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Abstract

Time irreversibility, which characterizes nonequilibrium processes, can be measured based on the probabilistic

differences between symmetric vectors. To simplify the quantification of time irreversibility, symmetric per-

mutations instead of symmetric vectors have been employed in some studies. However, although effective in

practical applications, this approach is conceptually incorrect. Time irreversibility should be measured based

on the permutations of symmetric vectors rather than symmetric permutations, whereas symmetric permu-

tations can instead be employed to determine the quantitative amplitude irreversibility – a novel parameter

proposed in this paper for nonequilibrium calculated by means of the probabilistic difference in amplitude

fluctuations. Through theoretical and experimental analyses, we highlight the strong similarities and close

associations between the time irreversibility and amplitude irreversibility measures. Our paper clarifies the

connections of and the differences between the two types of permutation-based parameters for quantitative

nonequilibrium, and by doing so, we bridge the concepts of amplitude irreversibility and time irreversibility

and broaden the selection of quantitative tools for studying nonequilibrium processes in complex systems.

Keywords: time irreversibility, amplitude irreversibility, permutation, fluctuation theorems, nonequilibrium

1. Introduction

Complex systems, e.g., meteorological, economical or physiological systems, generally exhibit nonequilib-

rium processes, one of whose manifestations is a lack of time reversibility. Time reversibility is the property

of invariance with respect to time reversal, and its lack is defined as time irreversibility (TIR) [1, 2]. TIR is

widely used to detect nonlinearity, a necessary condition for chaotic behaviour; therefore, a quantitative TIR

measure for complex processes is of particular interest.
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Statistically speaking, to quantify TIR, one could measure the probabilistic differences either between

forward and backward series or between symmetric vectors [3, 4]; the latter approach is preferable because of

its real-time advantage. However, joint probability estimation for symmetric vectors is not trivial, particularly

for unknown complex systems. Model-based probability estimators are generally linear ones that adopt the

assumption of a particular distribution for the observed signals [5], which is sometimes not appropriate

for complex systems. Model-free probability estimators, such as kernel probability estimators, have been

widely employed in informational analysis [5, 6, 7]; however, they reconstruct time series, during which the

symmetric or corresponding vectors cannot be matched for TIR quantification. Due to the limitations of

traditional probability estimators, scholars have proposed some simplified methods for TIR quantification.

Costa et al. [8] quantified the TIR of heartbeats by measuring the difference between the average activation

and relaxation energies, and they then simplified the parameter by distinguishing only the probabilistic

difference between the up and down of the signal waveforms [9], a similar approach that has also been

employed by Porta [10], Guzik [11] and Ehlers et al. [12] for quantifying temporal asymmetry. Lacasa et

al. [13, 14, 15] quantified the TIR by measuring the divergence between the in- and out-degree distributions

of either the original or the horizontal visibility graph. Additionally, symbolic approaches [16], such as

approaches based on data compression [17], false flipped symbols [18], and permutation [4, 19, 20, 21], have

received considerable attention for their simplicity, fast execution, noise insensitivity, etc. These simplified

methods for TIR quantification play important roles in nonequilibrium analyses of complex systems.

Among these simplifications, approaches based on order patterns have been gaining popularity due to

their close relation to multi-dimensional vectors and the inherent temporal structural information captured

by the ordinal scheme [22, 23, 24]. However, in permutation-based measures, ignorance of particular issues

might lead to failures in the quantification of the TIR. Due to the existence of forbidden permutations (i.e.,

permutations that cannot occur), some vectors or order patterns might not have corresponding symmetric

forms [4, 19, 20], making the measurement of the probabilistic differences using division-based parameters

(e.g., the relative entropy) unreliable. Equal values may lead to self-symmetric order patterns [4, 20, 24];

therefore, the equal states should not be broken by random perturbations or sorted according their order of

occurrence in quantitative TIR. Some of the authors of the present paper have incorrectly employed symmetric

permutations (SPs) instead of symmetric vectors in TIR quantification, and they found that the SP-based

methods have been shown to be effective for characterizing nonlinearity in model series and enabling the

reliable detection of nonlinearity in real-world physiological[19]. However, it is conceptually incorrect to

employ SPs in TIR quantification because the SP and permutations of symmetric vectors (PSVs) are not

always the same [4]. In other words, the simplified approach based on SPs quantifies other characteristics

rather than the TIR.

