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MEAN-SQUARE CONTRACTIVITY OF STOCHASTIC θ-METHODS∗

RAFFAELE D’AMBROSIO† AND STEFANO DI GIOVACCHINO‡

Abstract. The paper is focused on the nonlinear stability analysis of stochastic θ-methods. In
particular, we consider nonlinear stochastic differential equations such that the mean-square deviation
between two solutions exponentially decays, i.e., a mean-square contractive behaviour is visible along
the stochastic dynamics. We aim to make the same property visible also along the numerical dynamics
generated by stochastic θ-methods: this issue is translated into sharp stepsize restrictions depending
on parameters of the problem, here accurately estimated. A selection of numerical tests confirming
the effectiveness of the analysis and its sharpness is also provided.

Key words. Stochastic differential equations, stochastic theta-methods, exponential mean-
square contractivity.
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1. Introduction. We consider a nonlinear system of stochastic differential equa-
tions (SDEs) of Itô type, assuming the form

(1.1)

{
dX(t) = f(X(t))dt+ g(X(t))dW (t), t ∈ [0, T ],

X(0) = X0,

where f : Rn → Rn, g : Rn → Rn×m and W (t) is an m-dimensional Wiener process.
For theoretical results on the existence and uniqueness of solutions to (1.1), we refer
to the monograph [8]. Moreover, in the sequel, we assume that (1.1) is commutative.

We focus our attention on providing a nonlinear stability analysis to the general
classes of stochastic θ-methods for (1.1) that, with reference to the discretized domain
I∆t = {tn = n∆T, n = 0, 1, . . . , N, N = T/∆t}, assume the following forms:

Xn+1 = Xn + (1− θ)∆tf(Xn) + θ∆tf(Xn+1) + g(Xn)∆Wn,(1.2)

Xn+1 = Xn + (1− θ)∆tf(Xn) + θ∆tf(Xn+1) +

m∑

j=1

gj(Xn)∆W j
n(1.3)

+
1

2

m∑

j=1

Ljgj(Xn)((∆W j
n)

2 −∆t) +
1

2

m∑

j1,j2=1
j1 6=j2

Lj1gj2(Xn)∆W j1
n ∆W j2

n ,

where θ ∈ [0, 1], Xn is the approximate value for X(tn), the discretized Wiener
increment ∆Wn is distributed as a gaussian random variable with zero mean and
variance ∆t, the operator Lj is defined as

Lj =

n∑

k=1

gk,j
∂

∂xk
, j = 1, ...,m,
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2 R. D’AMBROSIO, S. DI GIOVACCHINO

where gj(Xn) is the j−th column of the matrix g(Xn) and ∆W j
n the j−th element

of vector ∆Wn. We refer to (1.2) as θ-Maruyama method and to (1.3) as θ-Milstein
method in its componentwise form. We note that, if m = 1, (1.3) reduces to the form

Xn+1 = Xn + (1− θ)∆tf(Xn) + θ∆tf(Xn+1) + g(Xn)∆Wn

+
1

2
g(Xn)g

′(Xn)(∆W 2
n −∆t).

The stability analysis of ϑ-methods has been given in [1, 4] with respect to linear
test problems, both scalar and vector-valued. The investigation led to conditions
according to which the mean-square and asymptotic behaviours of the solutions to
such linear problems are inherited also along the discretized counterpart provided by
above ϑ-methods.

This paper is instead focused on providing a nonlinear stability analysis for ϑ-
methods (1.2) and (1.3), with the aim to numerically inherit relevant properties of
nonlinear problems along their discretizations. The discussion is motivated by some
contributions on the so-called exponential stability properties of nonlinear SDEs, con-
tained in [6, 7] and here briefly summarized in the following result.

Theorem 1.1. For a given nonlinear SDE (1.1), let us assume the following
properties for the drift f and the diffusion g, by denoting with | · | both the Euclidean
norm in Rn and the trace (or Frobenius) norm in Rn×m:

(i) f, g ∈ C1(Rn);
(ii) f satisfies a one-side Lipschitz condition, i.e. there exists µ ∈ R such that

(1.4) < x− y, f(x)− f(y) >≤ µ |x− y|
2
, ∀x, y ∈ R

n;

(iii) g is a globally Lipschitz function, i.e. there exists L > 0 such that

(1.5) |g(x)− g(y)|2 ≤ L |x− y|2 ∀x, y ∈ R
n.

