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Brazil.

(Dated: 4 November 2019)

The brain has the phenomenal ability to reorganize itself by forming new con-
nections among neurons and by pruning others. The so-called neural or brain
plasticity facilitates the modification of brain structure and function over dif-
ferent time scales. Plasticity might occur due to external stimuli received from
the environment, during recovery from brain injury, or due to modifications
within the body and brain itself. In this paper, we study the combined effect
of short-term (STP) and spike-timing-dependent plasticities (STDP) on the
synaptic strength of excitatory coupled Hodgkin-Huxley neurons and show
that plasticity can facilitate the formation of modular neural networks with
complex topologies that resemble those of networks with preferential attach-
ment properties. In particular, we use an STDP rule that alters the synaptic
coupling intensity based on time intervals between spikes of postsynaptic and
presynaptic neurons. Previous works have shown that STDP may induce the
appearance of directed connections from high to low frequency spiking neu-
rons. On the other hand, STP is attributed to the release of neurotransmitters
in the synaptic cleft of neurons that alter its synaptic efficiency. Our results
suggest that the combined effect of STP and STDP with high recovery time
facilitates the formation of connections among neurons with similar spike fre-
quencies only, a kind of preferential attachment. We then pursue this further
and show that, when starting with all-to-all neural configurations, depend-
ing on the STP recovery time and distribution of neural frequencies, modular
neural networks can emerge as a direct result of the combined effect of STP
and STDP.

Neural or brain plasticity is the remarkable ability of the brain to alter its
structure and function over time to achieve cognitive functions and perform
tasks. Even though, plasticity may result as a consequence of external stimuli,
it might also occur during learning processes and after brain damage. Synaptic
plasticity refers to the ability of the brain to render synapses weaker or stronger
according to neural activity. In this paper, we build a neural network model of
excitatory coupled Hodgkin-Huxley (HH) neurons with the ability to modify
their synaptic strengths over time, i.e., a neural network with short-term (STP)
and spike-timing-dependent plasticities (STDP) build in. STDP acts on longer
time scales compared to STP, with both plasticities playing an important role
in brain functions. Here, we show that due to STP, neural networks equipped
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with STDP facilitate the formation of synapses among neurons with similar
spike frequencies only, a kind of preferential attachement. Modular neural
networks can emerge as a direct result of the combined effect of STP and STDP,
a structure also depicted by real brain networks.

I. INTRODUCTION

Mathematical models have been employed in neuroscience since early in the 20th century1

to explain experimental findings and elucidate the inner workings of the brain. In 1907,
Lapicque2 proposed the integrate-and-fire model that can reproduce the electrical activity
of the membrane potential of neurons. It is one of the most popular models for studying
the dynamic behaviour of neural systems. Later in 1952, Hodgkin and Huxley3 explained
the ionic mechanisms in the cell membrane of neurons and proposed the so-called Hodgkin-
Huxley (HH) neural model that has, since then, been used extensively to study neural
networks4.
In particular, neural network models have been used extensively in neuroscience applica-

tions, such as in studies of neural dynamics5, dynamic range6–9, neural synchronization10–14,
flow of information15–17 and brain plasticity18,19 to name a few.

Neural plasticity is the ability of the brain to modify its function and structure over
different time scales21,22. The term was initially used by James23 in 1890 to propose that
phenomena of habit in living organisms are due to plasticity. Cajal24 reported in the early
1900s his research about regenerative and degeneration changes in brain structure. In
1924, Lashley25 demonstrated experimental evidence of a malleable brain. Konorski26 and
Hebb27 proposed in 1948 and 1949, respectively, that neural activities have influence on the
connection among neurons. In 1960, Bennet et al.28 carried out experiments with rats and
observed chemical and anatomical plasticity in the brain. Since then, there have been many
theoretical29 and empirical30 studies aiming to explain and understand brain plasticity and
its effects in brain structure and function.

In synaptic plasticity, the synapses among neurons are potentiated or depressed in time
according to the activity of the neurons31,32. Recent works33,34 have shown that short-
term (STP) and spike-timing-dependent plasticities (STDP) are different forms of neural
processes leading to synaptic modifications. In particular, STDP depends on the rela-
tive timing of presynaptic and postsynaptic neural spikes35,36. This type of plasticity can
lead to various dynamical phenomena and coupling structures, such as stable localized
structures37, stimulation-induced synchronization or desynchronization38, noise-enhanced
synchronization39,40, and nontrivial topology20. The STDP mechanism plays a role in tem-
poral coding of information by spikes37,41. On the other hand, STP is attributed to the
release of neurotransmitters in the synaptic cleft of neurons that alter its synaptic efficiency
and acts on shorter time scales, ranging from milliseconds to hundreds to thousands of
milliseconds42–45. As in the case with STDP, STP can have a great influence on the net-
work’s dynamical behavior. For instance, it may stabilize the parametric working memory46,
contribute to the emergence of spontaneous traveling waves47, or induce phase changes in
neural postsynaptic spiking33.