In this contribution, we conduct comparative research on the relationship between SPs and PSVs, and

on this basis, we define a novel statistical parameter, the amplitude irreversibility (AIR), for characterizing

nonequilibrium from the perspective of amplitude fluctuations. This joint analysis of the AIR and TIR con-
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tributes to a better understanding of quantitative nonequilibrium and enhances current knowledge regarding

the significance of equal values in permutation-based TIR and AIR analyses. Furthermore, a comprehensive

discussion of the strong similarity between the AIR and TIR improves the understanding of quantitative

nonequilibrium from a broader perspective.

2. Materials & methods

2.1. Quantitative time irreversibility and symmetric permutations

Statistically speaking, a process X(t) is said to be time reversible if {X(t1), X(t2), · · · , X(tm)} and

{X(−t1), X(−t2), · · · , X(−tm)} have the same joint probability distribution for every t1, t2, · · · , tm and m;

otherwise, it is time irreversible [1]. In addition, {X(t1), X(t2), · · · , X(tm)} and {X(−t1 + n), X(−t2 +

n), · · · , X(−tm + n)} will also have the same joint probability distribution for every n and m if X(t) is

time reversible; in particular, if n=t1+ tm, {X(t1), X(t2), · · · , X(tm)} have the same probability distribution

as the symmetric process {X(tm), · · · , X(t2), X(t1)}, i.e., the process will exhibit temporal symmetry [2,

3]. Therefore, the probabilistic difference between the forward and backward processes and between the

symmetric joint distributions of a process are equivalent for measuring the TIR [4, 20].

If the forward-backward method is employed, it is necessary to obtain and then reverse the whole process,

which is not trivial and may even be impossible for a system that generates uninterrupted data. Therefore,

methods based on symmetric vectors are preferable due to their advantage of real-time analysis [4].

As mentioned in the Introduction, the calculation of the probabilistic difference between symmetric vec-

tors is not trivial, and the raw time series are generally simplified or reconstructed to quantify the TIR.

Permutation-based methods are of particular interest because the ordinal scheme [22, 23] does not require

any modelling assumptions and is closely related to the TIR [4, 19, 20]. In the ordinal scheme, the elements

in the multi-dimensional vector Xτ
m(i) = {x(i), x(i+ τ), . . . , x(i+ (m− 1)τ)}, where m is the dimension and

τ is the delay, are reorganized (e.g., in ascending order, x(j1) < x(j2) < · · · < x(ji)), and the indexes of the

reordered vector are used to formulate the permutation πi = {j1, j2, · · · , ji}.

As an alternative to raw symmetric vectors, SPs are directly employed by some of the present authors

for quantifying the TIR in some reports [19], which is proved to be an effective approach for detecting

nonlinearity in complex processes. However, we find that the PSVs are not always equivalent to the SPs and

that methods based on SPs therefore do not correctly characterize the statistical concept of TIR.

Let us consider the difference between SPs and PSVs for an example case in which m=5, as illustrated

in Fig. 1.

Consider the vector {3,1,9,5,7} in Fig. 1A; its permutation is (2,1,4,5,3), and its symmetric vector, depicted

in Fig. 1B, is {7,5,9,1,3}, whose order pattern is (4,5,2,1,3). However, (2,1,4,5,3) and (4,5,2,1,3) are not

symmetric. The same is true for the vectors {-3,-1,-9,-5,-7} and {-7,-5,-9,-1,-3} shown in Fig. 1C and 1D;

their permutations (i.e., (3,5,4,1,2) and (3,1,2,5,4)) are not symmetric either. For the example shown in Fig. 1,

to quantify the TIR, one should measure the probabilistic differences in the PSVs, i.e., the differences between
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Vector: {3,1,9,5,7} Vector: {7,5,9,1,3}

Vector: {-3,-1,-9,-5,-7} Vector: {-7,-5,-9,-1,-3}

Permutation : (2,1,4,5,3) Permutation : (4,5,2,1,3)

Permutation : (3,5,4,1,2) Permutation : (3,1,2,5,4)
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Figure 1: Relationships between symmetric vectors and their permutations. The vectors in A and B and those in C and D are

symmetric with respect to the Y-axis; i.e., they exhibit temporal symmetry in terms of the X-axis angle. The vectors in A and

C and those in B and D are symmetric with respect to the X-axis; i.e., they exhibit amplitude symmetry in terms of the Y-axis

angle.

