
On Babuška’s model for asymmetric hysteresis
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Abstract

Hysteresis is a complex phenomenon that occurs in many areas of science and engineering.
To model hysteresis, scientists combine first laws of physics with fictitious equations to
obtain phenomenological models that aim to match the macroscopic behavior of hysteresis
processes. In this paper we focus on a model of hysteresis that was proposed by the
physicist P. Duhem starting from thermodynamical considerations. On the one hand,
we strengthen the results obtained by the mathematician I. Babuška in relation with the
existence and uniqueness of a global solutions and of a periodic solution when the input
is periodic. On the other hand, we specialize into a specific form of the Duhem model
proposed by Babuška. For Babuška’s model we determine the explicit analytic expression
of the hysteresis loop. We apply our findings to dry friction modeling and to asymmetric
hysteresis loop matching.
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1. Introduction and problem statement

The term hysteresis refers to a special type of behaviour found in many processes like
magnetism [1], geophysics [2, Chapter 6], economics [3], biology [4], and several other
fields. A survey of the issue “what is hysteresis” is provided in [5, Section 2]. In short,
when excited by a slow periodic input, a hysteresis system produces a loop in the steady
state part of the graph output-versus-input [6].

The first dynamical model of hysteresis is–to the best of our knowledge–due to French
physicist P. Duhem [7]. For an input u and a state x, Duhem’s model has the form{

ẋ = f1(x, u)u̇, u̇ ≥ 0,

ẋ = f2(x, u)u̇, u̇ ≤ 0,
(1)

where u̇ refers to the derivative of u with respect to time, and f1, f2 are functions.
In a series of articles published between 1896 and 1902, Duhem analyzes model (1)

using geometric methods and relates the properties of the model to the observed behaviour
of some hysteresis processes [7]–[13].
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Whilst the methods used by Duhem are intuitive, they lack in general the standards
of today’s mathematical rigor. For example, no proof is provided for the existence and
uniqueness of the solutions of the differential equation (1). Also, Duhem assumes the
existence of a periodic solution x for a periodic input u.

To the best of our knowledge, the first mathematically rigorous work on Duhem’s
model has been done by I. Babuška in 1959 [14]. This paper has gone largely unnoticed in
the current English-dominated literature as [14] is written in Russian. Babuška proposes
sufficient conditions on functions f1 and f2 that guarantee the existence and uniqueness
of the solutions of the differential equation (1). Moreover, these conditions guarantee also
the existence and uniqueness of a periodic solution of (1) when u is periodic. Examples
of functions f1, f2 that satisfy Babuška’s conditions are provided in [14, Examples 1 and
2] as

f1(a, b) = h1(a)g1(b), (2a)

f2(a, b) = h2(a)g2(b), (2b)

where the functions h1, h2, g1, g2 are taken to be specific polynomials on some intervals.
The plots in [14, Section 3] show the shape of the hysteresis loop that corresponds to [14,
Example 1].

Both in Duhem’s works [7]–[13] and Babuška’s paper [14] no explicit analytic expres-
sion of the hysteresis loop is provided; and this is the main motivation for the present
research work.

Why an explicit analytic expression of the hysteresis loop is important? To illustrate
this point consider for instance the Bouc-Wen model which is a particular case of the
model (1)–(2) for which

h1(x) = ρ
(
1− σ|x|n−1x+ (σ − 1)|x|n

)
, (3a)

h2(x) = ρ
(
1 + σ|x|n−1x+ (σ − 1)|x|n

)
, (3b)

g1(u) = 1, (3c)

g2(u) = 1, (3d)

where ρ > 0, σ ≥ 0.5, and n ≥ 1 are the model parameters [15, pp. 41-42]. The analytic
expression of the hysteresis loop is derived in [15, Theorem 3, p. 47] as an explicit
function of the model parameters. For materials described by the Bouc-Wen model, the
corresponding hysteresis loop is shown to be divided into two regions of transition, a
linear region, and a plastic region, see [15, Figure 4.3, p. 68]. The points that define
these regions are explicitly given, and the variation of the hysteresis loop with the model
parameters is studied analytically thanks to the analytic expression of the hysteresis loop
[15, Chapter 4].

We classify the contributions of the present paper into three categories:

(i) Improvement of the results obtained by Babuška in relation with the existence and
uniqueness of global solutions and of periodic solutions.

(ii) Obtention of new results regarding the explicit analytic description of the hysteresis
loop.

(iii) Application of these results to dry friction and hysteresis loop matching.
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Regarding point (i) we have relaxed the assumptions used in [14] as follows:

• We have removed the assumption labeled V c in [14] by using techniques that were
made popular by Filippov in the 1980’ [16], that is more than 20 years after the
publication of Babuška’s paper [14]. The result of this relaxation is Theorem 4.1 on
the existence and uniqueness of a global solution of the Duhem model (1).

• We have relaxed the assumption on the input from continuously differentiable to
absolutely continuous by using a normalized set of variables that we introduced in
our work [17]. This is of practical importance in the context of hysteresis systems
since–in general–differentiability cannot be assumed everywhere in applications, see
for instance the displacement input of [18, Figure 6] which is continuous but not
differentiable everywhere. The result of this relaxation is Theorem 7.1 on the exis-
tence and uniqueness of a periodic solution of the Duhem model (1) when the input
u is periodic.

Regarding point (ii) we have considered Babuška’s hysteresis model formed by the
Duhem model (1) where the field is given by (2). We have identified four cases κ1, κ2,
κ3, κ4 for the hysteresis loop and given for each case necessary and sufficient explicit
conditions for the case κi to occur. Also, for each case κi we provided the explicit analytic
expression of the hysteresis loop. The results of our findings are summarized in Theorem
9.1.

To stress the importance of Theorem 9.1 we remark the following:

• Although Babuška proves that the Duhem model (1) has a periodic solution for a
periodic input, this periodic solution is not obtained as an explicit function of the
field.

• Take for instance the Bouc-Wen model (3). A general form of the model has been
proposed first by Bouc in 1971 [19] and later on specified by Wen in 1976 [20]. This
model attracted a lot of attention as mentioned in the survey paper [21]. However it
was not until 2005 that the hysteresis loop of the model was described analytically
[22]. The main difficulty in studying this model is that the state appears nonlinearly
in the state equation. To the best of our knowledge, the Bouc-Wen model is–up
to date–the only particular case of the Duhem model with the state appearing
nonlinearly, and for which an explicit analytic expression of the hysteresis loop is
available.

• For a range of initial conditions, Babuška’s model is a generalization of the Bouc-
Wen model in which instead of the expressions (3) the functions h1, h2, g1, g2
are much more general: h1 is an arbitrary decreasing function, h2 an arbitrary
increasing function, and g1, g2 arbitrary positive functions. Note that the state
appears nonlinearly when the functions h1 and h2 are nonlinear.

Finally, regarding point (iii) we have obtained the following results:

• We proposed in Section 10 explicit sufficient conditions on Babuška’s model to be
compatible with the Coulomb model for dry friction, and we have compared the
hysteresis loops of the LuGre and Dahl models to that of Babuška’s model.

3



• In Section 11 we have shown that, for a wide range of experimental hysteresis loops
that may be symmetric or asymmetric, Babuška’s model can be chosen in such
a way to make its hysteresis loop mach exactly the experimental one. The fact
that this model can generate a wide range of hysteresis loops–both symmetric and
asymmetric–is of particular interest in practice, see for instance [23, Figure 2.2,
p. 19]. As a matter of fact, all hysteresis loops that appear in that figure can be
generated by Babuška’s model.

The paper is organized as follows. Section 2 presents the mathematical notation
used in the text. Section 3 introduces the conditions that were proposed by Babuška to
guarantee the existence and uniqueness of a global solution of the Duhem model, and a
periodic solution when the input is periodic. Section 4 presents the theorem of existence
and uniqueness of a solution for Duhem’s model under Babuška’s conditions. The version
that we present in Theorem 4.1 is stronger than [14, Theorem 1] since the assumptions
that we use are weaker whilst the obtained existence and uniqueness result is the same.
Section 5 presents those results from Refs. [17] and [5] that are needed in this paper.
This is the case in particular for the normalized variables which allow to write the Duhem
model (1) in an equivalent simpler form; this is done in Section 6. The normalized form
of the Duhem model allows to get a stronger theorem for the existence and uniqueness
of a periodic solution x when the input is periodic. Indeed, instead of assuming that the
input is continuously differentiable as in [14, Theorem 4], Theorem 7.1 considers that the
input u is absolutely continuous, which means that u is allowed to lose differentiability on
a set of measure zero. Theorem 7.1 uses weaker assumptions to get the same results as
[14, Theorem 4]; this is done in Section 7. Using a result of the mathematician Filippov,
Section 8 derives the analytic expression of the hysteresis loop of the Duhem model.
However, this expression is not explicit since the initial condition of the periodic solution
is given as a limit of a sequence of internal states, and also since the state x appears in
the expression of the hysteresis loop. The main reason for this lack of explicit expression
is that the state equations (1) cannot in general be integrated to obtain x. This is why
Section 9 specializes into Babuška’s model (1)–(2) since, in this case, the state equations
can be integrated by separation of the variables. However, special care has to be taken in
this integration since we have to ensure that the left-hand side function–that contains x–is
well defined. The conditions for this well-definiteness is the object of Propositions 9.2–
9.4. The conditions obtained directly from Propositions 9.2–9.4 are not explicit since they
depend on information of the internal state x. This is why the object of whole analysis of
Section 9 revolves around the idea of getting explicit conditions on the fields h1, h2, g1,
g2, along with the input u to ensure the well-definiteness that allows the integration of
(1)–(2) by separation of the variables. The main results of Section 9 are summarized in
Theorem 9.1: we have identified four cases κ1, κ2, κ3, κ4 for the hysteresis loop and given
for each case necessary and sufficient explicit conditions for the case κi to occur, along
with the explicit analytic expression of the hysteresis loop in each case κi. We have also
provided numerical simulations to illustrate these cases. As applications to the obtained
results we considered dry friction modeling in Section 10, and hysteresis loop matching
in Section 11. In particular we have derived the conditions under which Babuška’s model
is compatible with the Coulomb model, and compared its hysteresis loop to that of the
LuGre and the Dahl models. We have also shown that the hysteresis loop of Babuška’s
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model can match a wide range of experimental hysteresis loops that may be symmetric
or asymmetric.

2. Mathematical notation

An ordered pair a, b is denoted (a, b) whilst the open interval {t ∈ R | a < t < b} is
denoted ]a, b[. The set of nonnegative integers is denoted N = {0, 1, . . .} and the set of
nonnegative real numbers is denoted R+ = [0,∞[.

The Lebesgue measure on R is denoted µ. We say that a subset of R is measurable
when it is Lebesgue measurable. Consider a function g : I ⊂ R+ → R where I is an
interval. We say that g is measurable when {x ∈ I : g(x) > a} is measurable for all
a ∈ R. For a measurable function g : I → R, ‖g‖ denotes the essential supremum of the
function |g|.

C0(J1, J2) denotes the space of continuous functions f : J1 → J2.
S(I,R) denotes the space of absolutely continuous functions φ : I → R such that

‖φ‖ <∞ and ‖φ̇‖ <∞ where φ̇ is the derivative of φ.
For any γ ∈ ]0,∞[ define the linear change in time scale sγ : R → R by sγ(t) =

t/γ, ∀t ∈ R.
For any a ∈ R define the translation τa : R→ R by τa(t) = t+ a,∀t ∈ R.
Let T ∈ ]0,∞[. A function u : R+ → R is said to be T–periodic, or periodic of period

T , if u(t+ T ) = u(t),∀t ∈ R+.
The symbol ∧ stands for the logical AND, and the symbol ¬ sets for the logical NOT.

3. Babuška’s Conditions

Consider the Duhem model:

ẋ(t) = f1
(
x(t), u(t)

)
u̇(t), for almost all t ∈ R+ such that u̇(t) ≥ 0, (4a)

ẋ(t) = f2
(
x(t), u(t)

)
u̇(t), for almost all t ∈ R+ such that u̇(t) ≤ 0, (4b)

x(0) = x0, (4c)

where x0 ∈ R the initial condition, u ∈ S(R+,R) the input, and x : R+ → R the state.
We refer to the differential equation (4) as the scalar Duhem model as x(t) ∈ R.

We consider that f1 and f2 satisfy Conditions (i)–(v).

(i) f1, f2 ∈ C0(R2,R).

(ii) f1(a, b) ≥ 0 and f2(a, b) ≥ 0 for all a, b ∈ R.

(iii) For all a1, a2, b ∈ R such a1 > a2 the following holds:

(iii-1) f1(a1, b) ≤ f1(a2, b).

(iii-2) f2(a1, b) ≥ f2(a2, b).

(iii-3) f1(a1, b) = f1(a2, b)⇔ f1(a1, b) = f1(a2, b) = 0.

(iii-4) f2(a1, b) = f2(a2, b)⇔ f2(a1, b) = f2(a2, b) = 0.
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(iv) There exist constants D1 > 0 and D2 > 0 such that the following holds:

(iv-1) f1(a, b) = 0 for all (a, b) ∈ [D1,∞[×R.

(iv-2) f2(a, b) = 0 for all (a, b) ∈ ]−∞,−D2]× R.

(v) Define M1 = {(a, b) ∈ R2 | f1(a, b) = 0} and M2 = {(a, b) ∈ R2 | f2(a, b) = 0}.
Then M1 ∩M2 = ∅.

We call Conditions (i)–(v) Babuška’s Conditions as they first appear in [14], and refer
to them as BC. As a matter of fact, [14] contains an additional assumption labeled V c1

which is used in the proof of the existence of a solution of (4). By using an alternative
proof in Theorem 4.1, we show that this assumption is not needed.

An example of a scalar Duhem model that satisfies BC is provided in Section 9.

4. Existence and uniqueness of a global solution

The proof of the existence and uniqueness of a global solution for the differential
equation (4) under BC is given in [14]. Since the text of that reference is in Russian
we provide here that proof for the English speaking audience with improvements of ours
which include removing the assumption labeled V c in [14].

Theorem 4.1. The differential equation (4) has a unique Carathéodory solution x on
R+. Moreover x ∈ S(R+,R) and ‖x‖ ≤ max

(
|x0|, D1, D2

)
.

Proof. The differential equation (4) satisfies the Carathéodory conditions thus an abso-
lutely continuous solution exists on some interval [0, d] with d > 0 [16, Theorem 1, p. 4].
Consider the Lyapunov candidate function z : [0, d]→ R+ such that

z(t) =
1

2
x2(t),

where x is a Carathéodory solution of (4). Then z is absolutely continuous [24, Exer-
cise 3.6(ii)] and ż(t) = x(t)ẋ(t) almost everywhere in ]0, d[. Thus by BC(iv) ż(t) = 0
whenever x(t) ≥ D1 or x(t) ≤ −D2. Then it follows from [25, Lemma 17] that |x(t)| ≤
max

(
|x0|, D1, D2

)
for all t ∈ [0, d]. This fact implies by [16, Theorem 4, p. 7] that the

solution x can be continued on R+.
To prove the uniqueness of the solution x we suppose that there exist two different

solutions x1 and x2 to (4) on R+. Let t1 > 0 be such that x1(t1) 6= x2(t1). Without loss
of generality suppose that x1(t1) > x2(t1). Define ξ = x1− x2, then we have ξ(0) = 0 and
ξ(t1) > 0. Define the set A = {t ∈ [0, t1] | ξ(t) = 0}. Then A 6= ∅ as it contains 0 so that
A has a least upper bound t2 ∈ [0, t1]. Owing to the continuity of ξ we have ξ(t2) = 0 so
that t2 < t1. Again the continuity of ξ implies that ξ(t) > 0 for all t ∈ ]t2, t1].