Here, we extend the work in Borges et al.20 which was focused on STDP only and study
the combined effect of STP and STDP in neural networks of excitatory coupled HH neu-
rons. The plasticity terms that model STDP in the equations in Sec. II are based on the
experimental results by Bi and Poo48,49 that were performed on excitatory synapses and
on theoretical results by Abbott et al.43 and Popovych et al.39 (STDP). The results in
Bi and Poo48,49 show that STDP is a function of the relative timing of postsynaptic and
presynaptic spikes and is theoretically backed by the Hebbian synaptic learning rule27. In-
stead, STP depends on the neural recovery dynamics50,51. McDonnell and Graham33 used
mathematical analysis and numerical simulations to show that STP induces phase changes
in neural postsynaptic spiking. In our work, we start by studying the simplest case of a
pair of HH neurons for a range of spike frequencies, aiming to understand how connectivity
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between them changes by the combined effect of STP and STDP. Next, we build an ini-
tially, all-to-all (globally) connected network of HH neurons and consider the simultaneous
effect of STP and STDP in a range of coupling strengths. We show that STP plays an
important role in topology changes in neural networks with STDP. Indeed, we find that
for high STP recovery time, only neurons with similar spike frequencies tend to connect, a
form of preferential attachement. More importantly, our results show that, when starting
with all-to-all networks, depending on the STP recovery time and distribution of neural
frequencies, modular neural networks can emerge as a direct result of the combined effect of
STP and STDP, a structure depicted by neurophysiological and experimental studies52,53.
For the considered setup, STP plays a balancing role: while STDP tends to synchronize all
neurons in one cluster, the STP destroys the strong synchronization and leads to a modular
structure.

The paper is structured as follows: In Section II, we introduce the general mathematical
model of HH neural networks with STP and STDP and, in Section III, we present our
analysis and results based on numerical simulations, that show the effects of both plasticities,
initially on a pair of neurons and then, on a network of 100 HH neurons. Finally, we present
the conclusions of our work in the last section.

II. A HODGKIN-HUXLEY NEURAL NETWORK WITH STP AND STDP

We buid use a neural network model of N HH neurons coupled with excitatory chemical
synapses, equipped with STP and STDP rules based on the experimental results by Bi and
Poo48,49 and theoretical models proposed by Popovych et al.39 (STDP) and McDonnell and
Graham33,43,50(STP).

Specifically, the HH neural network model considered is given by

CV̇i = Ii − gKn
4
i (Vi − EK)− gNam

3
ihi(Vi − ENa)

− gL(Vi − EL) + (Vr − Vi)

N
∑

j=1

εijfjDj , (1)

ṅi = αni
(Vi)(1 − ni)− βni

(Vi)ni, (2)

ṁi = αmi
(Vi)(1 −mi)− βmi

(Vi)mi, (3)

ḣi = αhi
(Vi)(1 − hi)− βhi

(Vi)hi, (4)

ḟi = −
fi
τs
, (5)

Ḋi =
1−Di

τD
, (6)

where C (µF/cm2) is the membrane capacitance and Vi (mV) the membrane potential of
neuron i at time t (where i = 1, . . . , N). Ii (µA/cm2) is the constant current density
of neuron i and εij represents the matrix of coupling weights between neurons i and j.
ni and mi are the activation of potassium and sodium functions, respectively, and hi the
inactivation of sodium function. Parameters g and E are associated with the conductance
and reversal potential of each ion, respectively, and Vr is the excitatory reversal potential.
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The various rate functions in Eqs. (1) - (6) are given by

αn(v) =
0.01v + 0.55

1− exp (−0.1v − 5.5)
, (7)

βn(v) = 0.125 exp

(

−v − 65

80

)

, (8)

αm(v) =
0.1v + 4

1− exp (−0.1v − 4)
, (9)

βm(v) = 4 exp

(

−v − 65

18

)

, (10)

αh(v) = 0.07 exp

(

−v − 65

20

)

, (11)