(2,1,4,5,3) and (4,5,3,1,2) and between (3,5,4,1,2) and (3,1,2,5,4), rather than the probabilistic differences in

the SPs, i.e., between (2,1,4,5,3) and (3,5,4,1,2) or between (4,5,2,1,3) and (3,1,2,4,5).

Therefore, it is incorrect to employ the probabilistic differences of SPs for quantifying TIR [4].

2.2. The definition of amplitude reversibility

Nevertheless, SPs have been reported to effectively characterize nonlinear activities in the related liter-

ature [19]. Therefore, we assume that there might be some associations between the PSVs, SPs and time

reversibility. To determine the possible associations, let us dig further into the relationships among the

vectors and permutations in Fig. 1.

For the symmetric patterns (2,1,4,5,3) and (3,5,4,1,2), their corresponding vectors in Fig. 1A and 1C are

symmetric with respect to the X-axis; the same is true for the vectors corresponding to the symmetric patterns

(4,5,3,1,2) and (3,1,2,5,4), as shown in Fig. 1B and 1D. Whereas the vectors that characterize the TIR show

Y-axis symmetry, say, time symmetry, the vectors that correspond to the SPs show X-axis symmetry, in other

words, amplitude symmetry. Inspired by this finding, we define a novel statistical concept called amplitude

reversibility, the quantification of which can be simplified by means of SPs.

The definition of amplitude reversibility. Given a process X(t), we subtract its mean µ as X(t) =

X(t)− µ, if {X(t1), X(t2), · · · , X(tm)} and {−X(t1),−X(t2), · · · ,−X(tm)} have the same joint probability

distribution for every t1, t2, · · · , tm and m, then X(t) is amplitude reversible; otherwise, X(t) is amplitude

irreversible. Thus, the AIR, which targets fluctuations in the amplitude of a dynamic process, is also a

parameter that characterizes complex activities.
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As in the case of quantifying the TIR, in some real-world situations, it is not feasible to obtain and take the

negative of the whole process of interest. Therefore, to enable real-time processing, the probabilistic difference

between {X(t1), X(t2), · · · , X(tm)} and {−X(t1),−X(t2), · · · ,−X(tm)} could instead be simplified to a

probabilistic difference between SPs.

AIR is a mathematical concept derived from the incorrect quantization of the TIR and from the relation-

ship between the SPs and vectors, while it contains important physical significance, i.e., the nonequilibrium

characteristic of amplitude fluctuations.

Fluctuation theorems provide some analytical expressions to describe nonequilibrium states [25]. In

the Evans-Searles fluctuation theorem [26, 27, 28], the dissipation function Ω of observing trajectories is a

dimensionless dissipated energy and is defined as arbitrary values A and −A, their probabilistic difference

p(A)/p(−A) describes the asymmetry in the distribution of Ω over a particular ensemble of trajectories.

According to the Evans-Searles fluctuation theorem, the vector and its amplitude-reverse form in the AIR

could be defined as A and −A, and the AIR describes amplitude fluctuations by the probabilistic difference

p(A)/p(−A). In the report of Costa et al. [8], they made assumptions that the transitions in systems

require a specific amount of energy and quantified the nonequilibrium by the difference between activation

and relaxation, which is then simplified by the number of increments and decrements [9], a special case of

permutation AIR when m=2. The order patterns, as a reliable alternative to the original vector, naturally

arise from the time series and inherit structural information of vectors, and the permutation AIR is a reliable

parameter to characterize the asymmetry in the distribution of permutations over an ensemble of ordinal

trajectories.