Then, any two solutions X(t) and Y (t) of (1.1), with E |X0|
2
< ∞ and E |Y0|

2
< ∞,

satisfy

(1.6) E |X(t)− Y (t)|
2
≤ E |X0 − Y0|

2
eαt,

where α = 2µ+ L.

The inequality (1.6) is denoted as exponential mean-square stability inequality
for (1.1). An eventual negative sign on the parameter α appearing in the stability
inequality (1.6) allows to infer an exponential decay of the mean-square deviation
between two solutions of a given SDE (1.1). Motivated by an analog property of
deterministic differential equations (see, for instance, [3] and references therein) we
then introduce the following definition.

Definition 1.2. A nonlinear SDE (1.1) whose solutions satisfy the exponential
stability inequality (1.6) with α < 0 is said to generate exponential mean-square con-
tractive solutions.

We observe that, when g is identically zero in (1.1), Definition 1.2 recovers the
deterministic condition µ < 0 that guarantees the contractive behaviour of the solu-
tions to the corresponding deterministic problem. The discretization of deterministic
differential equations with one-sided Lipschitz vector field with negative one-sided
Lipschitz constant led to the notion of G-stability of numerical methods, introduced
by G. Dahlquist in [2].
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Here we aim to provide the numerical counterpart of exponential mean-square
contractivity, that is certainly a relevant property to be inherited also by the dis-
cretized problem, since it ensures a long-term damping of the error along the numer-
ical solutions. In particular, we aim to prove that the stability inequality (1.6) is
translated into a restriction on the stepsize employed in the numerical discretization,
here sharply estimated. The provided inequalities characterizing the numerical meth-
ods depend on parameters that are also accurately estimated, in order to make the
corresponding restrictions on the stepsize fully computable.

The paper is organized as follows: Section 2 briefly recalls the main results regard-
ing the linear stability properties of stochastic θ-methods; Section 3 provides expo-
nential mean-square stability inequalities for the θ-methods (1.2) and (1.3), giving the
numerical counterpart of (1.6); in Section 4 we give a notion of mean-square contrac-
tivity for the numerical solutions computed by (1.2) and (1.3), which is here translated
into stepsize restrictions depending on parameters which are here estimated; Section
5 shows the numerical evidence on a selection of nonlinear problems (1.1), confirming
the sharpness of the provided estimates; some conclusions are presented in Section 6.

2. Linear stability of stochastic θ-methods. It is worth recalling the main
results regarding the linear stability properties of stochastic θ-methods (1.2) and (1.3),
according to [1, 4]. Indeed, the stepsize restrictions we present in the next sections in
order to ensure the conservation of the exponential mean-square contractivity along
numerical solutions clearly have to be compatible with the linear stability properties
of the corresponding method.

The linear stability analysis for the discretization of SDEs (1.1), as well known
for instance from [4, 5, 9], is performed with respect to the linear scalar problem

(2.1)

{
dX(t) = λX(t)dt+ µX(t)dW (t), t ∈ [0, T ],

X(0) = X0,

with λ, µ ∈ C. The following definition occurs (see, for instance [4, 5]).

Definition 2.1. The solution X(t) of (2.1) is mean-square stable if

lim
t→∞

E |X(t)|2 = 0.

As proved in [4, 5, 9], the solution X(t) to (2.1) is mean-square stable if and only if

(2.2) Re(λ) +
1

2
|µ|

2
< 0.

The numerical counterpart of above arguments is provided in the following defi-
nition [4, 5, 9].

Definition 2.2. The numerical solution Xn of (2.1) is mean-square stable if

lim
n→∞

E |Xn|
2
= 0.