1Assumption V c is stated as follows in [14]. For all a, b1, b2 ∈ R such b1 > b2 the following holds:
f1(a, b1) ≥ f1(a, b2), f2(a, b1) ≤ f2(a, b2), f1(a, b1) = f1(a, b2)⇔ f1(a, b1) = f1(a, b2) = 0, and f2(a, b1) =
f2(a, b2)⇔ f2(a, b1) = f2(a, b2) = 0. Assumption V c is not used in our paper.
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On the other hand, owing to (4a)–(4b) the function ξ satisfies:

ξ̇(t) =

(
f1
(
ξ(t) + x2(t), u(t)

)
− f1

(
x2(t), u(t)

))
u̇(t),

for almost all t ∈ [t2, t1] such that u̇(t) ≥ 0,

(5)

ξ̇(t) =

(
f2
(
ξ(t) + x2(t), u(t)

)
− f2

(
x2(t), u(t)

))
u̇(t),

for almost all t ∈ [t2, t1] such that u̇(t) ≤ 0,

(6)

Since ξ(t) > 0 for all t ∈ ]t2, t1] it comes from BC(iii-1) that f1
(
ξ(t) + x2(t), u(t)

)
−

f1
(
x2(t), u(t)

)
≤ 0 and from BC(iii-2) that f2

(
ξ(t) + x2(t), u(t)

)
− f2

(
x2(t), u(t)

)
≥ 0 for

all t ∈ ]t2, t1]. This fact leads from Equations (5)–(6) to ξ̇(t) ≤ 0 for almost all t ∈ [t2, t1]
which contradicts the fact that ξ(t2) = 0 and ξ(t1) > 0.

Theorem 4.1 implies that we can define an operator Hs : S(R+,R) × R → S(R+,R)
such that Hs(u, x0) = x.

Proposition 4.1. Consider the differential equation (4). If for some t0 ∈ R+ we have
x(t0) ≤ D1 then for all t ≥ t0 we have x(t) ≤ D1. Also if x(t0) ≥ −D2 then for all t ≥ t0
we have x(t) ≥ −D2

Proof. This is a direct consequence of [25, Lemma 17].

5. Background results

One of the main tools for the study of the Duhem model is the use of a different set
of variables we call normalized. The theory behind the process of normalization has been
introduced in [17] and expanded in [5]. We present in this section a brief overview of these
normalized variables.

5.1. The normalized input

For u ∈ S(R+,R), let ρu : R+ → R+ be the total variation of u on [0, t], that is
ρu(t) =

∫ t
0
|u̇(τ)| dτ ∈ R+, ∀t ∈ R+. The function ρu is well defined, nondecreasing and

absolutely continuous. Observe that ρu may not be invertible (this happens when the
input u is constant on some interval or intervals). Denote ρu,max = lim

t→∞
ρu(t) and let

• Iu = [0, ρu,max] if ρu,max = ρu(t) for some t ∈ R+ (in this case the interval Iu is
finite),

• Iu = [0, ρu,max[ if ρu,max > ρu(t) for all t ∈ R+ (in this case the interval Iu may be
finite or infinite).

Lemma 5.1. [17] Let u ∈ S(R+,R) be non constant so that the interval Iu is not reduced
to a single point. Then there exists a unique function ψu ∈ S(Iu,R) that satisfies ψu◦ρu =
u. Moreover, the function ψu satisfies ‖ψu‖ = ‖u‖, ‖ψ̇u‖ = 1 and

µ
({
% ∈ Iu | ψ̇u(%) is not defined or |ψ̇u(%)| 6= 1

})
= 0.
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The function ψu is constructed as follows. Let % ∈ Iu, then there exists t% ∈ R+ such
that ρu(t%) = % (note that t% is not necessarily unique as ρu is not necessarily invertible).
Then u(t%) is independent of the particular choice of t%, and ψu(%) is defined by the
relation ψu(%) = u(t%) [17].

Lemma 5.1 shows that the input u has been ‘normalized’ so that the resulting function
ψu is such that ψ̇u has norm 1 with respect to the new time variable %. For this reason,
we call function ψu the normalized input.

Lemma 5.2. [17] ∀γ ∈ ]0,∞[, Iu◦sγ = Iu and ψu◦sγ = ψu.

Lemma 5.3. [17] Let T ∈ ]0,∞[. If u ∈ S(R+,R) is nonconstant and T–periodic, then
Iu = R+ and ψu ∈ S(R+,R) is ρu (T )–periodic.

5.2. An illustrative example of the normalized input

Let umin, umax, T1, T ∈ R be such that umin < umax and 0 < T1 < T . Let u ∈
S(R+,R) be a T -periodic input which is strictly increasing on the interval [0, T1] and
strictly decreasing on the interval [T1, T ], with u(0) = u(T ) = umin and u(T1) = umax, see
Figure 1.

T1 T0

umax

umin

Figure 1: u(t) versus t.

To find its corresponding normalized function ψu we proceed as follows. Note that ρu is
strictly increasing so that it is invertible, and ρ−1u is also strictly increasing. From Lemma
5.1 it comes that ψu = u◦ρ−1u so that ψu is strictly increasing on the interval [0, %1], where
%1 = ρu(T1). Thus ψ̇u(%) ≥ 0 when % ∈ ]0, %1[ and ψ̇u(%) exists. On the other hand, by
Lemma 5.1 the set on which ψ̇u is not defined or is different from ±1 has measure zero.
Thus ψ̇u(%) = 1 for almost all % ∈ ]0, %1[. Using the fact that ψu is absolutely continuous
we obtain from the Fundamental Theorem of Calculus that

ψu(%)− ψu(0) =

∫ %

0

ψ̇u(τ) dτ =

∫ %

0

dτ = %, ∀% ∈ [0, %1].
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Taking into account that ψu
(
ρu(0)

)
= u(0) it comes that ψu(0) = umin so that

ψu(%) = %+ umin,∀% ∈ [0, %1]. (7)

The value of %1 is determined as follows:

%1 = ρu(T1) =

∫ T1

0

|u̇(t)|dt =

∫ T1

0

u̇(t)dt = u(T1)− u(0) = umax − umin. (8)

Also, ψu = u ◦ ρ−1u so that ψu is strictly decreasing on the interval [%1, %2], where
%2 = ρu(T ). Thus ψ̇u(%) ≤ 0 when % ∈ ]%1, %2[ and ψ̇u(%) exists. On the other hand,
by Lemma 5.1 the set on which ψ̇u is not defined or is different from ±1 has measure
zero. Thus ψ̇u(%) = −1 for almost all % ∈ ]%1, %2[. Using the fact that ψu is absolutely
continuous we obtain from the Fundamental Theorem of Calculus that

ψu(%)− ψu(%1) =

∫ %

%1

ψ̇u(τ) dτ =

∫ %

%1

−1 dτ = %1 − %, for all % ∈ [%1, %2],

which leads to
ψu(%) = ψu(%1) + %1 − %, ∀% ∈ [%1, %2]. (9)

The value of ψu(%1) is determined from Equation (7) as ψu(%1) = umax, and the value of
%2 is determined as follows:

%2 = ρu(T ) =

∫ T1

0

|u̇(t)|dt+
∫ T

T1

|u̇(t)|dt = %1−
∫ T

T1

u̇(t)dt = %1+u(T1)−u(T ) = 2%1. (10)

As a conclusion, we have

ψu(%) = %+ umin, for % ∈ [0, %1],

ψu(%) = −%+ 2umax − umin, for % ∈ [%1, %2].
(11)

Finally, note that by Lemma 5.3 the function ψu is %2–periodic, see Figure 2.

̺

ψ
u
(̺
)

0 ̺1 ̺2

umax

umin

Figure 2: ψu(%) versus %.

Comment. Note that ψu is independent of T1 and T , and is also independent of the
particular shape of u. The normalized function ψu depends solely on umax, umin, and on
the fact that u is strictly increasing from umin to umax and strictly decreasing from umax

to umin.
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5.3. The normalized input-derivative

Lemma 5.4. [5, Lemma 13, p. 994]. Let u ∈ S(R+,R) be nonconstant. There exists a
measurable function vu : Iu → R defined by vu ◦ ρu = u̇. The function vu is unique up to
a set of measure zero. Moreover, ‖vu‖ ≤ ‖u̇‖ and vu is nonzero almost everywhere on Iu.

The function vu is called the normalized input-derivative and is constructed as follows.
Let % ∈ Iu, then there exists t% ∈ R+ such that ρu(t%) = % (t% is not necessarily unique as
ρu is not necessarily invertible). Then, whenever u̇(t%) exists for all t% such that ρu(t%) = %,
the quantity u̇(t%) is independent of the particular choice of t%, and vu(%) is defined almost
everywhere by the relation vu(%) = u̇(t%) [5, p. 982].

5.4. The normalized state

Lemma 5.5. [17] Let (u, x0) ∈ S(R+,R)×R with u nonconstant. Define x = Hs(u, x0).
Then, there exists a unique function xu ∈ S(Iu,R) that satisfies xu ◦ ρu = x. Moreover
we have ‖xu‖ = ‖x‖.

The function xu is called the normalized state and is constructed as follows. Let % ∈ Iu,
then there exists t% ∈ R+ such that ρu(t%) = % (t% is not necessarily unique as ρu is not
necessarily invertible). Then x(t%) is independent of the particular choice of t%, and xu(%)
is defined by the relation xu(%) = x(t%) [17].

5.5. Definition of strong consistency and hysteresis loop

Definition 5.1. [17] Let x0 ∈ R. Let u ∈ S(R+,R) be such that the input u is nonconstant
and T–periodic where T ∈ ]0,∞[. Note that in this case Iu = R+. For any nonnegative
integer k, define the function xu,k ∈ S

(
[0, ρu (T )] ,R

)
by xu,k (%) = xu

(
ρu (T ) k+ %

)
,∀% ∈

[0, ρu (T )]. The operator Hs is said to be strongly consistent with respect to (u, x0) if there
exists x◦u ∈ C0

(
[0, ρu (T )] ,R

)
such that lim

k→∞
‖xu,k − x◦u‖ = 0.

Definition 5.2. [17, 5] Let x0 ∈ R and let T > 0. Let u ∈ S(R+,R) be non constant and
T–periodic. Assume that the operator Hs is strongly consistent with respect to (u, x0).
We call hysteresis loop of the operator Hs with respect to (u, x0) the set

Gu,x0 =
{(
ψu (%) , x◦u (%)

)
, % ∈ [0, ρu (T )]

}
. (12)

6. The normalized scalar Duhem model

In this section we express the Duhem model in terms of the normalized variables.
Recall that the normalized state is defined in Lemma 5.4 uniquely by the relation xu◦ρu =
x where x is the unique solution of (4) under BC. Then we get from Equation (4a) that

˙︷ ︷
xu ◦ ρu(t) = f1

(
xu ◦ ρu(t), ψu ◦ ρu(t)

)
· vu ◦ ρu(t),

for almost all t ∈ R+ such that vu ◦ ρu(t) ≥ 0.
(13)

The chain rule can be used as xu, ρu and x are absolutely continuous so that

˙︷ ︷
xu ◦ ρu(t) = ẋu

(
ρu(t)

)
ρ̇u(t), for almost all t ∈ R+, (14)
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where ẋu
(
ρu(t)

)
ρ̇u(t) is interpreted to be zero whenever ρ̇u(t) = 0 even if xu is not differ-

entiable at ρu(t) [24, Theorem 3.44]. On the other hand it comes from [24, Lemma 3.31]
that

ρ̇u(t) = |u̇(t)| = |vu ◦ ρu(t)|, for almost all t ∈ R+. (15)

From u = ψu ◦ ρu, u̇ = vu ◦ ρu, and Equation (15) we get

vu ◦ ρu(t) = u̇(t) =
˙︷ ︷

ψu ◦ ρu(t) = ψ̇u
(
ρu(t)

)
|vu ◦ ρu(t)|, for almost all t ∈ R+, (16)

where ψ̇u
(
ρu(t)

)
ρ̇u(t) is interpreted to be zero whenever ρ̇u(t) = 0 even if ψu is not

differentiable at ρu(t).
Combining Equations (13)–(16) it comes that

|vu ◦ ρu(t)| · ẋu
(
ρu(t)

)
= f1

(
xu ◦ ρu(t), ψu ◦ ρu(t)

)
· ψ̇u

(
ρu(t)

)
|vu ◦ ρu(t)|,

for almost all t ∈ R+ such that vu ◦ ρu(t) ≥ 0.
(17)

At this point we express Equation (17) in terms of the normalized time % = ρu(t) as
follows. Define

F = {t ∈ R+ | vu ◦ ρu(t) ≥ 0},
then Equation (17) holds on F \ E where E ⊆ R+ is such that µ(E) = 0. The function
ρu is absolutely continuous, thus µ

(
ρu(E)

)
= 0 [24, Theorem 3.12] so that we get from

Equation (17) that

|vu(%)| · ẋu(%) = f1
(
xu(%), ψu(%)

)
· ψ̇u(%)|vu(%)|,

for almost all % ∈ Iu such that vu(%) ≥ 0.
(18)

Using Lemma 5.4 we obtain from Equation (18) that

ẋu(%) = f1
(
xu(%), ψu(%)

)
· ψ̇u

(
%
)
, for almost all % ∈ Iu such that vu(%) > 0. (19)

On the other hand, Equation (16) can be rewritten in terms of the normalized time
% = ρu(t) as

vu(%) = ψ̇u(%)|vu(%)|, for almost all % ∈ Iu. (20)

Combining Equations (19) and (20) it comes that

ẋu(%) = f1
(
xu(%), ψu(%)

)
, for almost all % ∈ Iu such that ψ̇u(%) = 1. (21)

Following the same argument we come to

ẋu(%) = −f2
(
xu(%), ψu(%)

)
, for almost all % ∈ Iu such that ψ̇u(%) = −1. (22)

The initial condition of xu is obtained from Equation (4c) as

xu(0) = x0, (23)

since ρu(0) = 0.
The normalized Duhem model (21)–(23) is equivalent to (4) by Lemma 5.4. Also by

Theorem 4.1 the differential equation (21)–(23) has a unique Carathéodory solution xu
on Iu. Moreover xu ∈ S(Iu,R), xu ◦ ρu = x, and ‖xu‖ = ‖x‖ ≤ max

(
|x0|, D1, D2

)
.
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7. Existence and uniqueness of a periodic solution

In this section we consider that the input is periodic. The proof of the existence and
uniqueness of a periodic solution for the differential equation (4a)–(4b) is given in [14].
Since the text of that reference is in Russian we provide here that proof for the English
speaking audience with an improvement of ours which consists in relaxing the assumption
on the input from continuously differentiable in [14] to absolutely continuous. The main
ingredient for getting this relaxation is the use of the normalized variables.