2.3. Equal-value permutation and vectors

For the permutation TIR, equal values may lead to self-symmetric order patterns with important statistical

implications, i.e., time reversibility or temporal symmetry [4, 20, 24]. Hence, equal values might also be

expected to have similar implications in the case of the AIR measure.

In the original ordinal scheme and some variants thereof, equal values can be eliminated by adding small

random perturbations or can be arranged in the order of occurrence; however, these approaches might yield

false findings or misleading conclusions if there are a large number of equal values [20, 24, 29]. Bian et

al. [23] proposed a desirable alternative for considering the contributions of equal states. In this improved

permutation scheme, equal values are first placed in adjacent positions their order of occurrence, i.e., · · · <

x(jk) = x(jl) < · · · < x(jx) = x(jy) = x(jz) < · · · , and the indexes of all the members of each such group of

equal values in the original permutation, i.e., πi = {· · · , jk, jl, · · · , jx, jy, jz, · · · }, are then set to be equal to

the lowest index in the group, i.e., πi = {· · · , jk, jk, · · · , jx, jx, jx, · · · }.

The example illustrated in Fig. 2 suggests that equal-value permutations play a crucial role in the formu-

lation of the order patterns for the quantitative AIR measure.

For the vector depicted in Fig. 2A, i.e., {3,1,7,1,5}, if we organize the two equal values (the ’1’s) according

to the order of occurrence, then the permutation is (2,4,1,5,3), which is also the order pattern of the vector
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Vector: {3,1,7,1,5} Vector: {5,1,7,1,3}

Vector: {-3,-1,-7,-1,-5} Vector: {-5,-1,-7,-1,-3}

OP :    (2,4,1,5,3)
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x3
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x5 x1

x2
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x5

EP :    (2,2,1,5,3)
OP :    (2,4,5,1,3)
EP :    (2,2,5,1,3)

EP :    (3,1,5,2,2)EP:     (3,5,1,2,2)
OP :    (3,5,1,2,4) OP :    (3,1,5,2,4)

A B

C D

Figure 2: Example of the effects of equal values on symmetric vectors and their permutations. The vectors in A and B and

those in C and D are temporally symmetric, and the vectors in A and C and those in B and D are amplitude symmetric. The

values in red are equal, and those shown in green are the alternatives if we organize the equal values according to the order of

occurrence. The original (denoted by ’OP’) and equal-value (underlined and denoted by ’EP’) permutations are shown below

each subplot.

{3,1,7,2,5}. Therefore, the original order pattern does not reliably reflect the relationship among the elements

of the vector, which is shared among the other three subplots. More importantly, for the vectors symmetric

about the X-axis in Fig. 2A and in Fig. 2C, i.e., {3,1,7,1,5} and {-3,-1,-7,-1,-5}, respectively, their original

permutations (2,4,1,5,3) and (3,5,1,2,4) are not symmetric. If we instead employ the equal-value ordinal

scheme, the order patterns of the vectors in Fig. 2A and 2C are (2,2,1,5,3) and (3,5,1,2,2), respectively,

which are symmetric; similarly, the order patterns of the vectors in Fig. 2B and 2D (i.e., (2,2,5,1,3) and

(3,1,5,2,2), respectively) are also symmetric. Therefore, equal-value permutations are crucial for the simplified

quantitative AIR measure.

The equal-value ordinal scheme more reliably represents the temporal structure of a dynamic process and

more accurately reflects the relationship among the elements in a vector than the original ordinal scheme.

Because the only unique feature of equal-value permutation is that the indexes of equal values are rewritten,

if there are no equal states, the equal-value ordinal method reduces to the original one.

Overall, the equal-value ordinal scheme is particularly relevant for the determination of the permutation

TIR and AIR and should be the preferred choice in permutation analyses.

2.4. Permutation TIR and AIR

Let us further analyze the difference between AIR and TIR, and elucidate the physical meaning of AIR.

Basically speaking, the TIR quantifies the probabilistic difference from the time reversal or temporal sym-

metry perspective, while the AIR measures the probabilistic divergence in amplitude fluctuations. As for

permutation TIR and AIR, the relationship of vectors and their order patterns whenm=2 and 3 are illustrated
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in Fig. 3.

