and Run 10 of Davoren
([55]). It can be observed from the figure and Table 6 that the proposed model predicted the data better than did the
model of Singh and Luo ([27]) throughout the water column. Moreover, it can be seen from the figures and the table
that the present model with β and α from Chow’s formulae given by Eqs. (2.25) and (2.26) outperformed the other
models for all the cases except Run S5 data. It may be noted that the proposed model is expected to perform better
than it is seen in the present study if one uses a more accurate formula for β and α, which is not yet available.

4 Conclusions

The following conclusions can be drawn from the present study
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Figure 5: Comparison of the proposed model with the model of Singh and Luo ([27]) for (a) Run 15, and (b) Run 20
of Vanoni ([53]) data.
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Figure 6: Comparison of the proposed model with the model of Singh and Luo ([27]) for (a) Run C3, and (b) Run S5
of Einstein and Chien ([54]) data.
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Figure 7: Comparison of the proposed model with the model of Singh and Luo ([27]) for (a) Run 1, and (b) Run 10 of
Davoren ([55]) data.

Table 6: Relative error (RE) and the root-mean-squared error (RMSE) of the proposed model and the model and the
model of Singh and Luo ([27]) for some selected set of data.

Data set
β and α from

Eqs. (2.25) and (2.26)
β and α from

Eqs. (2.28) and (2.29)
Singh and Luo
([27]) model

RE RMSE RE RMSE RE RMSE

Vanoni ([53])
Run 15 0.0134 0.0159 0.0155 0.0183 0.0569 0.1007
Run 20 0.0173 0.0230 0.0248 0.0314 0.1244 0.1888

Einstein and
Chien ([54])

Run C3 0.0496 0.0534 0.0503 0.0542 0.1796 0.2134
Run S5 0.1073 0.1213 0.1213 0.1479 0.0730 0.0949

Davoren
([55])

Run 1 0.0161 0.0212 0.0092 0.0138 0.0377 0.0755
Run 10 0.0205 0.0292 0.0217 0.0265 0.0626 0.0842

14



A PREPRINT - OCTOBER 29, 2019

• The present study derives the vertical distribution of streamwise fluid velocity in wide-open channels using
the Tsallis entropy together with the principle of maximum entropy, subject to conservation laws. It also
includes the effect of entropy index in the derivation.

• The connection between the probability and space domains is made by the variable transformation. The
governing differential equation for velocity is solved by homotopy analysis method after converting it to a
weaker nonlinear form using Padé approximation technique. The convergence of the series solution is tackled
by some convergence-control parameters and investigated both theoretically and numerically.

• The Lagrange multipliers and the entropy index constitute a system of nonlinear equations after approximat-
ing the integrals of constraints using the Gauss-Legendre quadrature rule. The system is then solved by the
Gauss-Newton method for assessing the velocity profile.

• Laboratory and field data are considered to validate the model and also to compare with the existing velocity
profile based on Tsallis entropy. It is found that the incorporation of additional constraints and the effect
of entropy index improves the velocity profile. The proposed methodology can be applied further to study
different kinds of open channel flow problems.

A Convergence Analysis of HAM-Based Series Solution Eq. (2.50)

Theorem A.1 If the homotopy series
∞
∑

m=0
ûm (ŷ) and

∞
∑

m=0
û′

m (ŷ) converge, then Rm

(−→
ûm−1

)

given by Eq. (2.48)

satisfies the relation
∞
∑

m=1
Rm

(−→
ûm−1

)

= 0.

Proof: The linear operator is defined as follows

L [û] = ω
dû

dŷ
(A.1)

According to Eq. (2.42), one obtains

L [û1] = ~R1

(−→
û 0

)

(A.2)

L [û2 − û1] = ~R2

(−→
û 1

)

(A.3)

L [û3 − û2] = ~R3

(−→
û 2

)

(A.4)

...