Proposition 7.1. Let a, b ∈ R with a < b and S1, S2, E ⊆ [a, b] be such that S1 ∩ S2 = ∅,
µ(S1) 6= 0, µ(S2) 6= 0, µ(E) = 0, and S1 ∪ S2 ∪ E = [a, b]. Let S̄ be the closure of the set
S. Then S̄1 ∩ S̄2 6= ∅.

Proof. Define S3 = S1 ∪ S2. We show first that S̄3 = [a, b]. Let t ∈ E, then there exists
a sequence (tn)n∈N with tn ∈ S3 such that limn→∞ tn = t. Otherwise there would exist an
ε > 0 such that ]t− ε, t] ⊆ E or [t, t+ ε[ ⊆ E. Thus µ(E) ≥ ε which contradicts µ(E) = 0.
Then we conclude that S̄3 = [a, b] = S̄1 ∪ S̄2.

On the other hand µ(Si) 6= 0 thus Si 6= ∅ and Si ⊆ S̄i 6= ∅, i = 1, 2. Now, S̄1 and
S̄2 are nonempty closed subsets of [a, b] with S̄1 ∪ S̄2 = [a, b]. Thus S̄1 ∩ S̄2 6= ∅ as the
interval [a, b] is connected [26, p. 14].

Theorem 7.1. Let T > 0 and u ∈ S(R+,R) be a nonconstant and T–periodic input.
Then there exists a unique initial condition ζ ∈ R such that Hs(u, ζ) is also periodic.
Moreover ζ ∈ [−D2, D1], Hs(u, ζ) is T–periodic, and −D2 ≤ [Hs(u, ζ)](t) ≤ D1 for all
t ∈ [0, T ].

Proof. Uniqueness. Suppose that we can find ζ1, ζ2 ∈ R with ζ1 > ζ2 such that
Hs(u, ζi) = xi is T–periodic, i = 1, 2. Define ξ = x1 − x2, then ξ(t0) = ζ1 − ζ2 > 0.

Claim 1. ξ(t) > 0 for all t ≥ 0.

Proof. Suppose that there exists some t′ > 0 with ξ(t′) = 0. Due to the uniqueness of
solutions of (4a)–(4b) we have x1(t) = x2(t) for all t ≥ t′. In particular, for t = nT with
n large enough to have t ≥ t′ we have x1(nT ) = x2(nT ). Owing to the T–periodicity of
x1 and x2 we get x1(0) = ζ1 = x2(0) = ζ2 which is a contradiction.

Claim 2. ξ(t) = ζ1 − ζ2 for all t ≥ 0.

Proof. Using Equations (5)–(6) and the fact that ξ(t) > 0 for all t ≥ 0 it comes that
ξ̇(t) ≤ 0 for almost all t ≥ 0 following the same argument as in the proof of Theorem 4.1.
Since ξ is periodic and absolutely continuous we have

ξ(T )− ξ(0) = 0 =

∫ T

0

ξ̇(t) dt

which leads to ξ̇(t) = 0 for almost all t ∈ [0, T ] since ξ̇(t) ≤ 0 almost everywhere in
[0, T ].

12



Substituting ξ̇(t) = 0 in Equations (5)–(6) we get

f1
(
ζ1 − ζ2 + x2(t), u(t)

)
= f1

(
x2(t), u(t)

)
for almost all t > 0 such that u̇(t) > 0, (24)

f2
(
ζ1 − ζ2 + x2(t), u(t)

)
= f2

(
x2(t), u(t)

)
for almost all t > 0 such that u̇(t) < 0. (25)

Using BC(iii-3) and BC(iii-4) it follows from Equations (24)–(25) that

f1
(
x2(t), u(t)

)
= 0 for almost all t > 0 such that u̇(t) > 0, (26)

f2
(
x2(t), u(t)

)
= 0 for almost all t > 0 such that u̇(t) < 0. (27)

Equations (26)–(27) combined with Equations (4a)–(4b) lead to x2 is constant, that is
x2(t) = ζ2 for all t ≥ t0. A similarly argument holds for x1. We thus conclude that

f1
(
ζ2, u(t)

)
= 0 for almost all t > 0 such that u̇(t) > 0, (28)

f2
(
ζ1, u(t)

)
= 0 for almost all t > 0 such that u̇(t) < 0. (29)

We now use the normalized time % = ρu(t). Observe first that since u is nonconstant and
periodic we have Iu = R+. Using an argument similar to that of Section 6 we obtain from
Equations (28)–(29) that

f1
(
ζ2, ψu(%)

)
= 0 for almost all % > 0 such that ψ̇u(%) = 1, (30)

f2
(
ζ1, ψu(%)

)
= 0 for almost all % > 0 such that ψ̇u(%) = −1. (31)

Define the sets

S1 = {% ∈ [0, ρu(T )] | ψ̇u(%) = 1},
S2 = {% ∈ [0, ρu(T )] | ψ̇u(%) = −1}.

From Lemma 5.1 there exists a zero-measure set E ⊆ [0, ρu(T )] such that

S1 ∪ S2 ∪ E = [0, ρu(T )]. (32)

Claim 3. µ(S1) 6= 0 and µ(S2) 6= 0.

Proof. Suppose that µ(S1) = 0 and µ(S2) = 0. By Lemma 5.1 the function ψu is absolutely
continuous. Thus for any % ∈ [0, ρu(T )] we have

ψu(%) = ψu(0) +

∫ %

0

ψ̇u(ν) dν

= ψu(0) +

∫
S1∩[0,%]

ψ̇u(ν) dν +

∫
S2∩[0,%]

ψ̇u(ν) dν +

∫
E∩[0,%]

ψ̇u(ν) dν

= ψu(0),

which contradicts the fact that u is nonconstant. Now suppose that µ(S1) = 0 then we
must have that µ(S2) 6= 0. Then

ψu
(
ρu(T )

)
= ψu(0) +

∫ ρu(T )

0

ψ̇u(ν) dν

= ψu(0) +

∫
S1

ψ̇u(ν) dν +

∫
S2

ψ̇u(ν) dν +

∫
E

ψ̇u(ν) dν

= ψu(0) +

∫
S2

ψ̇u(ν) dν < ψu(0)
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which contradicts ψu
(
ρu(T )

)
= u(T ) = u(0) = ψu(0).

The same argument holds if we assume that µ(S2) = 0.

Combining Claim 3, Proposition 7.1, and Equation (32) it comes that S̄1 ∩ S̄2 6= ∅. Let

%0 ∈ S̄1 ∩ S̄2 ⊆ [0, ρu(T )]. (33)

Then using the continuity of f and u it comes from Equations (30)–(31) that

f1
(
ζ2, ψu(%0)

)
= 0, (34)

f2
(
ζ1, ψu(%0)

)
= 0. (35)

Define

ζ2 < ζ3 =
ζ1 + ζ2

2
< ζ1.

From Equation (34) and BC(iii-1) we get 0 = f1
(
ζ2, ψu(%0)

)
≥ f1

(
ζ3, ψu(%0)

)
. This fact

along with BC(ii) gives f1
(
ζ3, ψu(%0)

)
= 0. A similar argument leads to f2

(
ζ3, ψu(%0)

)
= 0.

This is a contradiction with BC(v) which proves the uniqueness part of Theorem 7.1.
Existence. Define x = Hs(u, x0) and

ξ(t) = x(t+ T )− x(t), ∀t ≥ 0.

Note that x ◦ τT = Hs

(
u, x(T )

)
. If ξ(0) = 0 then x(T ) = x(0) = x0 so that x ◦ τT =

Hs(u, x0) = x, that is ξ(t) = 0 for all t ≥ 0. This means that x is the T–periodic solution.
Thus we suppose in the following that ξ(0) 6= 0. Without loss of generality we consider
that ξ(0) > 0.

Claim 4. ξ(t) > 0 for all t > 0.

Proof. Suppose that there exists t1 > 0 such that ξ(t1) = 0. Then as above it comes
that ξ(t) = 0 for all t ≥ t1. In particular, taking an integer n such that nT ≥ t1 we get
ξ(nT ) = 0. Then as above it comes that x is T–periodic on the time interval [nT,∞[.
Due to the uniqueness of the solution of (4a)–(4b) it comes that x is also periodic on
[0, nT ] which implies that ξ(0) = 0 which contradicts ξ(0) > 0.

Owing to (4a)–(4b) the function ξ satisfies:

ξ̇(t) =

(
f1
(
ξ(t) + x2(t), u(t)

)
− f1

(
x2(t), u(t)

))
u̇(t),

for almost all t ≥ 0 such that u̇(t) ≥ 0,

(36)

ξ̇(t) =

(
f2
(
ξ(t) + x2(t), u(t)

)
− f2

(
x2(t), u(t)

))
u̇(t),

for almost all t ≥ 0 such that u̇(t) ≤ 0,

(37)

From Claim 4 and BC(iii) it comes that f1
(
ξ(t) + x2(t), u(t)

)
− f1

(
x2(t), u(t)

)
≤ 0 and

f2
(
ξ(t) + x2(t), u(t)

)
− f2

(
x2(t), u(t)

)
≥ 0 for all t ≥ 0. This fact leads from Equations

(36)–(37) to ξ̇(t) ≤ 0 for almost all t ≥ 0. This fact along with Claim 4 shows that there
exists b ≥ 0 such that

lim
t→∞

ξ(t) = b. (38)
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Claim 5. b = 0.

Proof. Assume that b > 0. We have ξ(nT ) ≥ b for all n ∈ N, that is

x
(
(n+ 1)T

)
− x(nT ) ≥ b, (39)

so that x
(
(n+ 1)T

)
≥ x(0) + (n+ 1)b. Taking n sufficiently large we get a contradiction

with ‖x‖ ≤ max
(
|x0|, D1, D2

)
, see Theorem 4.1.

Combining Equation (38) and Claim 5 it follows that

lim
t→∞

ξ(t) = 0. (40)

Define αn = x(nT ). From Inequality (39) and Claim 5 it comes that the sequence (αn)n∈N
is nondecreasing. Since |αn| ≤ ‖x‖ ≤ max

(
|x0|, D1, D2

)
it follows that there exists ᾱ ∈ R

such that
lim
n→∞

αn = ᾱ.

Claim 6. Hs(u, ᾱ) is T–periodic.

Proof. To prove Claim 6 it is enough to prove that
[
Hs(u, ᾱ)

]
(T ) =

[
Hs(u, ᾱ)

]
(0). From

[16, Theorem 6, p. 11] it comes that the sequence Hs(u, αn)|[0,T ] converges uniformly to
Hs(u, ᾱ)|[0,T ] on the interval [0, T ]. In particular we have

lim
n→∞

[
Hs(u, αn)

]
(0) =

[
Hs(u, ᾱ)

]
(0), (41)

lim
n→∞

[
Hs(u, αn)

]
(T ) =

[
Hs(u, ᾱ)

]
(T ). (42)

On the other hand, we have

Hs(u, αn)|[0,T ] = Hs

(
u, x(nT )

)
|[0,T ] = Hs(u, x0)|[nT,(n+1)T ]

so that [
Hs(u, αn)

]
(0) = x(nT ) = αn, (43)[

Hs(u, αn)
]
(T ) = x

(
(n+ 1)T

)
= αn+1. (44)

Combining Equations (41)–(42) and (43)–(44) it comes that

lim
n→∞

αn =
[
Hs(u, ᾱ)

]
(0), (45)

lim
n→∞

αn+1 =
[
Hs(u, ᾱ)

]
(T ), (46)

so that
[
Hs(u, ᾱ)

]
(0) =

[
Hs(u, ᾱ)

]
(T ) = ᾱ.

The existence part of Theorem 7.1 is thus established by taking ζ = ᾱ. Remains to
prove that ζ ∈ [−D2, D1].

Claim 7. x̄ = Hs(u, ζ) is not constant.
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Proof. Suppose that x̄ is constant. Then we must have x̄(t) = x̄(0) = ζ for all t ≥ 0 so
that x̄u(%) = ζ for all % ≥ 0. Then from Equations (21) and (22) we obtain

f1
(
ζ, ψu(%)

)
= 0, for almost all % > 0 such that ψ̇u(%) = 1, (47)

f2
(
ζ, ψu(%)

)
= 0, for almost all % > 0 such that ψ̇u(%) = −1. (48)

Recall the value %0 defined in Equation (33). Owing to the continuity of f1, f2 and ψu
it comes from Equations (47)–(48) that f1

(
ζ, ψu(%0)

)
= 0 and f2

(
ζ, ψu(%0)

)
= 0 which

contradicts BC(v).

By Claim 7 it comes that there exists t1 ∈ ]0, T [ such that x̄(t1) 6= x̄(0) = ζ. Suppose
that x̄(t1) > ζ (the case x̄(t1) < ζ is treated likewise).

Claim 8. There exists t2 ∈ [0, t1] such that x̄(t2) ≤ D1

Proof. Suppose that for all t ∈ [0, t1] we have x̄(t) > D1. Then for all % ∈ [0, ρu(t1)] we
have x̄u(%) > D1. From Equations (21)–(22), BC(ii) and BC(iv-1) it comes that

˙̄xu(%) ≤ 0, for almost all % ∈ [0, ρu(t1)].

Since x̄ is absolutely continuous we can write

x̄(t1)− ζ = x̄
(
ρu(t1)

)
− x̄(0) =

∫ ρu(t1)

0

˙̄xu(%) d% ≤ 0,

which contradicts x̄(t1) > ζ.

Claim 9. There exists t3 ∈ [t1, T ] such that x̄(t3) ≥ −D2

Proof. Suppose that for all t ∈ [t1, T ] we have x̄(t) < −D2. Then for all % ∈ [ρu(t1), ρu(T )]
we have x̄u(%) < −D2. From Equations (21)–(22), BC(ii) and BC(iv-2) it comes that

˙̄xu(%) ≥ 0, for almost all % ∈ [ρu(t1), ρu(T )].

Since x̄ is absolutely continuous we can write

ζ − x̄(t1) = x̄
(
ρu(T )

)
− x̄
(
ρu(t1)

)
=

∫ ρu(T )

ρu(t1)

˙̄xu(%) d% ≥ 0,

which contradicts x̄(t1) > ζ.

Claims 8–9 and Proposition 4.1 show that for all t ≥ T we have x̄(t) ∈ [−D2, D1].
Taking t = T leads to ζ ∈ [−D2, D1]. The fact that −D2 ≤ x̄(t) ≤ D1 for all t ∈ [0, T ]
derives from Proposition 4.1 and the fact that x̄ is T–periodic.

Comment. We stress that Theorem 7.1 is valid for any periodic input, not only
periodic inputs whose shape is that of Figure 1.
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8. Hysteresis loop of the scalar Duhem model

Proposition 8.1. Let x0 ∈ R and T > 0. Let u ∈ S(R+,R) be a nonconstant and
T–periodic input. Then Hs is strongly consistent with respect to (u, x0).