Correspondingly, according to [4], the stochastic θ-Maruyama method (1.2) is mean-
square stable if and only if

(2.3)
|1 + (1− θ)∆tλ|

2
+∆t |µ|

2

|1− θ∆tλ|
2 < 1.
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Let us provide an analogous condition for the θ-Milstein method (1.3). To this
purpose, we apply the method (1.3) to (2.1), obtaining

(2.4) Xn+1 =

[
1− (1− θ)∆tλ + µ+ 1

2µ
2(∆W 2

n −∆t)

1− θ∆tλ

]
Xn.

Squaring and passing to the expectation leads to

E|Xn+1|
2 =

[
β2 +

βµ2∆t

1− θ∆tλ
+

µ2∆t+ 3
4µ

4∆t2

(1− θ∆tλ)2

]
E|Xn|

2,

with

β =
1 + (1− θ)∆tλ − 1

2µ
2∆t

1− θ∆tλ
.

Therefore, according to Definition 2.2, the θ-Milstein method (1.3) is mean-square
stable if and only if

(2.5)

∣∣∣∣β
2 +

βµ2∆t

1− θ∆tλ
+

µ2∆t+ 3
4µ

4∆t2

(1− θ∆tλ)2

∣∣∣∣ < 1.

In the remainder, we check that all the values of θ and ∆t leading to an exponential
mean-square contractive behaviour of the numerical solution to (1.1) computed by
(1.2) or (1.3) fulfill the constraints given by (2.3) and (2.5), respectively.

3. Exponential mean-square stability inequalities. We aim to provide the
numerical counterpart of (1.6), i.e., we develop an analogous exponential mean-square
stability inequality for the numerical discretization of (1.1) with the θ-methods (1.2)
and (1.3), under the assumptions of Theorem 1.1 . The following technical lemma
(see [7]) is useful in the remainder.

Lemma 3.1. Under the assumptions (i)–(iii) given in Theorem 1.1, for any h > 0
and b1, b2 ∈ Rn and , there exist unique a1, a2 ∈ Rn solutions of the implicit equations

ai − hf(ai) = bi, i = 1, 2,

satisfying the inequality

(1 − 2hµ) |a1 − a2|
2
≤ |b1 − b2|

2
.

3.1. Exponential mean-square stability of θ-Maruyama methods. The
following result provides the counterpart of (1.6) for the numerical discretization of
(1.1) with the θ-Maruyama method (1.2).

Theorem 3.2. Under the assumptions (i)–(iii) given in Theorem 1.1, any two
numerical solutions Xn and Yn, n ≥ 0, computed by applying the θ-Maruyama method
(1.2) to (1.1) with initial values such that E |X0|

2
< ∞ and E |Y0|

2
< ∞, satisfy the

inequality

(3.1) E |Xn − Yn|
2
≤ E |X0 − Y0|

2
eν(θ,∆t)tn ,

where

(3.2) ν(θ,∆t) =
1

∆t
lnβ(θ,∆t)
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and

(3.3) β(θ,∆t) = 1 +
α+ (1− θ)2M∆t

1− 2θµ∆t
∆t,

with

(3.4) M = sup
t∈[0,T ]

E|f ′(X(t))|2.

Proof. Since Xn+1 and Yn+1 satisfy the implicit equations

Xn+1 = Xn + (1− θ)∆tf(Xn) + θ∆tf(Xn+1) + g(Xn)∆Wn,

Yn+1 = Yn + (1− θ)∆tf(Yn) + θ∆tf(Yn+1) + g(Yn)∆Wn,

according to Lemma 3.1 we obtain

(3.5) (1− 2θµ∆t)|Xn+1 − Yn+1|
2 ≤

∣∣(Xn − Yn) + (1− θ)∆t∆fn +∆gn∆Wn

∣∣2,

where ∆fn = f(Xn)− f(Yn) and ∆gn = g(Xn)− g(Yn). The right-hand side of (3.5)
is then bounded by

|Xn − Yn|
2 + (1− θ)2∆t2|∆fn|

2 + |∆gn∆Wn|
2 + 2(1− θ)∆t < Xn − Yn,∆fn >

+ 2 < Xn − Yn,∆gn∆Wn > +2(1− θ)∆t < ∆fn,∆gn∆Wn > .