(1,2,3) (3,2,1)

(1,3,2) (3,1,2)

(2,1,3)(2,3,1)

(1,1,3) (2,2,1)

(1,2,2)(3,1,1)

(1,1,2)

(2,1,1)

A B

C D

(1,2) (2,1)

(1,1)
(1,1,1)

m=2 m=3

Figure 3: Vectors and their permutations when m=2 and 3. A and B display centrally symmetric vectors when m=2 and m=3,

and C shows two groups of time- and amplitude-reverse vectors. The pair of amplitude-reverse vectors in D are both temporal

self-symmetric. Red elements indicate equal values in vectors.

The PSVs and the SPs are generally different; however, in some special cases, i.e., in the case of centrally

symmetric vectors, they are the same. When m=2 in Fig. 3A, the three order patterns, namely, up (1,2), down

(2,1) and equality (1,1), are all centrally symmetric, which is true for the case of m=3 in Fig. 3B and other

dimensions. And with the increase of m, there will be more pairs of centrally symmetric vectors. Note that

the whole-equality vector, whose permutation is (1,1,1,· · · ), implies both time and amplitude reversibility.

The difference between the AIR and TIR lies in the Fig. 3C and Fig. 3D where vectors are not centrally

symmetric. We need to calculate the probabilistic differences of time-reverse vectors for TIR while calculate

those of amplitude-reverse vectors for TIR. The patterns (1,3,2) and (2,3,1) form a pair of SPs whose vectors

are amplitude reversed, while the PSV of (1,3,2) is (3,1,2) and that of (2,3,1) is (2,1,3), and their vectors

are time reversed or temporally symmetry. As for the pair of special vectors (1,1,2) and (2,1,1) in Fig. 3D,

they are temporal self-symmetric that their symmetric vectors are themselves, and they have particular

physical implication, i.e., time reversibility; however, quantitative AIR requires to calculate they probabilistic

difference. The different pair of vectors targeted by the AIR and TIR is their crucial difference.

Theoretically speaking, the larger length of vectors, the more amount of permutations, and the larger

difference between the permutation TIR and AIR. In real-world applications, the difference between the TIR

and AIR and the extent of the difference are affected by the probability distributions of permutations, which

will be analyzed in following sections.

For the permutation TIR and AIR, the existence of forbidden permutations makes employing subtraction-

based parameters, e.g., the parameter Ys defined in Eq. 1, more reliable for calculating the probabilistic

differences between paired order patterns. In the expression for Ys [4, 19, 20, 24], p(πi) and p(πj) denote the
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probabilities of the SPs or PSVs, respectively, and p(πi) should not be smaller than p(πj).

Y s〈p(πi), p(πj)〉 = p(πi)
p(πi)− p(πj)

p(πi) + p(πj)
(1)

3. Results

In this section, model series and their surrogate data are generated to test the permutation TIR and AIR,

which are then applied to quantify the nonequilibrium characteristics of two kinds of real-world physiological

signals.

3.1. TIR and AIR in model series

The logistic, Henon and Gaussian model series are employed to test the permutation TIR and AIR, and

the results are illustrated in Fig. 4. The logistic equation, xt+1 = r · xt(1 − xt), and the coupled Henon

equations, xt+1 = 1 − α · x2
t + yt and yt+1 = β · xt, were used to generate nonlinear chaotic series, and

zero-mean Gaussian series were employed as linear series. We also generated 500 sets of linear surrogate data

for each set of model data using the improved amplitude-adjusted Fourier transform algorithm [30] to test

the nonlinearity detection abilities of the TIR and AIR.

2 3 4 5 6 7
m

0

0.3

0.6

1

Y
S

Logistic

2 3 4 5 6 7
m

0

0.3

0.6

1

Y
S

Henon

2 3 4 5 6 7
m

0

0.02

0.06

Y
S

Gaussian

TIR AIR TIR-2.5%S TIR-97.5%S AIR-2.5%S AIR-97.5%S

A B C

Figure 4: TIR and AIR measures for logistic, Henon and Gaussian series. For the chaotic logistic and Henon series, x1=y1=0.01,

r=4, α=1.4, β=0.3, and x-components with a data length of 20×(7!)=100800 are applied.