Proof. Denote x = Hs(u, x0). From [16, Theorem 6, p. 11] it comes that the sequence
Hs(u, αn) converges uniformly to Hs(u, ᾱ) on the interval [0, T ], where αn = x(nT ) and
ᾱ = limn→∞ αn. Denote x̄ = Hs(u, ᾱ). Observe that

Hs(u, αn)|[0,T ] = Hs

(
u, x(nT )

)
|[0,T ] = Hs(u, x0)|[nT,(n+1)T ] = x ◦ τnT |[0,T ],

so that x ◦ τnT converges uniformly to x̄ on [0, T ]. This means that

∀ε > 0,∃Nε ∈ N | ∀n ≥ Nε,
∥∥x ◦ τnT |[0,T ] − x̄|[0,T ]∥∥ < ε. (49)

On the other hand, we have

ρu(t+ nT ) = ρu(t) + nρu(T )

so that we get from Definition 5.1 that

x ◦ τnT = xu ◦ ρu ◦ τnT = xu,n ◦ ρu.

Since x̄ = Hs(u, ᾱ) it comes from Lemma 5.5 that there exists a unique function x̄u ∈
S(R+,R) that satisfies x̄u ◦ ρu = Hs(u, x0). These facts along with (49) give

∀ε > 0, ∃Nε ∈ N | ∀n ≥ Nε,
∥∥xu,n − x̄u|[0,ρu(T )]∥∥ < ε,

so that Hs is strongly consistent with respect to (u, x0) and

x◦u = x̄u|[0,ρu(T )]. (50)

Comment. By Proposition 8.1 the hysteresis loop Gu,x0 of the operator Hs with
respect to (u, x0) is given by Equation (12) where x◦u is given by Equation (50). This
means that Gu,x0 depends on the normalized function ψu but not directly on the input u.
In other words, Gu,x0 does not depend on T1, T , or on the particular shape of the input u.
The hysteresis loop Gu,x0 depends solely on umax, umin, and on the fact that u is strictly
increasing from umin to umax and strictly decreasing from umax to umin.

9. Case study: Babuška’s hysteresis model

In Equation (50) x◦u is given as a function of Hs(u, ᾱ) where ᾱ is defined as the limit of
a sequence. It is however desirable that the hysteresis loop be given as an explicit function
of the data of the model, that is u, f1 and f2. This explicit expression of the hysteresis
loop means an explicit integration of the possibly nonlinear differential equation (21)–(23)
and the explicit determination of ᾱ.
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We are not aware of any research work that provides an explicit integration of the
differential equation (21)–(23). However, for some particular cases of the scalar Duhem
model the corresponding hysteresis loop has been determined explicitly. This is the case
when the state appears linearly as for the semilinear Duhem model [5, 27], the LuGre
model [28, 29], and the Dahl model [30, 31]. The Bouc-Wen model is the only special case
of the Duhem model we are aware of where the state appears nonlinearly and for which
an explicit expression of the hysteresis loop is available [15].

In this section we consider a special case for the functions f1 and f2 proposed–but not
studied–in [14]: f1(a, b) = h1(a)g1(b) and f2(a, b) = h2(a)g2(b), where the functions h1,
h2, g1, and g2 may be nonlinear. Our aim is to provide the analytic explicit expression of
the hysteresis loop in this case.

9.1. Babuška’s model of hysteresis

Consider the following special case of the scalar Duhem model:

ẋ(t) = h1
(
x(t)

)
g1
(
u(t)

)
u̇(t), for almost all t ∈ R+ such that u̇(t) ≥ 0, (51a)

ẋ(t) = h2
(
x(t)

)
g2
(
u(t)

)
u̇(t), for almost all t ∈ R+ such that u̇(t) ≤ 0, (51b)

x(0) = x0, (51c)

where x0 ∈ R is the initial condition, u ∈ S(R+,R) the input, and x : R+ → R the state.
We call Equations (51) Babuška’s model of hysteresis.

Babuška’s Conditions translate as follows: the functions g1, g2, h1, h2 satisfy Condi-
tions (A)–(E).

(A) g1, g2, h1, h2 ∈ C0(R,R).

(B) There exist constants D1 > 0 and D2 > 0 such that the following holds:

(B-1) h1(a) = 0 for all a ≥ D1 and h1(a) 6= 0 for all a < D1.

(B-2) h2(a) = 0 for all a ≤ −D2 and h2(a) 6= 0 for all a > −D2.

(C) For all a1, a2 ∈ ]−∞, D1] such that a1 > a2 we have h1(a1) < h1(a2).

(D) For all a1, a2 ∈ [−D2,∞[ such that a1 > a2 we have h2(a1) > h2(a2).

(E) g1(b) > 0 and g2(b) > 0 for all b ∈ R.

Observe that Conditions (B), (C), and (D) imply that h1(a) ≥ 0 and h2(a) ≥ 0 for all
a ∈ R.

Define the functions `1 : [−D2, D1]→ R ∪ {∞} and `2 : [−D2, D1]→ R ∪ {−∞} by

`1(z) =

∫ z

0

1

h1(ν)
dν, `2(z) =

∫ z

0

1

h2(ν)
dν

where
`1(D1) = lim

z↑D1

`1(z), `2(−D2) = lim
z↓−D2

`2(z)
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may be finite or infinite. Then `1 and `2 are strictly increasing and of class C1 on the
interval ]−D2, D1[. This fact implies that `1 and `2 are invertible and that their inverses
`−11 and `−12 are strictly increasing and of class C1 on the intervals ]`1(−D2), `1(D1)[ and
]`2(−D2), `2(D1)[ respectively.

Also define the functions G1, G2 : R→ R by

G1(z) =

∫ z

0

g1(ν)dν, G2(z) =

∫ z

0

g2(ν)dν.

Then G1 and G2 are strictly increasing and of class C1 on R.
By Theorem 4.1 the differential equation (51) has a unique Carathéodory solution x

on R+. Moreover x ∈ S(R+,R) and ‖x‖ ≤ max
(
|x0|, D1, D2

)
.

Recall that the normalized state is defined uniquely by the relation xu ◦ ρu = x. Then
from Equations (21)–(23) the normalized version of Babuška’s model is

ẋu(%) = h1
(
xu(%)

)
g1
(
ψu(%)

)
, for almost all % ∈ Iu such that ψ̇u(%) = 1, (52a)

ẋu(%) = −h2
(
xu(%)

)
g2
(
ψu(%)

)
, for almost all % ∈ Iu such that ψ̇u(%) = −1, (52b)

xu(0) = x0. (52c)

By Theorem 4.1, the differential equation (52) has a unique Carathéodory solution xu on
Iu. Moreover xu ∈ S(Iu,R) and ‖xu‖ = ‖x‖ ≤ max

(
|x0|, D1, D2

)
.

Remark 9.1. When the initial condition x0 of the Bouc-Wen model (1)–(3) satisfies
|x0| ≤ 1 we have ‖x‖ ≤ 1 where x is the solution of (1)–(3) [22, Table 2]. Taking
D1 = D2 = 1 makes the Bouc-Wen model a particular case of Babuška’s model.

9.2. Hysteresis loop of Babuška’s model

In this section we consider a T–periodic input u ∈ S(R+,R) such that u is strictly
increasing on [0, T1] and strictly decreasing on [T1, T ] for some T1 ∈ ]0, T [. The main
result of this section is Theorem 9.1 which provides the explicit analytic expression of the
hysteresis loop of Babuška’s model under Conditions (A)–(E).

Define

umin = u(0), umax = u(T1), %1 = ρu(T1) = umax − umin, %2 = ρu(T ) = 2%1.

Then the corresponding normalized input is periodic of period ρu(T ) = %2 and is given
by Equation (11).

By Theorem 7.1 there exists a unique ζ ∈ [−D2, D1] such that the solution of (52a)
and (52b) along with

xu(0) = ζ (53)

is periodic of period %2. Denote this solution by x̄u.
Finally, observe that Iu = R+ and ρu is strictly increasing.

Proposition 9.1. ζ < D1.
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Proof. Suppose that ζ = D1. By Proposition 4.1 we have x̄u(%) ≤ D1 for all % ∈ [0, %1].
On the other hand we get from Equation (52a) that x̄u is nondecreasing so that x̄u(%) ≥
x̄u(0) = ζ = D1 for all % ∈ [0, %1]. We thus get x̄u(%) = D1,∀% ∈ [0, %1].

On the other hand, we get from Equation (52b) that ˙̄xu(%) ≤ 0 for almost all % ∈
]%1, 2%1[. By Claim 7 in the proof of Theorem 7.1 we know that x̄u cannot be constant
on R+. This means that there exists %′ ∈ ]%1, %2] such that x̄u(%

′) 6= D1. Since x̄u is
absolutely continuous we have

x̄u(%
′)− x̄u(%1) =

∫ %′

%1

˙̄xu(%) d% ≤ 0,

which gives x̄u(%
′) ≤ x̄u(%1) = D1. This fact combined with x̄u(%

′) 6= D1 leads to x̄u(%
′) <

D1.
On the other hand we have

x̄u(%2)− x̄u(%′) =

∫ %2

%′
˙̄xu(%) d% ≤ 0

which provides x̄u(%2) ≤ x̄u(%
′) < D1. This inequality leads to a contradiction since

x̄u(%2) = x̄u(0) = ζ = D1 owing to the periodicity of x̄u.

Define the set

A =
{
% ∈ [0, %1] | G1(%+ umin)−G1(umin) + `1(ζ) ≤ `1(D1)

}
.

Observe that 0 ∈ A so that A 6= ∅. Let sup(A) be the supremum of A. Then sup(A) ∈ A
owing to the continuity of the function G1, and sup(A) > 0 owing to Proposition 9.1.

Proposition 9.2. sup(A) < %1 if and only if

G1(umax)−G1(umin) + `1(ζ) > `1(D1). (54)

In this case we have

sup(A) = G−11

(
G1(umin)− `1(ζ) + `1(D1)

)
− umin. (55)

sup(A) = %1 if and only if

G1(umax)−G1(umin) + `1(ζ) ≤ `1(D1). (56)

Proof. If `1(D1) =∞ we have sup(A) = %1 and Inequality (54) is false.
If `1(D1) <∞ consider the function qA : [0, %1]→ R defined by

qA(%) = G1(%+ umin)−G1(umin) + `1(ζ)− `1(D1).

Then qA(0) < 0 owing to Proposition 9.1, qA is continuous and strictly increasing. If
Inequality (54) holds we get qA(%1) > 0 so that qA has a unique zero in the interval ]0, %1[
which is sup(A). That is

G1

(
sup(A) + umin

)
−G1(umin) + `1(ζ)− `1(D1) = 0 (57)

which gives (55).
On the other hand, if Inequality (54) does not hold we have q(%1) ≤ 0 so that %1 ∈ A

which means that sup(A) = %1.
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Define the function w1 : [0, sup(A)]→ R by

w1(%) = `−11

(
`1(ζ) +G1(%+ umin)−G1(umin)

)
.

Proposition 9.3. x̄u = w1 on [0, sup(A)]. If sup(A) < %1 then x̄u(%) = D1, for all
% ∈ [sup(A), %1].

Proof. The function w1 is well defined and strictly increasing on the interval [0, sup(A)],
and is C1 on the interval ]0, sup(A)[. For % ∈ ]0, sup(A)[ we have

ẇ1(%) =
Ġ1(%+ umin)

˙̀
1

[
`−11

(
`1(ζ) +G1(%+ umin)−G1(umin)

)]
=

Ġ1(%+ umin)
˙̀
1

[
w1(%)

] =
g1(%+ umin)

1/h1
(
w1(%)

) = h1
(
w1(%)

)
g1
(
ψu(%)

)
.

Since x̄u(0) = ζ = w1(0) it follows that w1 = x̄u on [0, sup(A)] owing to the uniqueness of
the solutions of the differential equation (52a) ∧ (52b) ∧ (53).

There are two cases:

(i) sup(A) < %1.

(ii) sup(A) = %1

In Case (i) we have x̄u
(

sup(A)
)

= w1

(
sup(A)

)
= D1 owing to Equation (55). By

Proposition 4.1 we have x̄u(%) ≤ D1 for all % ∈ [sup(A), %1]. On the other hand we get
from Equation (52a) that x̄u is nondecreasing on [0, %1] so that x̄u(%) ≥ x̄u

(
sup(A)

)
= D1

for all % ∈ [sup(A), %1]. We thus get

x̄u(%) = D1,∀% ∈ [sup(A), %1]. (58)

In Case (ii) we have w1 = x̄u on [0, %1].

We now analyze what happens on the interval [%1, %2].
Define the set

B =
{
% ∈ [%1, %2] | `2

(
x̄u(%1)

)
+G2(−%+ 2umax − umin)−G2(umax) ≥ `2(ζ)

}
.

Observe that x̄u(%1) ≥ x̄u
(

sup(A)
)

= w1

(
sup(A)

)
> w1(0) = ζ so that `2

(
x̄u(%1)

)
>

`2(ζ) ≥ `2(−D2). Thus `2
(
x̄u(%1)

)
is finite and %1 ∈ B so that B 6= ∅. Let sup(B) be

the supremum of B. Then sup(B) ∈ B owing to the continuity of the function G2, and
sup(B) > %1 since `2

(
x̄u(%1)

)
> `2(ζ).

Define the function w2 : [%1, sup(B)]→ R by

w2(%) = `−12

(
`2
(
x̄u(%1)

)
+G2(−%+ 2umax − umin)−G2(umax)

)
.

Proposition 9.4. x̄u = w2 on [%1, sup(B)]. Moreover,
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(i) sup(B) < %2 if and only if

`2
(
x̄u(%1)

)
+G2(umin)−G2(umax) < `2(−D2). (59)

In this case we have

ζ = −D2, (60a)

sup(B) = −G−12

(
`2(−D2)− `2

(
x̄u(%1)

)
+G2(umax)

)
+ 2umax − umin, (60b)

x̄u(%) = −D2,∀% ∈ [sup(B), %2]. (60c)

(ii) sup(B) = %2 if and only if

`2
(
x̄u(%1)

)
+G2(umin)−G2(umax) ≥ `2(−D2). (61)

In this case we have x̄u = w2 for all % ∈ [%1, %2] and

ζ = `−12

(
`2
(
x̄u(%1)

)
+G2(umin)−G2(umax)

)
. (62)

Proof. The function w2 is well defined and strictly decreasing on the interval [%1, sup(B)],
and is C1 on the interval ]%1, sup(B)[. For % ∈ ]%1, sup(B)[ we have

ẇ2(%) =
−Ġ2(−%+ 2umax − umin)

˙̀
2

[
`−12

(
`2
(
x̄u(%1)

)
+G2(−%+ 2umax − umin)−G2(umax)

)]
= −Ġ2(−%+ 2umax − umin)

˙̀
2

[
w2(%)

] = −g2(−%+ 2umax − umin)

1/h2
(
w2(%)

) = −h2
(
w2(%)

)
g2
(
ψu(%)

)
.

Since w2(%1) = x̄u(%1) it follows that w2 = x̄u on [%1, sup(B)] owing to the uniqueness of
the solutions of the differential equation (52a), (52b), (53).

We first consider the case `2(−D2) 6= −∞. Then `2(ζ) 6= −∞. Consider the function
qB : [%1, %2]→ R defined by

qB(%) = `2
(
x̄u(%1)

)
+G2(−%+ 2umax − umin)−G2(umax)− `2(ζ).

Then qB is continuous and strictly decreasing, qB(%1) > 0 since x̄u(%1) = x̄u
(

sup(A)
)

=
w1

(
sup(A)

)
> w1(0) = ζ.