By applying the assumptions (i)–(iii) of Theorem 1.1, we obtain

(1 − 2θµ∆t)|Xn+1 − Yn+1|
2 ≤ (1 + L|∆Wn|

2 + 2(1− θ)∆tµ)|Xn − Yn|
2

+ (1− θ)2∆t2|∆fn|
2 + 2 < Xn − Yn,∆gn∆Wn >

+ 2(1− θ)∆t < ∆fn,∆gn∆Wn > .

Passing to the expectations leads to

E|Xn+1 − Yn+1|
2 ≤ β(θ,∆t)E |Xn − Yn|

2 .

Since

E|Xn+1 − Yn+1|
2 ≤ β(θ,∆t)n+1

E|X0 − Y0|
2,

the thesis holds true.

According to Theorem 3.2, the θ-Maruyama method (1.2) satisfies the exponential
mean-square stability inequality (3.1) with argument ν(θ,∆t) of the exponential given
by (3.2), when applied to the SDE (1.1) satisfying the inequality (1.6) with parameter
α = 2µ+ L. Let us now provide an estimate for the error |ν(θ,∆t) − α|.

Theorem 3.3. Under the same assumptions of Theorem 3.2, for any fixed value
of θ ∈ [0, 1], we have

(3.6) |ν(θ,∆t) − α| = O(∆t).

Proof. By expanding ν(θ,∆t) in (3.2) in power series of ∆t, we obtain

ν(θ,∆t) = α+

(
2αµθ + (1 − θ)2M −

α2

2

)
∆t+O(∆t2),

leading to the thesis.
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3.2. Exponential mean-square stability of θ-Milstein methods. The fol-
lowing result is focused on the counterpart of (1.6) for the numerical discretization of
(1.1) with the θ-Milstein method (1.3).

Theorem 3.4. Under the assumptions (i)–(iii) given in Theorem 1.1, any two
numerical solutions Xn and Yn, n ≥ 0, computed by applying the θ-Milstein method
(1.3) to (1.1) with initial values such that E |X0|

2 < ∞ and E |Y0|
2 < ∞, satisfy the

inequality

(3.7) E |Xn − Yn|
2 ≤ E |X0 − Y0|

2 eǫ(θ,∆t)tn,

where

(3.8) ǫ(θ,∆t) =
1

∆t
ln γ(θ,∆t)

and

(3.9) γ(θ,∆t) = β(θ,∆t) +
3M̃∆t2

4(1− 2θµ∆t)
,

with M̃ defined as

(3.10) M̃ =
m∑

i,j=1

n∑

k,l=1

M̃k,l
i,j ,

where

M̃k,l
i,j = sup

t∈[0,T ]

E

(
hk,l
i,j (X(t), Y (t))

)

E|X(t)− Y (t)|2
,

being

hk,l
i,j (X(t), Y (t)) = < gk,i(X(t))

∂

∂xk
gj(X(t))− gk,i(Y (t))

∂

∂yk
gj(Y (t)),

gl,i(X(t))
∂

∂xl
gj(X(t))− gl,i(Y (t))

∂

∂yl
gj(Y (t)) >,

i, j = 1, . . . ,m, k, l = 1, . . . , n.

Proof. First, we show the proof for m = 1. Since Xn+1 and Yn+1 satisfy the
implicit equations

Xn+1 = Xn + (1− θ)∆tf(Xn) + θ∆tf(Xn+1) + g(Xn)∆Wn +
1

2
h(Xn)(∆W 2

n −∆t),

Yn+1 = Yn + (1− θ)∆tf(Yn) + θ∆tf(Yn+1) + g(Yn)∆Wn +
1

2
h(Yn)(∆W 2

n −∆t),

where h(x) = g(x)g′(g), Lemma 3.1 leads to

(1− 2θµ∆t)|Xn+1 − Yn+1|
2 ≤

∣∣∣∣(Xn − Yn) + (1 − θ)∆t∆fn +∆gn∆Wn

+
1

2
∆hn(∆W 2

n −∆t)

∣∣∣∣
2

.
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By proceeding as in Theorem 3.2, the thesis holds true for m = 1. The general case
m > 1 holds true as direct generalization of the previous one.