As shown in Fig. 4, the TIR and AIR values for the logistic and Henon series are all larger than the

97.5th percentile of the surrogate data, whereas those for the Gaussian series are between the 2.5th and

97.5th percentiles of the surrogate data, suggesting that both the TIR and AIR enable effective nonlinearity

detection according to surrogate theory [4, 19].

The permutation TIR and AIR have consistent results while different trends in the three model series.

When m=2, permutation TIR and AIR are the same for each model series, and when m increases from 3 to

5, TIR and AIR values show different increase trends. For the two chaotic series, the probabilistic differences

between the PSVs are larger that those between SPs that TIR is larger than the AIR. Moreover, due to the
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influence of forbidden permutations [4, 19], when m is greater than or equal to 5, the differences between

permutation AIR and TIR decrease. The permutation TIR is equal to 1, indicating that no order pattern of

a corresponding symmetric vector exists, while the AIR is nonzero when m=7, suggesting that there are still

SPs although very rare. The different trends of permutation TIR and AIR in chaotic series suggest the AIR

contains different information about non-equilibrium properties of the system from TIR, and the extent of

their difference is determined by the probability distributions of permutations.

The permutation AIR and TIR share strong similarities as well as differences in model series, and they are

both effective for the detection of nonlinearity. We should note that the TIR measure, i.e., the probabilistic

differences in the temporal reversible process, and the AIR measure, i.e., the probabilistic differences in the

amplitude fluctuations, extract different types of characteristics of complex systems, although they obtain

similar results.

3.2. TIR and AIR in physiological time series

In previous studies, an AIR measure based on the original permutation scheme has been applied to brain

signals [19], and a TIR measure based on the equal-value permutation scheme has been used to characterize

heartbeat signals [20, 24]. In this paper, we conduct a comparative analysis of the permutation TIR and AIR

for these physiological time series.

To collect electroencephalograms (EEGs), 22 epileptic patients (aged 15 to 49 yrs. old, mean 26.95±8.91

yrs. old) were recruited from Jinling Hospital (JLH); all the patients had been seizure-free for approximately

20 to 30 days. In addition, 22 healthy people (aged 4 to 51 yrs. old, mean 30.0±13.1 yrs. old) were also

enrolled for EEG collection. Following the standard 10-20 EEG system, 16 scalp electrodes were placed on

the subjects in their idle states; the duration of data collection was approximately 1 minute, and the sampling

frequency was 512 Hz. Briefly, these epileptic data were from our previous study, and detailed information

can be found in [19].

For the heartbeat signals, data were obtained from the public PhysioNet database [31]. Of these heartbeat

data, 44 sets were derived from electrocardiograms (ECGs) recorded from patients with congestive heart

failure (CHF) (aged 22 to 79, mean 55.5±11.4 yrs. old), 20 sets were obtained from healthy elderly people

(aged 68 to 85, mean 74.5±4.4 yrs. old), and 20 sets were obtained from healthy young people (aged 21 to

34, mean 25.8±4.3 yrs. old).

The AIR and TIR values for the EEGs and heartbeats are displayed in Fig. 5.

Similar to the results for the model series, the permutation AIR and TIR show some differences but still

enable highly similar nonequilibrium detections in both EEGs and heartbeats.

For the two groups of EEGs, the permutation AIR and TIR share consistent outcomes: the seizure-

free EEGs of the patients with epilepsy show lower nonequilibrium than those of their healthy counterparts

(p<0.005). Moreover, the equal-value AIR results for the EEGs of the patients with epilepsy from JLH are

similar to and yield the same conclusion as those for the AIR measure based on the original permutation

scheme [19]. For example, when m=3 and τ=2, the AIR values of the EEGs of the healthy people based on
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Figure 5: AIR and TIR results based on equal-value permutations for two sets of EEGs and three sets of heartbeats. A and B

show the TIR results for the EEGs of the patients with epilepsy and healthy people for τ=1 and 2, respectively, and m from