βh(v) =
1

1 + exp (−0.1v − 3.5)
, (12)

where v = V/[mV] is the membrane voltage V of Eq. (1) in millivolts (mV) divided by
1mV to render the variable dimensionless. We consider C = 1µF/cm2, gK = 36mS/cm2,
gNa = 120mS/cm2, gL = 0.3mS/cm2, EK = −77mV, ENa = 50mV, EL = −54.4mV and
Vr = 20mV.
Figure 1(a) shows the spike (or natural) frequency ν (Hz) of a single HH neuron as a

function of current I. The spikes were numerically computed when the voltage V crosses
the threshold of 0mV, increasing from negative to positive values. In the simulations of
100 coupled HH neurons in Sec. III, we consider Ii randomly distributed in the interval
[10, 30]µA/cm2, leading to spike frequencies νi in the interval [70, 100]Hz. This interval
avoids the regime observed for I in [6, 10]µA/cm2, as shown in Fig. 1(b), where it is clear
that for some I values, the neuron does not spike as its natural frequency ν is zero. This
choice of interval also allows for the monotonic increase of the natural frequencies νi without
reaching currents I bigger than 60µA/cm2 that correspond to a non-spike regime.

0 10 20 30 40 50 60 70
0

50

100

ν 
(H

z)

6 7 8 9 10
I (µA/cm²)

0

50

ν 
(H

z)

(a)

(b)

FIG. 1. Natural frequency ν as a function of the current I for a single HH neuron. Panel (b) is a
zoom-in of panel (a) for currents I in [6, 10]µA/cm2.

In Eq. (5), fi is the strength of the effective synaptic output current from neuron i to
neuron j and τs (ms) the synaptic time constant, fixed at τs = 2.728ms. When neuron i
spikes, fi is updated (fi → 1) before it starts to decay exponentially.
Equation (6) models STP33,50 with τD (ms) being the recovery time constant, related to

biological mechanisms such as the depletion of release-ready neurotransmitter vesicles at
the presynaptic terminal44,51. We assume that every time neuron i spikes, the update rule
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Di → (Di − d) is applied. Biologically, Di could represent the vesicles that can be used to
transmit a signal from the presynaptic to the postsynaptic neuron. Therefore, the update
rule means that the amount Di of available vesicles is decreased by d = 0.1 in every spike
of neuron i, and then it recovers according to Eq. (6). In that framework, Di lies in [0, 1]
as if it happens Di to be negative it means that the neuron used all the stored vesicles and
when this happens, Di is reset to 0. On the other hand, when Di is equal to 1, it means
that all neurotransmitter vesicles are restored.
Figure 2 shows the effect of STP on a pair of neurons coupled with a unidirectional

connection from neuron 1 to neuron 2. This is implemented by fixing ε12 = 0 (i.e. the
connectivity strength from neuron 2 to neuron 1 is 0) and ε21 = 0.1 for the connectivity
strength from neuron 1 to 2. In this study, we have set the STP recovery time τD at 50ms
and I2 at 0, so that neuron 2 spikes only when it receives a strong enough input I2,input =
(Vr − V2)ε21f1D1 from neuron 1. When the spiking frequency ν1 in Fig. 2(a) changes from
70Hz to 100Hz, ν2 in Fig. 2(b) exhibits a delayed alteration in its dynamic behaviour as its
amplitude plummets at about 300ms. We appreciate further this phenomenon through the
temporal evolution of D1 in Fig. 2(c) and the input current I2,input received by neuron 2
in Fig. 2(d). Comparing the 70Hz-regime with the 100Hz-regime in Figs. 2(c) and (d), one
can see that D1 decreases with the increase of the spike-frequency of neuron 1 to 100Hz,
and consequently I2,input becomes less intense as it is not strong enough to cause spikes in
the activity of neuron 2. When neuron 1 returns to 70Hz spike frequency, there is more time
for D1 to recover, thereby to increase the intensity of I2,input which triggers again spikes in
neuron 2. Generalizing this, one might say that STP makes neurons more sensitive to spike
frequency changes.

FIG. 2. The effect of STP on a pair of unidirectionally connected HH neurons, where neuron 1
is connected to neuron 2 but not vice versa: Temporal evolution of (a) ν1, (b) ν2, (c) D1 and
(d) I2,input = (Vr − ν2)ε21f1D1 with ε12 = 0, ε21 = 0.1, I2 = 0 and τD = 50ms. Note that, for
ν1 = 70Hz and ν1 = 100Hz, we used I1 = 10.97µA/cm2 and I1 = 31.8µA/cm2, respectively.