According to Theorem 3.4, the θ-Milstein method (1.3) satisfies the exponential
mean-square stability inequality (3.1) with argument ǫ(θ,∆t) of the exponential given
by (3.8), when applied to the SDE (1.1) satisfying the inequality (1.6) with parameter
α = 2µ+ L. As in the previous section, let us now provide an estimate for the error
|ǫ(θ,∆t)− α|.

Theorem 3.5. Under the same assumptions of Theorem 3.4, for any fixed value
of θ ∈ [0, 1], we have

(3.11) |ǫ(θ,∆t)− α| = O(∆t).

Proof. By expanding ǫ(θ,∆t) in (3.8) in power series of ∆t, we obtain

ǫ(θ,∆t) = α+

(
2αµθ + (1− θ)2M −

α2

2
+

3M̃

4

)
∆t+O(∆t2),

leading to the thesis.

4. Mean-square contractivity. According to Definition 1.2, the nonlinear sto-
chastic system (1.1) generates mean-square contractive solutions if α < 0 in (1.6). A
natural counterpart of this definition for a stochastic θ-method is now given as follows.

Definition 4.1. Consider a nonlinear stochastic differential equation (1.1) sat-
isfying assumptions (i)–(iii) given in Theorem 1.1 and let Xn and Yn, n ≥ 0, be two
numerical solutions of (1.1) computed by the θ-methods (1.2) or (1.3). Then, the
applied method is said to be generate mean-square contractive numerical solutions in
a region R ⊆ R+ if, for a fixed θ ∈ [0, 1],

ν(θ,∆t) < 0, ∀∆t ∈ R

for (1.2), being ν(θ,∆t) the parameter in (3.1), or

ǫ(θ,∆t) < 0, ∀∆t ∈ R

for (1.3), where ǫ(θ,∆t) is the parameter in (3.7).

Definition 4.2. A stochastic θ-method (1.2) or (1.3) is said unconditionally
mean-square contractive if, for a given θ ∈ [0, 1], R = R+.

As regards the θ-Maruyama method (1.2), according to Definition 4.1, mean-
square contractive numerical solutions are generated if

0 < β(θ,∆t) < 1,

for any ∆t ∈ R, i.e.

(4.1) R =





(
0,

|α|

(1− θ)2M

)
, θ < 1,

R+, θ = 1.

As a consequence, we have proved the following result for the θ-Maruyama method
with θ = 1, i.e., for the implicit Euler-Maruyama method

(4.2) Xn+1 = Xn +∆tf(Xn+1) + g(Xn)∆Wn.
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Theorem 4.3. For a given a nonlinear problem (1.1) satisfying the assumptions
(i)–(iii) given in Theorem 1.1, the implicit Euler-Maruyama method (4.2) is uncon-
ditionally mean-square contractive.

In other terms, the stochastic perturbation (4.2) of the deterministic implicit
Euler method preserves its unconditional contractivity property [3].

In analogous way, as regards the θ-Milstein method (1.3), Definition 4.1 leads to

0 < γ(θ,∆t) < 1,

for any ∆t ∈ R, i.e.

(4.3) R =





(
0,

4|α|

4(1− θ)2M + 3M̃

)
, θ < 1,

(
0,

4|α|

3M̃

)
, θ = 1.

The computation of the regions R in (4.1) and (4.3) relies on the knowledge of
the Lipschitz constant L to the diffusion of (1.1), the one-sided Lipschitz constant µ

of the drift, the constants M and M̃ defined by (3.4) and (3.10), respectively. The
estimation of the parameters L and µ is typically required in global optimization
algorithms, therefore we adopt a similar estimation strategy (see [10]) to make the
region R fully computable.
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Algorithm 1: estimation of the Lipschitz constant L

Step 1. We perform P paths of the θ-methods (1.2) or (1.3) and denote by
X i,j

n the i-th component of the j-th realization of the solution Xn, i = 1, 2, . . . , d,
j = 1, 2, . . . , P . Then, we compute

(4.4) ai = min
j=1,...,P

min
tn∈I∆t

X i,j
n , bi = max

j=1,...,P
max

tn∈I∆t

X i,j
n ,

i = 1, 2, . . . , d.