Proof of the if part of (i). If Inequality (59) holds then

`2
(
x̄u(%1)

)
+G2(umin)−G2(umax) < `2(ζ) (63)

since −D2 ≤ ζ. Thus qB(%2) < 0 so that qB has a unique zero in the interval ]%1, %2[. It
is immediate that this zero is sup(B) which gives

sup(B) = −G−12

(
`2(ζ)− `2

(
x̄u(%1)

)
+G2(umax)

)
+ 2umax − umin. (64)
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We have x̄u
(

sup(B)
)

= w2

(
sup(B)

)
= ζ owing to Equation (64). On the other hand

we get from Equation (52b) that x̄u is nonincreasing on [sup(B), %2] so that x̄u(%) ≤
x̄u(sup(B)) = ζ for all % ∈ [sup(B), %2]. Since x̄u is %2–periodic we have x̄u(%2) = x̄u(0) = ζ
so that

x̄u(%) = ζ, ∀% ∈ [sup(B), %2]. (65)

Equation (65) implies that ˙̄xu(%) = 0 for all % ∈ ] sup(B), %2[ 6= ∅. Substituting in (52b)
gives h2

(
x̄u(%)

)
= 0 for all % ∈ [sup(B), %2] so that x̄u(%) = −D2 for all % ∈ [sup(B), %2].

In particular x̄u(%2) = −D2 = x̄u(0) = ζ. Equations (60) are thus established.
Proof of the only if part of (i). If sup(B) < %2 then qB

(
sup(B)

)
= 0 and

qB(%2) < 0. The argument follows as in the proof of the if part leading to Equations (60).
Writing that sup(B) < %2 where sup(B) is given by (60b) gives Inequality (59).

Proof of the only if part of (ii). If sup(B) = %2 then %2 ∈ B and the following
inequality holds

`2
(
x̄u(%1)

)
+G2(umin)−G2(umax) ≥ `2(ζ).

Since ζ ≥ −D2 we obtain Inequality (61).
Proof of the if part of (ii). Suppose that Inequality (61) holds. If sup(B) < %2

then following the same argument as in the proof of the if part of (i) we get Inequality
(59) which contradicts (61).

Equation (62) is obtained by writing that ζ = x̄u(0) = x̄u(%2) = w2(%2).
Finally, consider the case `2(−D2) = −∞; then Inequality (59) cannot hold. If ζ =

−D2 then the inequality that appears in the definition of the set B always holds which
means that sup(B) = %2. If ζ 6= −D2 then `2(ζ) 6= −∞, so defining the function qB
as above and supposing that sup(B) < %2 we get to a contradiction following the same
argument as in the proof of the if part of (i). This means that sup(B) = %2.

Proposition 9.5. The hysteresis loop of the model (51) with respect to (u, x0) is given by

Gu,x0 =
{(
ψu (%) , x̄u(%)

)
, % ∈ [0, %2]

}
, (66)

where the function x̄u is calculated as follows.
Case κ1: (sup(A) < %1) ∧ (sup(B) < %2).
The quantities

%A = G−11

(
G1(umin)− `1(−D2) + `1(D1)

)
− umin, (67)

%B = −G−12

(
`2(−D2)− `2

(
D1

)
+G2(umax)

)
+ 2umax − umin, (68)

are well defined and we have

0 < %A < %1 and %1 < %B < %2. (69)
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We have

ζ = −D2, (70a)

x̄u(%) = `−11

(
`1(−D2) +G1(%+ umin)−G1(umin)

)
,∀% ∈ [0, %A], (70b)

x̄u(%) = D1,∀% ∈ [%A, %1], (70c)

x̄u(%) = `−12

(
`2(D1) +G2(−%+ 2umax − umin)−G2(umax)

)
, ∀% ∈ [%1, %B], (70d)

x̄u(%) = −D2,∀% ∈ [%B, %2], (70e)

sup(A) = %A, (70f)

sup(B) = %B. (70g)

Case κ2: (sup(A) < %1) ∧ (sup(B) = %2).
The quantities

ζ = `−12

(
`2(D1) +G2(umin)−G2(umax)

)
, (71)

%A = G−11

(
G1(umin)− `1(ζ) + `1(D1)

)
− umin, (72)

are well defined and we have 0 < %A < %1. We have

x̄u(%) = `−11

(
`1(ζ) +G1(%+ umin)−G1(umin)

)
,∀% ∈ [0, %A], (73a)

x̄u(%) = D1,∀% ∈ [%A, %1], (73b)

x̄u(%) = `−12

(
`2(D1) +G2(−%+ 2umax − umin)−G2(umax)

)
,∀% ∈ [%1, %2], (73c)

sup(A) = %A. (73d)

Case κ3: (sup(A) = %1) ∧ (sup(B) < %2).
The quantities

x̄u(%1) = `−11

(
`1(−D2) +G1(umax)−G1(umin)

)
, (74)

%B = −G−12

(
`2(−D2)− `2

(
x̄u(%1)

)
+G2(umax)

)
+ 2umax − umin, (75)

are well defined and we have %1 < %B < %2. We get

ζ = −D2, (76a)

x̄u(%) = `−11

(
`1(−D2) +G1(%+ umin)−G1(umin)

)
, ∀% ∈ [0, %1], (76b)

x̄u(%) = `−12

(
`2
(
x̄u(%1)

)
+G2(−%+ 2umax − umin)−G2(umax)

)
,∀% ∈ [%1, %B], (76c)

x̄u(%) = −D2,∀% ∈ [%B, %2], (76d)

sup(B) = %B. (76e)
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Case κ4: (sup(A) = %1) ∧ (sup(B) = %2).
We have

x̄u(%) = `−11

(
`1(ζ) +G1(%+ umin)−G1(umin)

)
,∀% ∈ [0, %1], (77a)

x̄u(%) = `−12

(
`2
(
x̄u(%1)

)
+G2(−%+ 2umax − umin)−G2(umax)

)
,∀% ∈ [%1, %2], (77b)

where
x̄u(%1) = `−11

(
`1(ζ) +G1(umax)−G1(umin)

)
, (78)

and ζ satisfies

`−12

(
`2(ζ) +G2(umax)−G2(umin)

)
− `−11

(
`1(ζ) +G1(umax)−G1(umin)

)
= 0. (79)

Proof. Analysis in the case κ1.
By Proposition 9.3 we have x̄u = w1 on [0, sup(A)], and x̄u(%) = D1, for all % ∈

[sup(A), %1].
By Proposition 9.4 we have x̄u = w2 on [%1, sup(B)], and Equations (60) hold.
Analysis in the case κ2. By Proposition 9.3 we have x̄u = w1 on [0, sup(A)], and

x̄u(%) = D1, for all % ∈ [sup(A), %1].
Since sup(B) = %2 we have x̄u = w2 on [%1, %2] by Proposition 9.4. In particular

ζ = x̄u(%2) = w2(%2) which gives (71). Now that ζ has been determined we find sup(A)
from Equation (55) which shows that sup(A) = %A where %A is given by Equation (72).

Analysis in the case κ3.
We have that x̄u = w1 on [0, %1] by Proposition 9.3. Thus

x̄u(%1) = `−11

(
`1(ζ) +G1(umax)−G1(umin)

)
. (80)

By Proposition 9.4 we have x̄u = w2 on [%1, sup(B)], and Equations (60) hold. Then
x̄u(%1) is obtained from Equation (80) as

x̄u(%1) = `−11

(
`1(−D2) +G1(umax)−G1(umin)

)
. (81)

Analysis in the case κ4.
By Proposition 9.3 we have x̄u = w1 on the interval [0, %1]. In particular

x̄u(%1) = `−11

(
`1(ζ) +G1(umax)−G1(umin)

)
. (82)

Since sup(B) = %2 we have x̄u = w2 on [%1, %2] by Proposition 9.4. In particular x̄u(%2) =
w2(%2) = x̄u(0) = ζ which leads to

ζ = `−12

(
`2
(
x̄u(%1)

)
+G2(umin)−G2(umax)

)
. (83)

We get (79) combining (82) and (83).

25



Comment. Proposition 9.5 reveals four mutually exclusive and collectively exhaustive
cases that describe completely the hysteresis loop of Babuška’s model. These cases are

• κ1: (sup(A) < %1) ∧ (sup(B) < %2).

• κ2: (sup(A) < %1) ∧ (sup(B) = %2).

• κ3: (sup(A) = %1) ∧ (sup(B) < %2).

• κ4: (sup(A) = %1) ∧ (sup(B) = %2).

In each case the analytic expression of the hysteresis loop is provided.
However, to know which case applies we need to know sup(A) and sup(B) which

depend on ζ, and we have an explicit expression of ζ only when we know which case
applies.

This means that we need explicit conditions that ensure which case applies. This is
the aim of Propositions 9.6–9.10.

Proposition 9.6. Suppose that `1(D1) 6=∞ and `2(−D2) 6= −∞. Then Case κ1 applies
if and only if we have

G1(umax)−G1(umin) > `1(D1)− `1(−D2), (84a)

G2(umax)−G2(umin) > `2
(
D1

)
− `2(−D2). (84b)

Proof. Proof of the if part.
The fact that ζ ≥ −D2 along with Inequality (84a) gives

`1(ζ) +G1(umax)−G1(umin) ≥ `1(−D2) +G1(umax)−G1(umin) > `1(D1)

that is Inequality (54). Thus sup(A) < %1 by Proposition 9.2. Consider the function
qB : [%1, %2]→ R defined by

qB(%) = `2(D1) +G2(−%+ 2umax − umin)−G2(umax)− `2(ζ).

Then qB is continuous and strictly decreasing, qB(%1) > 0 by Proposition 9.1, qB(%2) < 0
owing to Inequality (84b) and the fact that ζ ≥ −D2. Thus qB has a unique zero in the
interval ]%1, %2[ which is precisely sup(B). We thus have sup(B) < %2.

Proof of the only if part.
By Proposition 9.4 Inequality (59) holds, and by Proposition 9.3 we have x̄u(%1) = D1

which gives (84b).
By Proposition 9.2 Inequality (54) holds, and by Proposition 9.4 we have ζ = −D2

which gives (84a).

Proposition 9.7. Suppose that `1(D1) 6=∞. If

G1(umax)−G1(umin) > `1(D1)− `1(−D2), (85a)

G2(umax)−G2(umin) ≤ `2
(
D1

)
− `2(−D2), (85b)

then Case κ2 applies. Conversely if Case κ2 applies then Inequality (85b) holds.
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Proof. The fact that ζ ≥ −D2 along with Inequality (85a) give

`1(ζ) +G1(umax)−G1(umin) ≥ `1(−D2) +G1(umax)−G1(umin) > `1(D1)

that is Inequality (54). Thus sup(A) < %1 by Proposition 9.2 so that x̄u(%1) = D1 by
Proposition 9.3. Then (85b) is the same as (61) so that sup(B) = %2.

Now, if Case κ2 applies then Inequality (61) holds by Proposition 9.4 where x̄u(%1) =
D1 by Proposition 9.3 which gives (85b).

Proposition 9.8. Suppose that `2(−D2) 6= −∞. If

G1(umax)−G1(umin) ≤ `1(D1)− `1(−D2), (86a)

G2(umax)−G2(umin) > `2
(
D1

)
− `2(−D2), (86b)

then Case κ3 applies. Conversely if Case κ3 applies then Inequality (86a) holds.

Proof.

Claim 10. sup(A) = %1.

Proof. Suppose that sup(A) < %1. Then by Proposition 9.3 we get x̄u(%1) = D1. Consider
the function qB : [%1, %2]→ R defined by

qB(%) = `2(D1) +G2(−%+ 2umax − umin)−G2(umax)− `2(ζ).

Then qB is continuous and strictly decreasing, qB(%1) > 0 by Proposition 9.1, qB(%2) < 0
owing to Inequality (86b) and the fact that ζ ≥ −D2. Thus qB has a unique zero in the
interval ]%1, %2[ which is precisely sup(B) so that sup(B) < %2. By Proposition 9.4 we
have ζ = −D2 obtaining that Inequality (54) contradicts Inequality (86a).

Consider the function qB : [%1, %2]→ R defined by

qB(%) = `2
(
x̄u(%1)

)
+G2(−%+ 2umax − umin)−G2(umax)− `2(ζ).

Then qB is continuous and strictly decreasing, qB(%1) > 0 since x̄u(%1) = w1(%1) > w1(0) =

ζ, qB(%2) <
(
`2
(
x̄u(%1)

)
− `2(D1)

)
+
(
`2(−D2)− `2(ζ)

)
owing to Inequality (86b). Since

x̄u(%1) ≤ D1 and ζ ≥ −D2 by Theorem 7.1 we get qB(%2) < 0. Thus qB has a unique zero
in the interval ]%1, %2[ which is precisely sup(B). We thus have sup(B) < %2.

Now suppose that Case κ3 applies. Then by Proposition 9.4 we have ζ = −D2. Also,
by Proposition 9.2 Inequality (56) holds which gives (86a).

Proposition 9.9. If

G1(umax)−G1(umin) ≤ `1(D1)− `1(−D2), (87a)

G2(umax)−G2(umin) ≤ `2
(
D1

)
− `2(−D2), (87b)

then (i)–(vi) hold.
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(i) Case κ1 cannot occur.

(ii) Case κ2 holds if and only if

`−12

(
`2(D1) +G2(umin)−G2(umax)

)
> `−11

(
G1(umin)−G1(umax) + `1(D1)

)
. (88)

(iii) Case κ3 holds if and only if

`−11

(
`1(−D2)+G1(umax)−G1(umin)

)
< `−12

(
G2(umax)−G2(umin)+`2(−D2)

)
. (89)

(iv) Inequalities (88) and (89) cannot hold simultaneously. That is (88) ∧ (89) is false.

(v) Case κ4 applies if and only if Inequalities (88) and (89) are both false. If Case κ4
applies then Inequalities (87) hold.

(vi) Suppose that Case κ4 applies. Denote ν1 = G1(umax) − G1(umin), ν2 = G2(umax) −
G2(umin) and write Equation (98) as

ν2 = `2

[
`−11

(
`1(ζ) + ν1

)]
− `2(ζ) = Hν1(ζ), (90)

where
Hν1 :

[
−D2, `

−1
1

(
`1(D1)− ν1

)]
→ R.

Then Hν1 is invertible and
ζ = H−1ν1 (ν2). (91)

Proof. (i) Suppose that sup(A) < %1 and sup(B) < %2. By Proposition 9.3 we have
x̄u(%1) = D1 so that Inequality (59) contradicts (87b).

(ii) Proof of the only if part of (ii). Suppose that sup(A) < %1 and sup(B) = %2.
By Proposition 9.3 we have x̄u(%1) = D1 so that Equation (62) becomes

ζ = `−12

(
`2(D1) +G2(umin)−G2(umax)

)
.

Then Inequality (54) gives (88). Note that both members of Inequality (88) are well
defined owing to (87).

(iii) Proof of the only if part of (iii). Suppose that sup(A) = %1 and sup(B) < %2.
By Proposition 9.4 we have ζ = −D2 and by Proposition 9.3 we have

x̄u(%1) = `−11

(
`1(−D2) +G1(umax)−G1(umin)

)
. (92)

Then Inequality (59) leads to (89). Note that both members of Inequality (89) are well
defined owing to (87).