2 to 6; C and D present the corresponding AIR results. E and F show the TIR results for the heartbeats of the patients with

CHF, the healthy elderly individuals and healthy young individuals when m=2 and 3, respectively, and τ ranging from 1 to 5;

G and H present the corresponding AIR results.

the equal-value and original-order patterns are 0.0123 and 0.0122, respectively, whereas those of the EEGs of

the patients with epilepsy are 0.0080 and 0.0072, respectively. The reason for this similarity lies in the fact

that equal values occur very rarely in neuro-electrical signals, accounting for only 0.36% and 0.05% of the

values in the EEGs of the patients with epilepsy and the healthy controls, respectively, and the distributions

of these equal values therefore have no significant effects on the results. Nevertheless, the equal-value ordinal

scheme is recommended due to its physical importance for both AIR and TIR [4, 24].

Epilepsy is a life-threatening neurological disorder characterized by recurrent seizures. The characteristic

seizures manifest as the sudden development of abnormal, excessive, and synchronous neuronal firing. Ab-

normally large nonlinearities in seizure EEGs have been widely reported [4]; however, the lower AIR and

TIR values observed in our work physiologically suggest long-term negative effects on brain activity, as the

neural disorder causes declinations in the nonequilibrium of brain electrical activity [19, 32].

For the three groups of heartbeat signals, complexity-loss theory can be applied to both the TIR and AIR

measures based on equal-value permutation. The central postulate of complexity-loss theory [8, 9, 20, 24, 33,

34] is that healthy physiological systems exhibit a type of nonlinear complexity that degrades with age and

disease along with the accompanying reduction in adaptive capability. According to this theory, healthy young

heartbeats should exhibit the largest nonlinearity, while CHF heartbeats should exhibit smallest nonlinearity,

and the complexity of healthy elderly heartbeats should lie in between. The results are consistent with these

expectations, and the difference between each pair of heartbeat groups is statistically significant (p<0.001),

particularly when τ>1 [20, 24].
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The permutation AIR and TIR in the two kinds of physiological signals, although obtaining highly similar

results, are different in the manner they detect nonequilibrium characteristics, sharing the findings in the

analysis of model series. The highly consistent findings regarding the TIR and AIR, i.e., temporal asymmetry

and amplitude irreversibility, indicate that the joint analysis of different nonequilibrium aspects might further

broaden the quantitative nonequilibrium, which will be discussed in the following section.

According to the test results for the model series and physiological data, the simplified AIR and TIR

measures both effectively characterize the nonequilibrium property of complex systems. These two closely

related parameters, although they yield highly consistent findings, are different in the manner they quantify

nonequilibrium: the TIR measure is a traditional parameter that targets the time-reversible probabilistic

differences, while the AIR measure involves nonequilibrium amplitude fluctuations.

4. Discussion

In this paper, we analysed the relationship between permutations and vectors and conducted a comparative

analysis of the TIR and AIR measures. From our tests, we find that the similarities and differences between

the permutation AIR and TIR and their physical significance in quantitative nonequilibrium require further

discussion.

0
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CHF Elderly Young

(132)(123) (213) (312) (321) (221) (112) (113) (122) (211) (311) (111)(231)

Figure 6: Order patterns (m=3, τ=3) of the heartbeats of the patients with CHF, the healthy elderly individuals and the healthy

young individuals. The vectors of their corresponding permutations above the figure are in line with the Fig. 3, and equal values

in the vectors are indicated in red. The dashed double arrows above the plot point to pairs of PSVs for TIR quantification,

and the solid double arrows below the plot point to pairs of SPs for AIR quantification. The three ordered patterns above the

figure and the order pattern below it represented by circular arrows correspond to time reversibility and amplitude reversibility,

respectively.