Step 2. We generate Q couples of vectors

xk =
[
x1
k, x2

k, . . . , xd
k

]T
, yk =

[
y1k, y2k, . . . , ydk

]T
,

with k = 1, 2, . . .Q, such that (xi
k, y

i
k) is uniformly distributed in [ai, bi] × [ai, bi],

i = 1, 2, . . . , d.

Step 3. We compute

sk =
|g(xk)− g(yk)|

2

|xk − yk|2
, k = 1, 2, . . . , Q.

Step 4. We assume as estimate of L the value of max{s1, ..., sQ}.

For a detailed accuracy analysis of the algorithm, we refer to [10]. An analogous
algorithm for the estimate of the one-sided Lipschitz constant µ is obtained in a similar
way.

Algorithm 2: estimation of the one-sided Lipschitz constant µ

Step 1. See Step 1 of Algorithm 1.

Step 2. See Step 2 of Algorithm 1.

Step 3. We compute

sk =
< xk − yk, f(xk)− f(yk) >

|xk − yk|2
, k = 1, 2, . . . , Q.

Step 4. We assume as estimate of µ the value of min{s1, ..., sQ}.

Clearly the estimates of M in (3.4) and M̃ in (3.10) is straightforward from their
definitions, once P realizations of the numerical solution are computed.

5. Numerical experiments. In this section, we present the numerical evidence
arising from the application of the θ-Maruyama (1.2) and the θ-Milstein (1.3) methods
to a selection of nonlinear problems generating mean-square contractive solutions
according to Definition 1.2. We confirm the sharpness of the estimates provided in
Section 4 for the stepsize ∆t in order to generate mean-square contractive numerical
solutions according to Definition 4.1. The expected values computed in the remainder
of this section always rely on the numerical solutions over P = 2000 paths.
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Fig. 1. Mean-square deviations over 2000 paths for the stochastic trapezoidal method applied

to Problem 1.

Problem 1. We consider the scalar SDE (1.1) with

f(X(t)) = −4X(t)−X(t)3, g(X(t)) = X(t)

and initial data X0 = 1 and Y0 = 0, used as test example in [6]. For this problem
the constants L and µ are given by L = 1 and µ = −4, so α = −7. Then, according
to Theorem 1.1, this problem generates mean-square contractive solutions. Moreover,
the values of M in (3.4) and M̃ in (3.10) are 16 and 1, respectively. We consider the
following A-stable methods [4]:

• the stochastic trapezoidal methods, i.e., the θ-Maruyama methods (1.2) with
θ = 1/2. In this case (4.1) yields

R =

(
0,

7

4

)
.

The corresponding estimate on ∆t is confirmed in Figure 1, where the time-
evolution of the mean-square deviation E|Xn − Yn|

2 in logarithmic scale is
depicted for various values of ∆t. It is visible that, the more ∆t decreases,
the more the numerical slope ν(12 ,∆t) in (3.1) tends to the exact slope α in
(1.6). For values of ∆t > 7

4 , the mean-square deviation does not exponentially
decay;

• the stochastic implicit Euler (4.2), that is unconditionally mean-square con-
tractive, according to Theorem 4.3. The behaviour depicted in Figure 2
confirms the theoretical result on the unconditional contractivity of (4.2).
Indeed, the mean-square deviation is always exponentially decaying and its
slope tends to the exact slope as ∆t decreases;

• the θ-Milstein method (1.3) with θ = 1/2. For this method, (4.3) leads to

R =

(
0,

14

9

)
.
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Fig. 2. Mean-square deviations over 2000 paths for the stochastic implicit Euler method (4.2),
applied to Problem 1.
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Fig. 3. Mean-square deviations over 2000 paths for the θ-Milstein method (1.3) with θ = 1/2,
applied to Problem 1.

Also in this case, as shown in Figure 3, the theoretical estimate of ∆t is
confirmed by the numerical evidence. As already proved in Theorem 3.5, the
numerical slope ǫ(12 ,∆t) in (3.7) tends to the exact slope α in (1.6). For
values of ∆t > 14

9 , the mean-square deviation does not exponentially decay.