Moving now to the other form of plasticity introduced to the model, STDP gives rise to
changes in the synaptic strength by means of the update function39,48

εij → εij + 10−3∆εij , (13)

where

∆εij =







ε+ = A1e
(−∆tij/τ1), if ∆tij > 0

ε− = −A2e
(∆tij/τ2), if ∆tij < 0

0, if ∆tij = 0

. (14)
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Here, ∆tij = ti − tj is the difference between the spike times of the postsynaptic (ti) and
presynaptic (tj) neurons i and j, respectively. Figure 3 shows the plot of the plasticity
function ∆εij calculated from Eq. (14) for A1 = 1, A2 = 0.5, τ1 = 1.8ms, τ2 = 6ms, and
∆tij varying from −20ms to 20ms. This update rule is applied everytime the postsynaptic
neuron i spikes.

-20 -10 0 10 20

∆t
ij
(ms)

-0.5

0

0.5

1

∆
ε
ij

FIG. 3. Plot of ∆εij that models STDP as a function of the difference between the spike times of
the postsynaptic neuron i and presynaptic neuron j. Note the discontinuity at ∆tij = 0ms.

To understand better the effects of the recovery time τD, we consider in the next the
case of two, unidirectionally connected neurons where neuron 1 (presynaptic) is connected
to neuron 2 (postsynaptic), but not vice versa. We evaluate how the average input current
Ī2,input and amount of information exchanged change with the increase of the recovery time
τD by comparing cases where the neurons have similar and dissimilar spike frequencies.
To quantify the exchange of information between the 2 neurons, we compute the Mutual

Information (MI)54–56. MI can be understood as the amount of dependence (or uncertainty)
between two random variables X and Y , and is given by

MIXY (n) =
n
∑

i

n
∑

j

PXY (i, j)log

(

PXY (i, j)

PX(i)PY (j)

)

(15)

where the probability of a random event i(j) to occur in X(Y ) is given by PX(i)(PY (j)).
The joint probability PX,Y (i, j) gives the probability of i to occur in X and j in Y , si-
multaneously. In this context, the number of random events in X and Y is denoted by
n.
In the next, we consider the cases where the system has only STP (see Fig. 4(a), (c)) and,

STP and STDP (see Fig. 4(b), (d)). In both cases, we consider ε21 = 0.3 and ε12 = 0, but
for the case of STD and STDP (Fig. 4(b), (d)), STDP acts only on ε21 (unidirectional con-
nection) and ensures that the spike frequency of presynaptic neuron 1 remains unchanged.
The spike frequency of neuron 2 was fixed at ν2 = 70Hz (I2 = 10.97µA/cm2) and, for the
blue curves in Fig. 4, neuron 1 has ν1 = 100Hz (I1 = 31.8µA/cm2) and for the orange
curves, ν1 = 72Hz (I1 = 11.88µA/cm2). We use as random variables to calculate MI, the
time series of the voltage of both neurons, namely X = V1 and Y = V2. We let the system
evolve for 200× 103ms for each τD and used the last 100× 103ms to calculate MI. For the
calculation of Ī2,input, we consider the last 10× 103ms of the simulations.
Observing Fig. 4(a) (STP), one can see that for recovery times τD < 75ms, the average

current Ī2,input for ν1 = 100Hz (blue curve) is bigger than Ī2,input for ν1 = 72Hz (orange
curve) (see also the inset in Fig. 4(a)). Interestingly, this change in the region 75ms< τD <
125ms where Ī2,input for ν1 = 72Hz (orange curve) is bigger than Ī2,input for ν1 = 100Hz (blue
curve). For τD > 125ms, both Ī2,input curves assume similar values and settle asymptotically
to zero with further increasing in τD.
In Fig. 4(b) (STP and STDP), we see that the action of STP and STDP causes Ī2,input for

ν1 = 100Hz to drop to 0 at τD ≈ 100ms whereas Ī2,input for ν1 = 72Hz (orange curve) stays
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positive until τD ≈ 480ms. Panels (c) and (d) show clearly the impact of STP and STDP
to MI. In particular, MI fluctuates around 3 for τD < 480ms in both panels. However, both
panels show that as τD increases from 0ms, MI for ν1 = 100Hz (blue curve) approaches zero
at τD ≈ 100ms, while for ν1 = 72Hz, it remains close to 3 until τD ≈ 480ms. These results
show that STP make the influence of slower (or close frequency) neurons to become greater
than that of faster (or very different frequency) neurons as τD increases. In conjunction
with STDP, this effect occurs due to the decrease of Ī2,input that makes the firing times
uncorrelated (less synchronized), which then causes the coupling to disappear, i.e. ε21 → 0.
This decoupling process tends to occur for smaller τD values as the difference between ν1
and ν2 is amplified. We address this further later when we discuss the results in Fig. 5.