L [ûm − ûm−1] = ~Rm

(−→
û m−1

)

(A.5)

Adding all of the above terms, one can get

L [ûm] = ~

m
∑

k=1

Rk

(−→
û k−1

)

(A.6)

As the series
∞
∑

m=0
ûm (ŷ) and

∞
∑

m=0
û′

m (ŷ) are convergent, limn→∞ ûm (ŷ) = 0 and limn→∞ û′

m (ŷ) = 0. Now,

recalling the above summand and taking the limit, the required result follows as

~

∞
∑

k=1

Rk

(−→
û k−1

)

= lim
m→∞

~

m
∑

k=1

Rk

(−→
û k−1

)

= lim
m→∞

L[ûm] = ω lim
m→∞

û′

m = 0 (A.7)

Theorem A.2 If ~ is so properly chosen that the series
∞
∑

m=0
ûm (ŷ) and

∞
∑

m=0
û′

m (ŷ) converge absolutely to û (ŷ) and

û′ (ŷ), respectively, then the homotopy series
∞
∑

m=0
ûm (ŷ) satisfies the original governing Eq. (2.36).
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Proof: Let
∞
∑

i=0

xi and
∞
∑

j=0

yj be two infinite series of real/complex terms. Then the Cauchy product of the above two

series is defined by the discrete convolution as follows

(

∞
∑

i=0

xi

)





∞
∑

j=0

yj



 =

∞
∑

k=0

k
∑

l=0

xlyk−l (A.8)

Therefore, using the above rule in relation to Eq. (2.48), we get

∞
∑

m=1

m−1
∑

j=0

ûjûm−1−j =

(

∞
∑

m=0

ûm

)2

(A.9)

∞
∑

m=1

m−1
∑

j=0

ûj û
′

m−1−j =

(

∞
∑

m=0

ûm

)(

∞
∑

k=0

û′

k

)

(A.10)

∞
∑

m=1

m−1
∑

j=0

ûm−1−j

j
∑

k=0

ûkûj−k =

(

∞
∑

m=0

ûm

)3

(A.11)

∞
∑

m=1

m−1
∑

j=0

ûm−1−j

j
∑

k=0

ûkû
′

j−k =

(

∞
∑

m=0

ûm

)2(
∞
∑

k=0

û′

k

)

(A.12)

∞
∑

m=1

m−1
∑

j=0

ûm−1−j

j
∑

k=0

ûj−k

k
∑

l=0

ûlûk−l =

(

∞
∑

m=0

ûm

)4

(A.13)

∞
∑

m=1

m−1
∑

j=0

ûm−1−j

j
∑

k=0

ûj−k

k
∑

l=0

ûlû
′

k−l =

(

∞
∑

m=0

ûm

)3(
∞
∑

k=0

û′

k

)

(A.14)

∞
∑

m=1

m−1
∑

j=0

ûm−1−j

j
∑

k=0

ûj−k

n
∑

l=0

ûn−l

l
∑

p=0

ûpû
′

l−p =

(

∞
∑

m=0

ûm

)4(
∞
∑

k=0

û′

k

)

(A.15)

Theorem A.1 shows that if
∞
∑

m=0
ûm (ŷ) and

∞
∑

m=0
û′

m (ŷ) converge then
∞
∑

m=1
Rm

(−→
û m−1

)

= 0. Therefore, substituting

the above expressions in Eq. (2.48) and simplifying further lead to

∞
∑

m=0

û′

m +D1

(

∞
∑

m=0

û
′

m

)(

∞
∑

k=0

ûk

)

+D2

(

∞
∑

m=0

û
′

m

)(

∞
∑

k=0

ûk

)2

+D3

(

∞
∑

m=0

û
′

m

)(

∞
∑

k=0

ûk

)3

+D4

(

∞
∑

m=0

û
′

m

)(

∞
∑

k=0

ûk

)4

− C0

∞
∑

m=0

(1− χm+1)

− C1

∞
∑

m=0

ûm − C2

(

∞
∑

k=0

ûk

)2

− C3

(

∞
∑

k=0

ûk

)3

− C4

(

∞
∑

k=0

ûk

)4

= 0 (A.16)

which is basically the original governing equation Eq. (2.36). Furthermore, subject to the initial condition û0 (0) = 0

and the conditions for the higher-order deformation equation ûm (0) = 0, for m ≥ 1, we easily obtain
∞
∑

m=0
ûm (0) = 0.

Hence, the convergence result follows.
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