Problem 2. Let us consider the scalar nonlinear SDE (1.1) with

f(X(t)) = −5X(t), g(X(t)) = sin(X(t))
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Fig. 4. Mean-square deviations over 2000 paths for the stochastic trapezoidal method applied

to Problem 2.

and initial data X0 = 1 and Y0 = 0. For this problem the constants L and µ are given
by L = 1 and µ = −5, so α = −9. Then, according to Theorem 1.1, the problem
generates mean-square contractive solutions. Moreover, the values of M in (3.4) and

M̃ in (3.10) are 25 and 1, respectively. We consider the following A-stable methods:

• the stochastic trapezoidal methods, i.e., the θ-Maruyama methods (1.2) with
θ = 1/2. In this case (4.1) yields

R =

(
0,

36

25

)
.

The corresponding estimate on ∆t is confirmed in Figure 4, as well as the
convergence of the numerical slope ν(12 ,∆t) in (3.1) to the exact slope α in
(1.6). Also in this case, for values of ∆t > 36

25 , the mean-square deviation
does not exponentially decay;

• the θ-Maruyama methods (1.2) with θ = 13/20. In this case, according to
(4.1), we have

R =

(
0,

144

49

)
.

Also in this case the numerical evidence reported in Figure 5 confirms the
theoretical results;

• the θ-Milstein method (1.3) with θ = 13/20. For this method, (4.3) leads to

R =

(
0,

48

19

)
.

The numerical evidence, confirming the theoretical results, is shown in Figure
6.
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Fig. 5. Mean-square deviations over 2000 paths for the θ-Maruyama method with θ = 13/20
applied to Problem 2.
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Fig. 6. Mean-square deviations over 2000 paths for the θ-Milstein method (1.3) with θ = 13/20,
applied to Problem 2.

Problem 3. We finally consider the nonlinear system of SDEs with

f(X(t)) = −4

[
sin(X1(t))

sin(X2(t))

]
, g(X(t)) =

1

7




X1(t)
3

2
X2(t)

5

2
X1(t) −

1

2
X2(t)


 .
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Fig. 7. Mean-square deviations over 2000 paths for the stochastic trapezoidal method applied

to Problem 3.

and initial data X0 = [1 1]T and Y0 = [0 0]T. For this problem the constants L and
µ are estimated as L = 0.148 and µ = −3.56, so α ≈ −7.5 and, as a consequence,
the problem generates mean-square contractive solutions. Moreover, the value of M
in (3.4) is equal to 16. Also for this problem, we consider the following A-stable
methods:

• the stochastic trapezoidal methods, i.e., the θ-Maruyama methods (1.2) with
θ = 1/2. In this case (4.1) yields

R = (0, 1.1875) .

This estimate is confirmed in Figure 7, as well as the exponential decay of the
mean-square deviation with slope tending to the exact slope as ∆t decreases;

• the stochastic implicit Euler (4.2), whose unconditional mean-square contrac-
tivity is confirmed by the numerical evidence reported in Figure 8.

6. Conclusions. In this paper we have analyzed featured nonlinear stability
properties of the stochastic θ-Maruyama (1.2) and θ-Milstein (1.3) methods for non-
linear SDEs (1.1) satisfying the assumptions of Theorem 1.1, hence fulfilling an ex-
ponential mean-square stability inequality of type (1.6). According to Definition 1.2,
if the parameter α in (1.6) is negative, the problem is said to generate exponential
mean-square contractive solutions. We have translated this feature of the continu-
ous problem into stepsize restrictions guaranteeing that the exponential mean-square
contractive behaviour is also visible numerically. Such restrictions depend on charac-
teristic parameters of the problem (e.g., the Lipschitz constant of the diffusion term
and the one-sided Lipschitz constant of the drift in (1.1)) that have been estimated
through the algorithms presented in Section 4. The overall developed theory pro-
vides sharp stepsize restrictions that have also been confirmed on a selection of scalar
and vector valued problems. Future issues of this research regard the analysis of
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Fig. 8. Mean-square deviations over 2000 paths for the stochastic implicit Euler method (4.2),
applied to Problem 3.

mean-square contractivity properties for stochastic Runge-Kutta methods, eventually
leading to a notion of stochastic algebraic stability, in analogy with a similar features
occurirng in the deterministic case.
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