STP STP

STP and STDP STP and STDP

100Hz

72Hz

70Hz

FIG. 4. The average input current Ī2,input neuron 2 receives from neuron 1 and mutual information,
MI, as a function of the recovery time τD for the following cases: (a), (c) only STP and (b), (d)
STP and STDP. Neuron 2 has a fixed spike frequency ν2 = 70Hz (I2 = 10.97µA/cm2). The blue
curve represents the case where ν1 = 100Hz (I1 = 31.8µA/cm2) and the orange curve, the case
where ν1 = 72Hz (I1 = 11.88µA/cm2). We use ε21 = 0.3 and ε12 = 0, implying that only ε21
changes when STDP is considered. The simulations run for 200× 103ms, Ī2,input is calculated over
the last 10× 103ms and, the time-series for ν1 and ν2 used for the calculation of MI are recorded
from the last 100× 103ms of the simulations.

III. EFFECTS OF STP ON HH NEURAL NETWORKS WITH STDP

Neural networks with STDP and random synaptic input were studied by Popovych et
al.39. The authors reported that the mean synaptic coupling depends on the noise inten-
sity. Recently, the authors in20 showed that STDP induces non-trivial topology in neural
networks. Here, we extend this work and build a neural network of N = 100 HH neurons
to study the combined effect of STP and STDP on the structure of the network and in
particular, on its connectivity.
We start by analysing neural connectivity under the effect of STP and STDP. To this end,

we consider a pair of HH neurons with STP and STDP, with the coupling strengths ε12 and
ε21 varying in [0, 0.3], and the connectivity threshold set at 0.01. This threshold is chosen
because the coupling weights that should vanish in time actually oscillate around 0 assuming
very small values as STDP is always present and thus, affecting them. As a consequence,
the time averages of the coupling weights are not 0 but very close to 0. Moreover, for
coupling weights smaller than this threshold, we notice that neurons influence each other
only slightly.
Initially, the pair of neurons is uncoupled (i.e. ε12 = ε21 = 0) or bidirectionally coupled

with ε12 = ε21 = 0.3. Figure 5 shows the direction of connectivity, after a transient
time, for different natural frequencies ν1 and ν2 in [70, 100]Hz. The direction is coloured
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FIG. 5. Parameter spaces ν1 × ν2 for a pair of initially uncoupled neurons for recovery times (a)
τD = 0ms, (b) τD = 100ms, (c) τD = 200ms and (d) τD = 1000ms, and for a pair of initially coupled
neurons for (e) τD = 0ms, (f) τD = 100ms, (g) τD = 200ms and (h) τD = 1000ms. Note that ν1
and ν2 vary in [70, 100]Hz and that the colour bar shows the direction of synaptic connectivity,
where white accounts for the uncoupled case (denoted “No”), grey for the case where neuron 1 is
connected to neuron 2 (i.e. 1→ 2), blue for the case where neuron 2 is connected to neuron 1 (i.e.
1← 2) and black for the bidirectional connection (i.e. 1↔ 2).

according to the connection from the output of one neuron to the input to the other neuron
(directions of arrows in the colour bar): white accounts for the uncoupled case denoted
in the colour bar as “No” (ε̄ij < 0.01), grey for the case where neuron 1 is connected to
neuron 2 (i.e. 1 → 2), blue for the case where neuron 2 is connected to neuron 1 (i.e.
1 ← 2), and black for the bidirectional connection (i.e. 1 ↔ 2). For initially uncoupled
neurons, the connections remain only for neurons with very similar frequencies, from those
with faster spike frequencies to those with slower as depicted in Fig. 5(a) (τD = 0ms),
5(b) (τD = 100ms), 5(c) (τD = 200ms), and 5(d) (τD = 1000ms). We note the absence
of bidirectional connections and that the increase of the recovery time τD gives rise to a
narrower region of directed connections. With regard to neurons starting with bidirectional
connections, we observe that for τD = 0ms, neurons still remain unidirectionally connected
(for all natural frequencies) from the high to the low frequency neurons (see Fig. 5(e)).
Increasing τD to 100ms (see Fig. 5(f)), 200ms (Fig. 5(g)) and 1000ms (Fig. 5(h)), we
observe a decrease in the area that represents connectivity, implying that the region of
high spike frequencies is more affected by the influence of STP. Therefore, STDP makes
the connections increase from faster spiking to slower spiking neurons and STP decreases
the influence of hight frequency neurons, allowing connections only for those neurons with
similar spike frequencies.