(iv) Denote ν1 = G1(umax)−G1(umin) and ν2 = G2(umax)−G2(umin). Since umax > umin

it follows that ν1 > 0 and ν2 > 0. Also, owing to (87) we have 0 < ν1 ≤ ν1max and
0 < ν2 ≤ ν2max where ν1max = `1(D1) − `1(−D2) and ν2max = `2(D1) − `2(−D2). Then
(88) is equivalent to

F1(ν1) = `2(D1)− `2
[
`−11

(
− ν1 + `1(D1)

)]
> ν2. (93)

28



Observe that F1(0) = 0, F1(ν1max) = ν2max, F1 is strictly increasing and continuous so
that F1 : [0, ν1max]→ [0, ν2max], and F1 ∈ C1

(
]0, ν1max[,R

)
. The derivative of F1 is

Ḟ1(ν1) =

˙̀
2

[
`−11

(
− ν1 + `1(D1)

)]
˙̀
1

[
`−11

(
− ν1 + `1(D1)

)] =

h1

[
`−11

(
− ν1 + `1(D1)

)]
h2

[
`−11

(
− ν1 + `1(D1)

)]
so that

lim
ν1↓0

Ḟ1(ν1) = 0, and lim
ν1↑ν1max

Ḟ1(ν1) =∞.

Note that numerator of Ḟ1(ν1) is strictly increasing from 0 at ν1 = 0 to h1(−D2) > 0
at ν1 = ν1max, and the denominator of Ḟ1(ν1) is strictly decreasing from h2(D1) > 0 at
ν1 = 0 to 0 at ν1 = ν1max. Thus Ḟ1(ν1) is strictly increasing from 0 at ν1 = 0 to ∞ at
ν1 = ν1max so that F1 is strictly convex on the interval [0, ν1max]. Thus

F1(ν1) <
ν2max

ν1max

ν1,∀ν1 ∈ ]0, ν1max[. (94)

On the other hand, (89) is equivalent to

F2(ν1) = `2

[
`−11

(
`1(−D2) + ν1

)]
− `2(−D2) < ν2, (95)

where F2 : [0, ν1max] → [0, ν2max]. Note that F2(0) = 0, F2(ν1max) = ν2max, F2 is strictly
increasing and continuous, and F2 ∈ C1

(
]0, ν1max[,R

)
. The derivative of F2 is

Ḟ2(ν1) =

˙̀
2

[
`−11

(
`1(−D2) + ν1

)]
˙̀
1

[
`−11

(
`1(−D2) + ν1

)] =

h1

[
`−11

(
`1(−D2) + ν1

)]
h2

[
`−11

(
`1(−D2) + ν1

)]
so that

lim
ν1↓0

Ḟ2(ν1) =∞, and lim
ν1↑ν1max

Ḟ2(ν1) = 0.

Note that numerator of Ḟ2(ν1) is strictly decreasing from h1(−D2) > 0 at ν1 = 0 to 0
at ν1 = ν1max, and the denominator of Ḟ2(ν1) is strictly increasing from 0 at ν1 = 0 to
h2(D1) > 0 at ν1 = ν1max. Thus Ḟ2(ν1) is strictly decreasing from ∞ at ν1 = 0 to 0 at
ν1 = ν1max so that F2 is strictly concave on the interval ]0, ν1max[. Thus

F2(ν1) >
ν2max

ν1max

ν1,∀ν1 ∈ ]0, ν1max[. (96)

Combining Inequalities (94) and (96) it comes that

F2(ν1) > F1(ν1),∀ν1 ∈ ]0, ν1max[. (97)

Take (ν1, ν2) ∈ ]0, ν1max]×]0, ν2max] such that (88) holds. Then F1(ν1) > ν2 by (93).
If ν1 6= ν1max then F2(ν1) > ν2 by (97) so that (95) does not hold implying that (89)
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does not hold. If ν1 = ν1max = `1(D1) − `1(−D2) then substituting in (88) we get
ν2 < ν2max = F1(ν1max) = F2(ν1max) which again shows that (89) does not hold.

Finally, take (ν1, ν2) ∈ ]0, ν1max]× ]0, ν2max] such that (89) holds. Then F2(ν1) < ν2
by (95). If ν1 6= ν1max then F1(ν1) < ν2 by (97) so that (93) does not hold implying that
(88) does not hold. If ν1 = ν1max = `1(D1)− `1(−D2) then substituting in (89) we get to
a contradiction with (87b). This means that the case ν1 = ν1max cannot occur when (89)
holds.

(v) Proof of the only if part of (v). If Inequality (88) does not hold then from the
only if part of (ii) Case κ2 does not apply. If Inequality (89) does not hold then from the
only if part of (iii) Case κ3 does not apply. Since Case κ1 does not hold by (i), Case κ4
necessarily holds. Again, to assert that Inequalities (88) and (89) are both false we need
the members of both inequalities to be well defined which is the case owing to Inequalities
(87).

Proof of the if part of (v). If Case κ4 applies then (61) leads to (87b) since
x̄u(%1) ≤ D1 and (56) leads to (87a) since ζ ≥ −D2. On the other hand Equation (79) is
equivalent to

ν2 = `2

[
`−11

(
`1(ζ) + ν1

)]
− `2(ζ) = Lζ(ν1), (98)

where Lζ : [0, ν1ζmax] → [0, ν2ζmax] where 0 < ν1ζmax = `1(D1) − `1(ζ) ≤ ν1max by (56),
and 0 < ν2ζmax = `2(D1) − `2(ζ) ≤ ν2max. Note that Lζ(0) = 0, Lζ is strictly increasing
and continuous, and Lζ ∈ C1

(
]0, ν1ζmax[,R

)
. The derivative of Lζ is

L̇ζ(ν1) =

˙̀
2

[
`−11

(
`1(ζ) + ν1

)]
˙̀
1

[
`−11

(
`1(ζ) + ν1

)] =

h1

[
`−11

(
`1(ζ) + ν1

)]
h2

[
`−11

(
`1(ζ) + ν1

)]
so that

lim
ν1↓0

L̇ζ(ν1) =
h1(ζ)

h2(ζ)
> 0 if ζ 6= −D2, lim

ν1↓0
L̇ζ(ν1) =∞ if ζ = −D2, lim

ν1↑ν1ζmax

L̇ζ(ν1) = 0.

Note that numerator of Ḟ2(ν1) is strictly decreasing from h1(ζ) > 0 at ν1 = 0 to 0 at
ν1 = ν1ζmax, and the denominator of L̇ζ(ν1) is strictly increasing from h2(ζ) at ν1 = 0 to
h2(D1) > h2(ζ) at ν1 = ν1max. Thus L̇ζ(ν1) is strictly decreasing from ∞ at ν1 = 0 to 0
at ν1 = ν1ζmax so that Lζ is strictly concave on the interval ]0, ν1ζmax[. Thus

Lζ(ν1) >
ν2ζmax

ν1ζmax

ν1, ∀ν1 ∈ ]0, ν1ζmax[. (99)

If ζ = −D2 then Equation (79) shows that (89) cannot hold. Also if ζ = −D2

then Equations (99) and (94) show that ν2 = Lζ(ν1) > F1(ν1),∀ν1 ∈ ]0, ν1max[ since
ν1ζmax = ν1max and ν2ζmax = ν2max. Thus (88) does not hold for ν1 ∈ ]0, ν1max[. For
ν1 = ν1max we get from (79) that ν2 = ν2max so that (88) cannot hold.

If ζ 6= −D2 then

h1

[
`−11

(
`1(ζ) + ν1

)]
< h1

[
`−11

(
`1(−D2) + ν1

)]
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and

h2

[
`−11

(
`1(ζ) + ν1

)]
> h2

[
`−11

(
`1(−D2) + ν1

)]
so that

L̇ζ(ν1) < Ḟ2(ν1),∀ν1 ∈ ]0, ν1ζmax[.

Thus

ν2 = Lζ(ν1) =

∫ ν1

0

L̇ζ(ν)dν <

∫ ν1

0

Ḟ2(ν)dν = F2(ν1),∀ν1 ∈ ]0, ν1ζmax],

meaning that (89) does not hold.
On the other hand, Lζ(0) = 0 = F1(0) and Lζ(ν1ζmax) = `2(D1)− `2(ζ) = F1(ν1ζmax).

Since Lζ is strictly concave and F1 is strictly convex we have ν2 = Lζ(ν1) > F1(ν1) for
all ν1 ∈ ]0, ν1ζmax[. Thus (88) does not hold for any ν1 ∈ ]0, ν1ζmax[. For ν1 = ν1ζmax,
substituting in (79) we get ν2 = ν2ζmax so that (88) cannot hold.

(ii) Proof of the if part of (ii). Suppose (88). Then by (iv) Inequality (89) is false
so that from the only if part of (iii) Case κ3 does not apply. Also since (88) holds then
by (v) Case κ4 does not apply. Since Case κ1 does not hold by (i), it comes that Case κ2
applies.

(iii) Proof of the if part of (iii). Suppose (89). Then by (iv) Inequality (88) is false
so that from the only if part of (ii) Case κ2 does not apply. Also since (89) holds then
by (v) Case κ4 does not apply. Since Case κ1 does not hold by (i), it comes that Case κ3
applies.

(vi) We have Hν1 ∈ C1
(]
−D2, `

−1
1

(
`1(D1)− ν1

)[
,R
)

.

Take ζ ∈
]
−D2, `

−1
1

(
`1(D1)− ν1

)[
, then

Ḣν1(ζ) =

˙̀
2

[
`−11

(
`1(ζ) + ν1

)]
˙̀
1

[
`−11

(
`1(ζ) + ν1

)] ˙̀
1(ζ)− ˙̀

2(ζ) =

h1

[
`−11

(
`1(ζ) + ν1

)]
h1(ζ)h2

[
`−11

(
`1(ζ) + ν1

)] − 1

h2(ζ)
.

We have ν1 > 0 so that `−11

(
`1(ζ) + ν1

)
> ζ. Then h1

[
`−11

(
`1(ζ) + ν1

)]
< h1(ζ) and

h2

[
`−11

(
`1(ζ) + ν1

)]
> h2(ζ) so that

Ḣν1(ζ) <
h1(ζ)

h1(ζ)h2(ζ)
− 1

h2(ζ)
= 0.

The latter operation is valid since ζ 6= D1 so that h1(ζ) 6= 0, and ζ 6= −D2 so that
h2(ζ) 6= 0. Since Ḣν1(ζ) < 0 it comes that Hν1(ζ) is strictly decreasing, thus invertible.
Then from (90) we obtain (91).

Proposition 9.10. We have
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(i) If `1(D1) =∞ and `2(−D2) = −∞ then Case κ4 applies.

(ii) If `1(D1) =∞ and `2(−D2) 6= −∞ then Cases κ1 and κ2 cannot occur.

(iii) If `1(D1) 6=∞ and `2(−D2) = −∞ then Cases κ1 and κ3 cannot occur.

Proof. When `1(D1) =∞ Inequality (54) does not hold which proves (ii) and eliminates
Cases κ1 and κ2 in (i). When `2(−D2) = −∞ Inequality (59) does not hold which proves
(iii) and eliminates Case κ3 in (i) completing thus the proof of (i).

Theorem 9.1. Consider the model (51a)–(51c) under Conditions (A)-(E). Consider that
the input u ∈ S(R+,R) is periodic with period T > 0, and is such that u is strictly
increasing on [0, T1] and strictly decreasing on [T1, T ] for some T1 ∈ ]0, T [. Define umin =
u(0), umax = u(T1), %1 = umax − umin, and %2 = 2%1. Then Iu = R+ and the normalized
function ψu is given by Equation (11). The hysteresis loop of the model (51a)–(51c) with
respect to (u, x0) is independent of the initial state x0 so that it is denoted Gu. We have

Gu =
{(
ψu (%) , x̄u(%)

)
, % ∈ [0, %2]

}
, (100)

where x̄u is given hereafter.

(i) If Inequalities (84) hold then Case κ1 of Proposition 9.5 applies.

(ii) If Inequalities (85) hold then Case κ2 of Proposition 9.5 applies.

(iii) If Inequalities (86) hold then Case κ3 of Proposition 9.5 applies.

(iv) If Inequalities (87) hold and Inequality (88) also holds then Case κ2 of Proposition
9.5 applies.

(v) If Inequalities (87) hold and Inequality (89) also holds then Case κ3 of Proposition
9.5 applies.

(vi) If Inequalities (87) hold, and Inequality (88) does not hold, and Inequality (89) does
not hold, then Case κ4 of Proposition 9.5 applies, and ζ is given by Equation (91).

(vii) The cases (i)–(vi) are the only ones that can occur.

Proof. (i) Combine Propositions 9.6 and 9.10.

(ii) Combine Propositions 9.7 and 9.10.

(iii) Combine Propositions 9.8 and 9.10.

(iv) Follows from Proposition 9.9 (ii).

(v) Follows from Proposition 9.9 (iii).

(vi) Follows from Proposition 9.9 (v) and (vi).

(vii) Inequalities (84), (85), (86), and (87) are mutually exclusive and collectively exhaus-
tive. Owing to Proposition 9.9 (iv), if Inequalities (87) are assumed, then Inequalities
(88), (89), and ¬(88) ∧ ¬(89) are mutually exclusive and collectively exhaustive.

Finally, the hysteresis loop does not depend on the initial condition x0 owing to (i)–
(vii).
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9.3. Numerical examples

In this section we illustrate the results of this paper by means of numerical simulations.
We choose the following values for the input u: umin = 0 and umax = 1, so that %1 = 1
and %2 = 2. Since the hysteresis loop does not depend directly on the input u but rather
on the normalized input ψu, we provide only the plot for ψu, see Figure 3.

0 1 2 3 4 5 6

̺

0

1

ψ
u
(̺
)

Figure 3: Normalized input ψu(%) versus %.

Following [14] we consider that g1(b) = c1e
α1b and g2(b) = c2e

α2b, where c1, c2 > 0 and
α1, α2 ∈ R. Thus

G1(z) =

∫ z

0

c1e
α1νdν =

c1
α1

(
eα1z − 1

)
,

G2(z) =

∫ z

0

c2e
α2νdν =

c2
α2

(
eα2z − 1

)
,

G−11 (ν) =
1

α1

ln

(
α1ν

c1
+ 1

)
,

G−12 (ν) =
1

α2

ln

(
α2ν

c2
+ 1

)
.

For the functions h1 and h2 we consider that{
h1(a) = (D1 − a)β1 , a ≤ D1

h1(a) = 0, a ≥ D1,

and {
h2(a) = (D2 + a)β2 , a ≥ −D2

h2(a) = 0, a ≤ −D2,

where D1, D2, β1, β2 > 0. We study different examples which illustrate the different cases
that appear in Theorem 9.5.
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9.3.1. β1 = 1 and β2 = 1

We get

`1(z) =

∫ z

0

(D1 − ν)−1dν = ln(D1)− ln(D1 − z),

`2(z) =

∫ z

0

(D2 + ν)−1dν = ln(D2 + z)− ln(D2).

We have `1(D1) = ∞ and `2(−D2) = −∞ so that by Proposition 9.10 Case κ4 applies
which is given by Equations (77), (78), and (79).