Let us further identify the connections between SPs and PSVs and between the AIR and TIR measures

based on the distributions of the order patterns. As mentioned in section 2.4, when m=2, there are only three

relationships, namely, up, down and equality, and they are all centrally symmetric, i.e., the SPs and PSVs, as

well as the simplified quantitative AIR and TIR measures, are the same, which has been demonstrated by the
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test results. When m=3, we illustrate the exemplary probability distributions of the order patterns (τ=3) of

the three groups of heartbeats in Fig. 6. The relationships of vectors and permutations further confirm the

difference between and the connections of the PSVs and SPs in Fig. 3. The SPs and PSVs only share the pair

comprising (123) and (321) as well as (111) whose vectors are centrally symmetric; however the permutation

TIR and AIR still have high consistent results in heartbeats. The TIR values for the heartbeats of the

patients with CHF, the healthy elderly individuals and healthy young individuals are 0.0141, 0.0230 and

0.0448, respectively, and the corresponding AIR values are 0.0164, 0.0238 and 0.0462, respectively, which are

very close to the TIR values. The TIR measures the probabilistic differences in time-reversible permutations

and the AIR calculates the probabilistic differences in amplitude-reversible order patterns; i.e., the two

parameters target different aspects of nonequilibrium, suggested by the differences between the paired SPs

and PSVs and between the AIR and TIR. In addition, the similarity between the probabilistic differences

between SPs and PSVs contributes to the similarity in the AIR and TIR measures. For different dimensions

and delays in the ordinal scheme, the SPs and PSVs show slight differences and high similarity; therefore, the

different aspects of nonequilibrium contribute to the difference between the AIR and TIR measures, while

the consistency between the PSVs and SPs for the model series, EEGs and heartbeats is the direct reason

for the high similarity in the permutation TIR and AIR.

However, although the similarities between the SPs and PSVs are consistent with those between the

AIR and TIR measures, they are not the root cause of the latter. TIR measure quantifies the probabilistic

differences from the time-reversible perspective, and the AIR measure quantifies the differences in amplitude

fluctuations, and they both target the same characteristic, i.e., nonequilibrium, which is the fundamental

reason for these highly consistent results. This similarity inspires us to focus on the nonequilibrium itself

rather than particular measures thereof, i.e., the TIR or AIR measures. In the Introduction, we note that the

traditional kernel estimators are not suitable for TIR due to the reconstruction of probability distributions;

however, according to our findings, we can still detect probabilistic differences during time series transforma-

tions, such as between the positive and negative parts in the Heaviside kernel function [5]. Moreover, visibility

graphs, although they have been gaining popularity in the field of TIR quantification [13, 14, 15, 35], also

reconstruct the time series. From this perspective, the difference between the in- and out-degree distribu-

tions of the visibility graph is also not directly consistent with the statistical concept of TIR, and it in fact

measures a kind of networked nonequilibrium. According to the visibility graph TIR, we can derive other

kinds of either local or global networked nonequilibrium by constructing weighted and directional networks

and by calculating the probabilistic difference between the in and out degrees of nodes. These approaches

all effectively characterize nonlinear dynamic processes because they detect nonequilibrium rather than TIR.

Based on this fact, we should broaden our view of the measurement of nonequilibrium rather than limiting

ourselves to the concept of time reversibility or amplitude reversibility.

Fluctuation theorems contribute to our understanding of how irreversibility emerges from reversible dy-

namics [25], and both the TIR and AIR are effective parameters to characterize the fluctuations in nonequi-
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librium processes. The differences between and similarities of the permutation TIR and AIR contribute to

improving the understanding and quantification of the nonequilibrium characteristics from a broader perspec-

tive and to more widely exploration to the essential characteristics of the nonequilibrium nature of complex

systems.

5. Conclusions

To conclude, we have corrected the conceptual error underlying the use of SPs in the quantification of

TIR and have defined a novel concept of amplitude reversibility for quantitative nonequilibrium analogous to

time reversibility, and we have also demonstrated the significance of equal-value permutation for both TIR

and AIR. The AIR and TIR target different aspects of nonequilibrium fluctuations; however, the permutation

TIR and AIR show high consistency on both model series and real-world data; inspired by this observation,

we clarify the relationship of AIR and TIR and quantitative nonequilibrium.

Our findings have more profound significance that we should not allow ourselves to be limited by the

statistical definition of the TIR and that we can instead directly target the nonequilibrium of a system by

considering the differences in various time series conversions, thus broadening the scope of nonequilibrium

analysis.
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