The reason for the initially, bidirectionally coupled system to have larger areas of con-
nectivity is related to the difference in frequency ∆νcij of neurons when coupled (or the
synchronization level). We note that this difference is not equal to the difference between
their natural frequencies νi − νj , i.e. ∆νcij 6= νi − νj . In Fig. 6, we present the calcula-
tion of the average ∆νcij (colour bar) for the first t = 4000ms for the system with STP
only. We consider N = 2, ε12 = ε21 = 0.3 and vary ν1 and ν2 in [70, 100]Hz. Figure 6(a)
shows the result for τD = 0ms where, despite the natural frequencies of the neurons, ∆νcij
is approximately equal to 0 (black region). When comparing these results with the results
in Fig. 5(e), once can see that this corresponds to a connected region. For increasingly
bigger recovery times τD (see Fig. 6(b) for τD = 100ms, 6(c) for τD = 200ms and 6(d) for
τD = 1000ms), one can observe a decrease in the size of the black area, similar to the size
of the area seen in Fig. 5(f), (g) and (h). Thus, one can infer that what defines a connected
configuration in the case of STDP is the difference in spike frequency among neurons or
how synchronized they become. The non-homogeneous distribution of connected areas in
relation to the main diagonal in Figs. 5 occurs due to the non-linear variation of neural



9

frequencies in relation to the received external current. In Fig. 1, we see that for low cur-
rents (i.e. I ∈ [10, 25]), a small increase in I can cause a bigger variation in the frequencies
when compared to the interval where I > 30. Therefore, low frequency neurons are more
sensitive to changes in their external currents, which facilitates their synchronization with
neurons with similar frequencies. The more synchronized they become, the more they re-
main connected. Coming back to the effect of STP, we find that it decreases the influence
of the faster neurons on the slower ones, and consequently leads to the increase of their
frequency differences and to the suppress of their synchronization. That then leads to the
depression of the connectivity via STDP.

FIG. 6. Parameter space ν1×ν2 for increasing values of τD: (a) for τD = 0ms, (b) for τD = 100ms,
(c) for τD = 200ms and (d) for τD = 1000ms. Note that ν1 and ν2 vary in [70, 100]Hz and the
colour bar represents ∆νc

ij values.

We performed a similar study for a HH neural network and analyzed how the connections
evolve with the combined application of STP and STDP. In particular, we start with an
all-to-all (globally connected) network of N = 100 excitatory, HH neurons. The coupling
weights vary in [0, 0.04] and Ii is randomly distributed so that neural frequencies are in the
range [70, 100]Hz. We choose three initial coupling weight averages ε̄initial. The coupling
matrices for the connectivity strengths εij are shown in Fig. 7 where ε̄initial = 0 in 7(a),
ε̄initial = 0.01 in 7(b) and ε̄initial = 0.04 in 7(c). For all initial conditions studied, we kept
the standard deviation of ε̄initial fixed at 0.002. In the coupling matrix (εij), the presynaptic
neurons j and postsynaptic neurons i are sorted and plotted in ascending frequency-order
(i.e. from the smallest to the largest spike frequency). The final coupling matrices εij for
τD = 0ms are shown in Fig. 7(d), (e) and (f) for ε̄initial = 0, ε̄initial = 0.01 and ε̄initial = 0.04,
respectively. In all cases, the final coupling matrices have, predominantly, connections from
faster to slower spiking neurons. This behaviour was also reported in Borges et al.20 for
a neural network with STDP. Figure 7(g), (h) and (i) present our results for ε̄initial = 0,
ε̄initial = 0.01, and ε̄initial = 0.04, respectively, where τD = 100ms. Due to the effect of
STP on the dynamics of the neurons in the network, we observe the formation of different
modules of directly connected neurons. Again, the effect of STP leads to a decrease on the
influence of the fastest neurons to the slowest ones, allowing for the formation of connections
among those neurons with similar spike frequencies. The size of these modules increases
according to the intensity of the initial coupling and their different sizes can be explained
by the analysis made based on the results in Figs. 5 and 6, where the coupling shortened
the frequency differences, leading to the formation of connections especially among neurons
with close frequencies. It also explains why the bigger-size modules are composed of the
smallest-frequency spiking neurons. Increasing τD to 1000ms, leads to the disappearance of
big modules and to the decrease of the number of coupled neurons, as shown in Fig. 7(j),
(k) and (l). Therefore, by varying the STP recovery time τD, one can control the formation
of modules in neural networks with STP and STDP.
To study further the observed modules, we consider connections with εij > 0.002 (i.e.
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FIG. 7. The combined effect of STP and STDP on connectivity in networks of N = 100 excitatory
coupled HH neurons and emergence of modular neural networks. The initial couplings used are:
In (a) ε̄initial = 0, in (b) ε̄initial = 0.01 and in (c) ε̄initial = 0.04. We consider τD = 0ms for (d)
ε̄initial = 0, (e) ε̄initial = 0.01 and (f) ε̄initial = 0.04. τD = 100ms for (g) ε̄initial = 0, (h) ε̄initial = 0.01
and (i) ε̄initial = 0.04 and τD = 1000ms for (j) ε̄initial = 0, (k) ε̄initial = 0.01 and (l) ε̄initial = 0.04.
Note that the synaptic weights εij (with i, j = 1, . . . , 100) of the coupling matrices are encoded in
grey scale in the colour bar.