We have `−11 (ν) = D1(1−e−ν) and `−12 (ν) = D2(e
ν−1) so that Equation (79) becomes

(D2 + ζ) exp
[ c2
α2

(
eα2umax − eα2umin

)]
−D2 = D1 − (D1 − ζ) exp

[ c1
α1

(
eα1umin − eα1umax

)]
which leads to

ζ =
D1(1− E1) +D2(1− E2)

E2 − E1

, (101a)

E2 = exp
[ c2
α2

(
eα2umax − eα2umin

)]
, (101b)

E1 = exp
[ c1
α1

(
eα1umin − eα1umax

)]
. (101c)

If we choose α1 > 0 and α2 > 0 we get E2 > 1 and E1 < 1 so that the denominator of
(101a) is not zero.

We take c1 = c2 = 1, α1 = 0.5, α2 = 1, D1 = 1, D2 = 0.5, x0 = 0. We use
Matlab solver ode23s to solve the differential equation (52a)–(52c) which gives xu and
thus xu,k (see Definition 5.1). Figure 4 shows xu,k for different values of k. The function
x̄u is calculated from Equations (77), (78), and (101). It can be seen in Figure 4 that
lim
k→∞
‖xu,k − x̄u|[0,2]‖ = 0 as predicted by Proposition 8.1.

0 1 2

̺

-0.4

0

0.8

x
u
,k
(̺
),
x̄
u
(̺
)

 k = 0

 k = 1

 k = 2

 k = ∞

Figure 4: xu,k(%) versus % for k = 0 (dashed), k = 1 (dash-dotted), and k = 2 (dotted). Solid: x̄u(%)
versus % labeled as k =∞. The dotted line is practically the same as the solid one.

34



The hysteresis loop Gu is provided in Figure 5 (solid). As predicted by Proposition
8.1 we can see that the point

(
xu(%), ψu(%)

)
-dotted- gets closer and closer to the set Gu

as % increases.

0 1

ψu(̺)

-0.4

0

0.8
x̄
u
(̺
),
x
u
(̺
)

Figure 5: Dotted xu(%) versus ψu(%). Solid: hysteresis loop Gu, that is x̄u(%) versus ψu(%).

9.3.2. β1 = 1 and 0 < β2 < 1

We get

`1(z) = ln(D1)− ln(D1 − z),

`2(z) =

∫ z

0

(D2 + ν)−β2dν =
1

1− β2
[
(D2 + ν)1−β2

]z
0

=
1

1− β2

(
(D2 + z)1−β2 −D1−β2

2

)
,

`−11 (ν) = D1(1− e−ν),

`−12 (ν) =
(

(1− β2)ν +D1−β2
2

) 1
1−β2 −D2.

We have `1(D1) = ∞ and `2(−D2) 6= −∞ so that Cases κ1 and κ2 cannot occur
by Proposition 9.10. We take c1 = 1, c2 = 2, α1 = 0.5, α2 = 1, D1 = 1, D2 = 0.5,
β2 = 0.5. In this case Inequalities (86) hold so that Case κ3 applies by Proposition 9.8.
Then Equations (74)–(76) hold. Figure 6 provides the corresponding hysteresis loop.
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Figure 6: Hysteresis loop Gu, that is x̄u(%) versus ψu(%).

9.3.3. β1 = 1 and β2 > 1

The functions `1 and `2 have the same expressions as in Section 9.3.2. We have
`1(D1) = ∞ and `2(−D2) = −∞ so that Case κ4 applies by Proposition 9.10. The
equations that describe the hysteresis loop and the general shape of that hysteresis loop
are the same as for Section 9.3.1. To find ζ we determine the function Hν1(ζ) of Equation
(90) as

Hν1(ζ) =
1

1− β2

[(
D2 +D1 − (D1 − ζ)e−ν1

)1−β2 − (D2 + ζ)1−β2
]
.

Then by Proposition (9.9) (vi) the function Hν1 is invertible and ζ is given by Equation
(91) where

ν1 =
c1
α1

(
eα1umax − 1

)
− c1
α1

(
eα1umin − 1

)
,

ν2 =
c2
α2

(
eα2umax − 1

)
− c2
α2

(
eα2umin − 1

)
.

9.3.4. 0 < β1 < 1 and β2 = 1

We get

`1(z) =

∫ z

0

(D1 − ν)−β1dν =
1

1− β1

(
D1−β1

1 − (D1 − z)1−β1
)
,

`2(z) = ln(D2 + z)− ln(D2),

`−11 (ν) = D1 −
(
D1−β1

1 − (1− β1)ν
) 1

1−β1 ,

`−12 (ν) = D2(e
ν − 1).

We have `1(D1) 6= ∞ and `2(−D2) = −∞ so that Cases κ1 and κ3 cannot occur by
Proposition 9.10. We take c1 = 3, c2 = 1, α1 = 0.5, α2 = 1, D1 = 1, D2 = 0.5, β1 = 0.5
so that Inequalities (85) hold, which corresponds to Case κ2 by Proposition 9.7. Thus
Equations (71)–(73) apply and the corresponding hysteresis loop is shown in Figure 7.
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Figure 7: Hysteresis loop Gu, that is x̄u(%) versus ψu(%).

9.3.5. 0 < β1 < 1 and 0 < β2 < 1

We get

`1(z) =
1

1− β1

(
D1−β1

1 − (D1 − z)1−β1
)
, (102a)

`2(z) =
1

1− β2

(
(D2 + z)1−β2 −D1−β2

2

)
, (102b)

`−11 (ν) = D1 −
(
D1−β1

1 − (1− β1)ν
) 1

1−β1 , (102c)

`−12 (ν) =
(

(1− β2)ν +D1−β2
2

) 1
1−β2 −D2. (102d)

Then `1(D1) 6= ∞ and `2(−D2) 6= −∞. Any of the cases κ1, κ2, κ3, or κ4 may occur
depending on the values of the parameters. For example, taking c1 = 2.5, c2 = 2, α1 = 0.5,
α2 = 1, D1 = 1, D2 = 0.5, β1 = 0.5, and β2 = 0.4, Inequalities (84) hold so that Case κ1
applies by Proposition 9.6. The corresponding hysteresis loop is provided in Figure 8.
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Figure 8: Hysteresis loop Gu, that is x̄u(%) versus ψu(%).

9.3.6. 0 < β1 < 1 and β2 > 1

The formulas for `1 and `2 are the same as in Section 9.3.5. However we have `1(D1) 6=
∞ and `2(−D2) = −∞ which implies by Proposition 9.10 that Cases κ1 and κ3 cannot
occur.

9.3.7. β1 > 1 and β2 = 1

We get

`1(z) =
1

1− β1

(
D1−β1

1 − (D1 − z)1−β1
)
,

`2(z) = ln(D2 + z)− ln(D2),

`−11 (ν) = D1 −
(
D1−β1

1 − (1− β1)ν
) 1

1−β1 ,

`−12 (ν) = D2(e
ν − 1).

Then `1(D1) =∞ and `2(−D2) = −∞ so that Case κ4 applies by Proposition 9.10. The
calculations are similar to those of Section 9.3.3 mutatis mutandis.

9.3.8. β1 > 1 and 0 < β2 < 1

The formulas for `1 and `2 are the same as in Section 9.3.5. However we have `1(D1) =
∞ and `2(−D2) 6= −∞ which implies by Proposition 9.10 that Cases κ1 and κ2 cannot
occur.

9.3.9. β1 > 1 and β2 > 1

The formulas for `1 and `2 are the same as in Section 9.3.5. However we have `1(D1) =
∞ and `2(−D2) = −∞ which implies by Proposition 9.10 that Cases κ4 applies. The
determination of ζ is done as in Section 9.3.3 mutatis mutandis.
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10. Application to friction modeling

10.1. The Coulomb model for dry friction

Consider the cube of Figure 9 resting on an inclined plane with slope θ.
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Figure 9: Cube on an inclined plane.

Using Newton’s second law we get

mü = Pu − Fd (103)

where the u–axis is parallel to the slope of the plane, Pu = mg sin(θ) is the projection of

the weight ~P on the u–axis, m the mass of the cube, g is gravity, ü =
d2u

dt2
(being u the

displacement of the cube and t the time), −Fd the tangential friction force, and θ is the
angle that provides the inclination of the plane.

We observe experimentally that for small values of θ the cube does not move. This can
be explained by the existence of a force equal to −~Pu: friction. The friction force ~Fd is
called dry because the cube and the inclined plane are both solid objects, and there is no
lubricant in between. To complete the description of Equation (103), it is necessary to
find a description of the force Fd. The simplest way to describe dry friction is through
the Coulomb model [32, pp. 41–42] (see Figure 10):

Fd = Fc for u̇ > 0, (104a)

Fd = −Fc for u̇ < 0, (104b)

−Fc ≤ Fd ≤ Fc for u̇ = 0, (104c)

where Fc > 0 is the Coulomb friction level.

10.2. On the physics of friction

Quoting from [33, p. 133]: “Friction between solid bodies is an extremely complicated
physical phenomenon... What is astonishing is the fact that it is possible to formulate a
very simple law for dry friction... The frictional force is proportional to the normal force
and as good as independent from the speed.”
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Figure 10: The Coulomb model for dry friction.
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Figure 11: The Coulomb model with stiction.

The following properties that characterize dry friction are taken from [33, Chapter
10]:

(i) In order to set in motion a body lying on an even surface in a state of rest, a critical
force, the force of static friction Fs , must be overcome. We have Fs = µsFN where
FN is the normal force and µs the coefficient of static friction. It is dependent on
the pairing of the contacting materials but shows almost no dependence on contact
area or roughness.

(ii) The kinetic friction Fc is the resisting force which acts on a body after the force of
static friction has been overcome. We have Fc = µkFN where µk is the coefficient
of kinetic friction. It shows no considerable dependence on the contact area or
roughness of the surface. The kinetic friction is very weakly dependent on the
sliding velocity.

There are deviations from the simple laws described above. In particular, Coulomb
discovered that the static frictional force increases with the amount of time an object
is at rest: his data shows that this increase is logarithmic [33, Section 10.4]. Also, the
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linear dependence of the frictional force–either static or kinetic–on the normal force is
only met in a specific force domain: for not too large or too small a normal force. This
linear dependence is no longer valid when the real contact area is comparable to the
apparent contact area as for polymers and elastomers. Finally, it is often assumed that
the coefficient of kinetic friction is independent of sliding speed. This is a good but rough
approximation that is valid for not too high and not too low speeds [33, Section 10.6].

Frequently, the origins of friction are explained through the roughness of the surfaces.
However, in a large domain of roughnesses, the frictional force is independent or only very
slightly dependent on the roughness [33, Section 10.7]. An alternative explanation for the
physical origin of friction has been proposed by Bowden and Tabor through the formation
of cold weld junctions [33, Section 10.9].

Despite the efforts to understand friction, we are not aware of any widely accepted
model that would describe quantitatively friction dynamics. The available models combine
basic physical laws with fictitious equations that aim to emulate the macroscopic behavior
of friction observed experimentally. These models are called phenomenological.

An example of such models is the one proposed in [34]. In this model, Equation
[34, (1)] is derived from Newton’s second law whilst [34, (4)] is a fictitious equation that
governs the rupture and formation of bonds. Another example of a phenomenological
model is that of Prandtl-Tomlinson studied in [33, Chapter 11].

10.3. Static and dynamic models for friction

In this section we consider the friction models that are presented in the survey paper
[35]. The emphasis in that paper is made on the pure dry sliding friction, stick-slip effect,
viscous friction and Stribeck effect. The models are classified as static when they describe
the steady-state behavior of friction force, and as dynamic when they use state variables
to capture more properties.

The simplest static model is the Coulomb model (104). Stiction can be included to
the model to state that Fs > Fc, see Figure 11; a Stribeck curve can be incorporated to
ensure that the decrease from Fs to Fc is continuous, see Figure 12; and a linear term in
ẋ can be added to take into account viscous friction. More variations on the Coulomb
model are presented in [35, Section 2] along with a discussion of the pros and cons of
these variations.

The simplest dynamic model for friction is the Dahl model [30]:

F (t) = Fd(t) + Fviscous(t), (105a)

Fviscous(t) = f
(
u̇(t)

)
, (105b)

Fd(t) = Fc x(t), (105c)

ẋ(t) = ρ
(
u̇(t)− |u̇(t)|x(t)

)
, (105d)

x(0) = x0, −1 ≤ x0 ≤ 1, (105e)

where t ≥ 0 denotes time, Fviscous refers to viscous friction, x is an internal state, u ∈
S(R+,R) is the relative displacement and is the input of the model, F is the total friction
and is the output of the model, f ∈ C0 (R,R) satisfies f(0) = 0, x0 ∈ R is the initial
state, and ρ > 0 is a parameter. The compatibility of the Dahl model and the Coulomb
model is studied in [31].
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Other dynamic models of friction are reviewed in [35, Section 3] along with a discussion
of the pros and cons of these models. In particular, the LuGre model is an extension of the
Dahl model that takes into account the Stribeck and stiction effects. The LuGre model
is given by [28]:

ẋ(t) = −σ0
|u̇(t)|
g
(
u̇(t)

)x(t) + u̇(t), (106a)

x(0) = x0, (106b)

Fd(t) = σ0x(t) + σ1ẋ(t), (106c)

F (t) = Fd(t) + f
(
u̇(t)

)
, (106d)

where the parameters σ0 > 0 and σ1 > 0 are respectively the stiffness and the microscopic
damping friction coefficients, and the function g ∈ C0(R,R) represents the macrodamping
friction with g(ϑ) > 0,∀ϑ ∈ R. In [36] the expression for g is taken to be

g(ϑ) = Fc + (Fs − Fc)e−|ϑ/vs|
α

(107)

where vs > 0 and α > 0 are parameters.
When u̇ is constant, integrating (106a) shows that Fd reaches a steady state given by

g
(
u̇
)

for u̇ > 0 and −g
(
u̇
)

for u̇ < 0, see Figure 12.

0

constant u̇

0

st
ea
d
y
st
a
te

F
d

Fs

Fc

Figure 12: Steady state of the dry friction force versus constant velocity.

For u̇ ≡ 0 we have −Fs ≤ Fd ≤ Fs which translates into

−Fs
σ0
≤ x0 ≤

Fs
σ0
. (108)

10.4. Compatibility of Babuška’s model with the Coulomb model
In this section we consider Babuška’s model (51) augmented by the following equations:

F (t) = Fd(t) + Fviscous(t), (109a)

Fviscous(t) = f
(
u̇(t)

)
, (109b)

Fd(t) = σ0x(t), (109c)
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where σ0 > 0 and f ∈ C0 (R,R) satisfies f(0) = 0. We call Π the model composed of
Equations (51) and (109). The input of Π is the relative displacement u ∈ S(R+,R) and
its output is the friction force F .

We have first to ensure that Π is compatible with the Coulomb model. To this end
suppose that u(t) = u(0) for all t ≥ 0. Then x(t) = x0 for all t ≥ 0 so that Fd(t) = σ0x0
for all t ≥ 0. To be compatible with Inequalities (104c) we need to have −Fc ≤ σ0x0 ≤ Fc,
that is

−Fc
σ0
≤ x0 ≤

Fc
σ0
. (110)

We choose

D1 = D2 =
Fc
σ0

(111)

so that Equation (110) can be written as −D2 ≤ x0 ≤ D1. Then, by Proposition 4.1 we
get −D2 ≤ x(t) ≤ D1 for all t ≥ 0 so that by Equation (109c) we have

−Fc ≤ Fd(t) ≤ Fc for all t ≥ 0.