with connectivity strength bigger than 5% of the maximal coupling strength). Thus, weaker
connections are not considered in the resulting network analysis. This procedure avoids
measurement errors that might be caused by connections whose weights fluctuate over time
closely to zero.
To evaluate how modular structures evolve over time, we compute the modularity Q by

using the Louvain method58. Q is measured across network partitions in densely connected
communities. In particular, the modularity assumes values in the range [−1, 1] comparing
the density of connections within communities with the density among communities. The
best network partition in modules is one that maximizes modularity. Q is defined as59

Q =
1

W

N
∑

i

N
∑

j

(

εi,j −
ωiωj

W

)

δ(ci, cj), (16)

where ωi =
∑N

j εij represents the sum of the connection weights received by node i and

W =
∑N

i

∑N
j εij is the sum of all weights in the coupling matrix. The term ci represents

the community that neuron i has been allocated to and δ(ci, cj) is given by

δ(ci, cj) =

{

1, if ci = cj ,
0, otherwise.

(17)

The Louvain58 method is defined in two steps. At first, each node in the network is consid-
ered as a community in itself, and thus initially, there will be as many communities as nodes
in the network. At this stage, each node i is reassigned to the community of each of its
neighbors j, then i will be permanently fixed in the community that promotes the largest
gain in modularity Q (positive gain). This process is applied repeatedly to all network
nodes until there are no more gains in Q. The second step amounts to taking the defined
communities at the end of the first step and consider them as the nodes of a new network.
The weight of the connections between these new nodes is given by the sum of the weights
of the connections between the nodes present in the communities (defined in the first step).
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Once the new network is computed, the first step can be applied again to its nodes. This
process occurs repeatedly until no further changes to Q occur and a maximum value is thus
obtained.

Figure 8 shows the time evolution of the modularity Q for the three recovery times,
τD = 0ms, τD = 100ms and τD = 1000ms. The colours represent the initial connectivity
strengths in the coupling matrix: the black curve is for ε̄initial = 0, the red curve for
ε̄initial = 0.01 and the green curve for ε̄initial = 0.04. The coloured symbols represent the
average Q values calculated over 20 random networks obtained by rewiring all connections
of the original networks. We did this to compare our results with those obtained for random
networks with the same connections and number of nodes (which we call random variants).
Unless stated otherwise, the symbols in Fig. 8 represent the measurements taken on these
random variants. In Fig. 8(a), we observe that for τD = 0ms (instantaneous recovery), Q
is very low for all ε̄initial connectivity strengths, remaining constant after a small transient.
These results confirm those in Fig. 7(d), (e) and (f). In Fig. 8(b) for τD = 100ms,
the modularity Q takes its largest value for ε̄initial = 0, confirming what we observed by
comparing the number of modules in Fig. 7(g), (h) and (i). It is also apparent that
Q stabilizes for simulation times t greater than 80000ms as there are no changes in the
modular structures occurring in the networks anymore. Interestingly enough, Fig. 8(c)
shows that for τD = 1000ms, the modularity converges to the same value (i.e. Q ≈ 0.6)
for all ε̄initial coupling strengths, again in accordance with the results in Fig. 7(j), (k), (l),
which show networks with similar configurations regardless of the initial coupling. Finally,
in all cases considered, we find that the modularity of the networks is bigger than their
random variants.