Proposition 10.1. Let u(t) = βt, t ≥ 0 so that u̇(t) = β, t > 0 where β ∈ R. Suppose
that

lim
z→∞

G1(z) > `1(D1)− `1(−D2), (112a)

lim
z→∞

G2(−z) < `2(−D2)− `2(D1). (112b)

Then lim
t→∞

Fd(t) = Fc if β > 0 and lim
t→∞

Fd(t) = −Fc if β < 0.

Proof. Suppose that β > 0. By Equation (51a) we have ẋ(t) ≥ 0 for almost all t ≥ 0 so
that x(t) ≥ x0 for all t ≥ 0. If x0 = D1 then x(t) = D1 for all t ≥ 0 so that Fd(t) = Fc for
all t ≥ 0.

Suppose now that −D2 ≤ x0 < D1. Then, owing to Inequality (112a) there exists a
unique t1 > 0 such that G1(βt1) = `1(D1)− `1(x0). Define the function z1 : [0, t1]→ R by
z1(t) = `−11

(
`1(x0)+G1(βt)

)
. Then z1 is continuous, C1 on the interval ]0, t1[, and satisfies

Equation (51a). Owing to the uniqueness of solutions we have x = z1 on the interval [0, t1]
so that x(t1) = z1(t1) = D1. Then x(t) = D1 for all t ≥ t1 so that Fd(t) = Fc for all
t ≥ t1.

A similar proof holds for the case β < 0.

To sum up, Babuška’s model Π is compatible with the Coulomb model when Equations
(110)–(112) hold.

10.5. A comparative study

In this section we compare some characteristics of the LuGre model, the Dahl model,
and Babuška’s model Π.

Consider a periodic input u ∈ S(R+,R) which has the form of Figure 1. The cor-
responding normalized function is also periodic and given by Equations (11), see Figure
2.
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The hysteresis loop of the LuGre model has been determined in [29, Equations (25)-
(26)]. This hysteresis loop is independent of the initial condition x0 so that it can be
denoted Gu,LuGre, that is

Gu,LuGre =
{(
ψu (%) , F ◦LuGre(%)

)
, % ∈ [0, %2]

}
, (113)

where

F ◦LuGre(%) = g(0)
(

1− αe−
σ0
g(0)

[ψu(%)−umin]
)
,∀% ∈ [0, %1], (114a)

F ◦LuGre(%) = g(0)
(
−1 + αe−

σ0
g(0)

[umax−ψu(%)]
)
,∀% ∈ [%1, %2], (114b)

α =
2

1 + e−c
; c =

σ0%1
g(0)

. (114c)

Observe the following:

• The hysteresis loop of the LuGre model is symmetric with respect to its center [29,
Comment 2].

• The viscous friction term f(u̇) does not contribute to the hysteresis loop. This means
that even if we choose an asymmetric form for f which is different for positive and
negative velocities, the hysteresis loop of the LuGre model remains symmetric.

• For the validity of Equations (114) the function g does not need to be of the form
(107). Equations (114) are valid for any continuous and strictly positive function g.

• The hysteresis loop depends solely on g(0). It does not depend on any other value
of g. This means that even if we choose an asymmetric form for g which is different
for positive and negative velocities, the hysteresis loop of the LuGre model remains
symmetric.

• The Dahl model is a particular case of the LuGre model obtained when g is constant
and σ1 = 0. This means that the hysteresis loop of the Dahl model is also given by
Equations (114). Thus the hysteresis loop of the Dahl model is symmetric.

On the other hand, the hysteresis loop of Babuška’s model Π may be symmetric or
asymmetric, see for instance Figure 8. As a matter of fact, even when D1 = D2, we can
choose the functions h1, h2, g1, g2 to obtain a symmetric or an asymmetric hysteresis
loop, see for example Equations (102).

However, Babuška’s model Π does not include stiction or the Stribeck effect so that its
steady state behavior is the same as the Coulomb model of Figure 10 owing to Proposition
10.1.

11. Application to hysteresis loop matching

A search in the Web of Science Core Collection provides for the 2010s alone 5888
research articles whose title contains the word “hysteresis”. Whilst this fact highlights the
interest of the scientific community into the study of hysteresis, it also makes it difficult to
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fairly review the field. Indeed, more than 10 survey papers on hysteresis related issues have
been published between 2003 and 2020 leaving important items like control, identification
or estimation of hysteresis systems without a thorough specific review. In the next we
present a brief overview of hysteresis loop matching.

Materials, composites, and structural assemblies may present inelasticities that gener-
ate hysteresis: for example Figure 2.2 in [23, p. 19] shows six shapes of hysteresis loops in
which the loading and unloading curves are both strictly increasing and intersect only at
maximum and minimum loads. On the other hand, magnetostrictive materials and ferro-
magnetic shape memory alloys present hysteresis loops that have the shape of a butterfly,
see Figures 1.1 and 4.14 in [38].

The first question to be answered is the following: which model generates a hysteresis
loop that matches the experimental one?

Mayergoyz classifies hysteresis models into two categories: models with local memories
and models with nonlocal memories [39, pp. xvii]. In a hysteresis with a local memory,
the state at time t ≥ t0 is completely defined by the state at the initial time t0 and the
input on [t0, t]. This is the case for example of a hysteresis given by a differential equation.
Hysteresis with a nonlocal memory is a hysteresis which is not with local memory. This is
the case for example of the Preisach model. Both classes of models have been studied in–
amongst other references–[40, 41] from the point of view of the existence and mathematical
properties of operators.

When the aim of the study is to get a dynamical model that generates a given hysteresis
loop, it is in general irrelevant whether the model is with local memory or with nonlocal
memory. This issue is relevant only when the hysteresis loop includes a major loop and
minor loops that are closed since closed minor loops can be obtained by models with
nonlocal memory but not with models with local memory, see [5, Section 10] for instance.

A nice example of this point of view is [42] in which Drinčić et al. show that the
butterfly shape of [38, Fig. 4.14, p. 176] can be generated from the simple hysteresis
loops of [23, Figure 2.2, p. 19] through a unimodal map and vice-versa. No assumption
about the type of hysteresis model that generates the simple hysteresis loop is needed.

This said, hysteresis models with a finite number of parameters are likely to produce
a limited range of shapes for the hysteresis loop. A good example of this case is the
Bouc-Wen model which is a first-order differential equation with three parameters whose
hysteresis loop has a specific shape given in [15, Fig. 4.3].

On the other hand, models with an infinite number of parameters, or that include
functions, are likely to produce a wider range of shapes for the hysteresis loop. A nice
example of this case is [43] in which Jayawardhana et al. propose sufficient conditions on
the weighing function of a Preisach operator to obtain a hysteresis loop with a butterfly
shape. The obtained model is then used to generate an experimental butterfly hysteresis
loop obtained from a piezoelectric material. The asymptotic stability of Lur’e systems
that incorporate the Preisach operator with butterfly hysteresis is then analyzed in [44].

In this section we show that asymmetric and symmetric hysteresis loops with a strictly
increasing loading and unloading curves can be generated by Babuška’s model. This is
the case in particular of eight-shaped hysteresis loops.
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To this end, suppose that a hysteresis loop of some material is described by

Gu = S↑ ∪ S↓, (115a)

S↑ =
{(
ψu (%) , y↑(%)

)
, % ∈ [0, %1]

}
, (115b)

S↓ =
{(
ψu (%) , y↓(%)

)
, % ∈ [%1, %2]

}
, (115c)

when the input u is the one of Figure 1, and y↑, y↓ ∈ C1(R,R) correspond respectively
to loading (that is an increasing u) and unloading (that is a decreasing u). Suppose that
ẏ↑(%) > 0 for all % ∈ [0, %1] and that ẏ↓(%) < 0 for all % ∈ [%1, %2]. Suppose, moreover, that
y↑(%1) = y↓(%1) and y↑(0) = y↓(%2). Our aim is to find h1, h2, g1, g2 so that the hysteresis
loop of the corresponding Babuška’s model is precisely Gu of Equation (115a).

The conditions above show that Case κ4 of Proposition 9.5 applies. This means by
Proposition 9.9(v) that Inequalities (87) hold, and Inequality (88) does not hold, and
Inequality (89) does not hold. A sufficient condition for this to happen is to have `1(D1) =
∞ and `2(−D2) = −∞. A sufficient condition to obtain these two equalities is to choose

h1(a) = (D1 − a)β1 , for a ≤ D1, (116a)

h1(a) = 0, for a ≥ D1, (116b)

h2(a) = (D2 + a)β2 , for a ≥ −D2, (116c)

h2(a) = 0, for a ≤ −D2, (116d)

where D1 > y↑(%1), −D2 < y↓(%2), β1 ≥ 1, and β2 ≥ 1.
On the other hand, by Equations (52), (116), and (11) we have

ẏ↑(%) =
(
D1 − y↑(%)

)β1 g1(%+ umin),∀% ∈ [0, %1], (117a)

ẏ↓(%) = −
(
D2 + y↓(%)

)β2 g2(−%+ 2umax − umin),∀% ∈ [%1, %2]. (117b)

Equations (117) give g1 and g2 as

g1(%+ umin) =
ẏ↑(%)(

D1 − y↑(%)
)β1 ,∀% ∈ [0, %1], (118a)

g2(−%+ 2umax − umin) = − ẏ↓(%)(
D2 + y↓(%)

)β2 , ∀% ∈ [%1, %2]. (118b)

The functions g1 and g2 can be completed with constant parts to comply with Conditions
(A) and (E) of Section 9.1.

To illustrate the process above we consider the following example. Consider a hys-
teretic process with input u and output y. Suppose that the input u is given by u(t) =
− cos(2πt), t ≥ 0, see Figure 13.
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Figure 13: u(t) versus t.
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Figure 14: Given hysteresis loop Gu.

Let the corresponding hysteresis loop be Gu = {
(
u(t), yss(t)

)
, t ∈ [0, 1]} of Figure 14,

where yss corresponds to the steady state of y when u(t) = − cos(2πt), t ≥ 0. We have
constructed the plot of Figure 14 as follows: we chose arbitrarily the points marked with a
circle to be the loading curve and the points marked with a rectangle to be the unloading
curve. Then we used the Matlab command spline to generate the points in between to
make both curves smooth.

To make precise the corresponding notations, the restriction of yss to the time interval
[0, 1/2] is denoted yloading and corresponds to an increasing u, whilst the restriction of yss
to the time interval [1/2, 1] is denoted yunloading and corresponds to a decreasing u.

The hysteresis loop of Figure 14 will be considered an “experimental” curve, meaning
that the aim of Babuška’s model is to match that “experimental” curve. We would like
to mention that we got the idea of using this eight-shape hysteresis loop from [37, Figure
7].

47



The first step is to find the functions y↑ and y↓. The loading part of the hysteresis
loop satisfies

y↑ ◦ ρu = yloading, (119)

where

ρu(t) =

∫ t

0

|u̇(ν)|dν. (120)

For 0 ≤ t ≤ 1
2

we have ρu(t) =
∫ t
0
u̇(ν)dν = u(t) − u(0) = − cos(2πt) + 1. For 1

2
≤ t ≤ 1

we have ρu(t) =
∫ 1

2

0
u̇(ν)dν −

∫ t
1
2
u̇(ν)dν = 2−

(
u(t)− u(1/2)

)
= 3 + cos(2πt). To sum up

ρu(t) = − cos(2πt) + 1, t ∈
[
0,

1

2

]
,

ρu(t) = 3 + cos(2πt), t ∈
[

1

2
, 1

]
.

(121)

Note that ρu is strictly increasing so that it is invertible. Then Equation (119) gives y↑ as

y↑ = yloading ◦ ρ−1u . (122)

From Equations (121), (8), and (10) we find %1 = ρu(1/2) = 2 and %2 = ρu(1) = 4.
The loading part of the “experimental” hysteresis loop provides y↑(%1) = 0.75 so that we
choose D1 = 1 to ensure that D1 > y↑(%1).

Similarly, we find that y↓ = yunloading ◦ ρ−1u . We choose D2 = 2 to ensure that −D2 <
y↓(%2) = −1.5. Finally we choose β1 = β2 = 1 to get `1(D1) = ∞ and `2(−D2) = −∞.
These values provide h1 and h2 using Equations (116).

From Equation (118a) we take the following form for g1:

g1(%) =
ẏ↑(%+ 1)

D1 − y↑(%+ 1)
, % ∈ [−1, 1],

g1(%) =
ẏ↑(0)

D1 − y↑(0)
, % ≤ −1,

g1(%) =
ẏ↑(2)

D1 − y↑(2)
, % ≥ 1.

(123)

Also, from Equation (118b) we take the following form for g2:

g2(%) = − ẏ↓(3− %)

D2 + y↓(3− %)
, % ∈ [−1, 1],

g2(%) = − ẏ↓(4)

D2 + y↓(4)
, % ≤ −1,

g2(%) = − ẏ↓(2)

D2 + y↓(2)
, % ≥ 1.

(124)
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Figure 15: x(t) versus u(t).

Now that the functions h1, h2, g1, g2 have been determined, the differential equation
(51) is solved Using Matlab solver ode23s for an initial condition x0 = 0. The obtained
solution x of (51) is plotted in Figure 15: the grey points with the shape of a diamond
correspond to the transient of x, that is the time interval [0, 2]; the black points with a
shape of a triangle that points upwards correspond to the steady state of x in the loading
part, which is the time interval [2, 2.5]; and the black points with a shape of a triangle
that points downwards correspond to the steady state of x in the unloading part, which
is the time interval [2.5, 3].

In the same figure we have plotted in solid line the “experimental” hysteresis loop of
Figure 14 without rectangles or circles.

We can see that the steady state points of the numerical solution x are practically on
the “experimental” hysteresis loop.

12. Conclusion

Experimental evidence shows that real hysteretic processes exhibit hysteresis loops
that may be symmetric or asymmetric. It is thus of great interest to have mathematical
models that are able to match this experimentally observed behavior. The Preisach or the
Prandtl models of hysteresis can be designed or modified in order to obtain an asymmetric
hysteresis loop. However, these models are not simple to study or program, and thus the
interest of Babuška’s hysteresis model which consists of a first order scalar differential
equation that can be programmed easily using a Matlab solver. This model can match
a wide range of asymmetric and symmetric hysteresis loops which makes it of particular
interest for the practitioner.
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couronnés et autres Mémoires, l’Académie royale de Belgique.

50
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[42] Drinčić, B, Tan, X, Bernstein, B. S. (2011). Why are some hysteresis loops shaped
like a butterfly? Automatica, 47(12), 2658–2664.

[43] Jayawardhana, B, Vasquez-Beltran, M. A., van der Beek, W. J., de Jonge, C.,
Acuautla, M., Damerio, S., Peletier, R., Noheda, B., Huisman, R. (2018). Model-
ing and analysis of butterfly loops via Preisach operators and its application in a
piezoelectric material. IEEE Conference on Decision and Control, Miami Beach, FL,
USA, Dec. 17-19, 6894–6899.

[44] Vasquez-Beltran, M. A., Jayawardhana, B, Peletier, R. (2020). Asymptotic stabil-
ity analysis of Lur’e systems with butterfly hysteresis nonlinearities. IEEE Control
Systems Letters, 4(2), 349–354.

52