FIG. 8. Time evolution of the modularity Q for (a) τD = 0ms, (b) τD = 100ms and (c) τD =
1000ms. Q was calculated over the time evolution of the coupling matrix and the coloured curves
represent the network average initial coupling: the black curve is for ε̄initial = 0, the red for
ε̄initial = 0.01 and the green for ε̄initial = 0.04. The colored symbols represent the average Q for
random networks computed by rewiring the connections in the corresponding original networks. For
example, the black symbols represent the average Q calculated over 20 random networks generated
from rewiring randomly the connections in the original networks (black curve).
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Next, we compute other quantities that characterize the structure of the networks con-
sidered previously, such as the mean path-length, clustering coefficient and assortativity.
In particular, a path is defined as the route that passes through network connections

connecting two nodes i and j. The path with the shortest number of connections is called
the shortest path lij

60. The networks we consider here are directed, so lij is not necessarily
equal to lji. In general, the shortest average path length is given by

L̄ =
1

N(N − 1)

N
∑

i

N
∑

j 6=i

lij , (18)

where N is the number of nodes in the network. In our approach, we calculated L̄ via
a breadth-first search approach60 and do not consider the weights of the connections. If
there is no possible directed path lij between nodes i and j, then it is not considered in the
calculations in Eq. (18).
The second computed quantity is the clustering coefficient CCi, which measures the degree

to which the neighbors of a node i are connected to each other and varies in [0, 1]. It is
computed by considering the number of triangular motifs made by node i and its neighbors
compared to all possible triangular motifs of that node60. For directed networks, given 3
connected nodes i, j and h, there are 8 distinct triangular motifs, shown in Fig. 9. These
motifs are further organised into 4 groups when considering node i as the reference node:
Figure 9(a) shows a “cycle” motif, Fig. 9(b) a “middleman” motif, Fig. 9(c) an “in” motif

and Fig. 9(d) an “out” motif. For each motif, we calculate CC
(cyc,mid,in,out)
i relative to

node i, as shown in61. For directed and weighted networks, there are 4 types of clustering
coefficients

CC
cyc
i =

1
2

∑N
j

∑N
h

[

ε
1/3
ij ε

1/3
jh ε

1/3
hi + ε

1/3
ih ε

1/3
hj ε

1/3
ji

]

dini douti − d↔i
,

CCmid
i =

1
2

∑N
j

∑N
h

[

ε
1/3
ih ε

1/3
jh ε

1/3
ji + ε

1/3
ij ε

1/3
hi ε

1/3
hj

]

dini douti − d↔i
,

CCini =

1
2

∑N
j

∑N
h

[

ε
1/3
ij ε

1/3
ih ε

1/3
jh + ε

1/3
ij ε

1/3
ih ε

1/3
hj

]

dini (dini − 1)
,

CCouti =

1
2

∑N
j

∑N
h

[

ε
1/3
hi ε

1/3
ji ε

1/3
jh + ε

1/3
hi ε

1/3
ji ε

1/3
hj

]

douti (douti − 1)
, (19)

where dini =
∑N

j aij is the in-degree of node i and douti =
∑N

j aji its out-degree. The

term d↔i =
∑N

j aijaji represents the number of bilateral connections between node i and its

neighbors. For the calculation of dini , douti and d↔i , the coupling weigths are not considered,
only the number of connections, that is aij = 1 if εij > 0.002, otherwise aij = 0.
Consequently, the clustering coefficient of the network, CC∗, is calculated by averaging

CC∗
i over all N nodes in the network

CC∗ =
1

N

N
∑

i

CC∗
i , (20)

where ∗ stands for either of the cyc, mid, in or out motifs.
The last quantity in our study is assortativity, which is the correlation coefficient (i.e. the

Pearson correlation62) between the degrees of nodes on two opposite ends of a connection
in a network, for all connections in the network. This correlation varies in [−1, 1] and, is
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FIG. 9. The 8 distinct triangular motifs in directed networks. The motifs are considered with
respect to node i depicted in red and are split into the cycle, middleman, in and out motifs.

positive in assortative networks and negative in disassortative networks. Since our networks
are directed and weighted, we use the four directed assortativity measures defined in63.
In particular, let a and b be indices representing the type of degree (i.e. in- and out-

degree) and jai and kbi the a- and b-degree from source node j to target node k of an edge e.
Figure 10 shows an illustrative representation of edge e and their respective source nodes j
and target nodes k. Foster et al.63 defined the assortativity measure r(a, b) as

r(a, b) =
N−1

e

∑Ne

e

[

(jae − j̄a)(kbe − k̄b)
]

σaσb
, (21)

where Ne is the number of edges in the network, j̄a = N−1
e

∑Ne

e jae the average in- and

out-degrees of the source node and, σa =

√

N−1
e

∑N−1

e

e (jae − j̄a)2 its deviation, calculated

for all edges. The equations for k̄b and σb are similarly defined. In our approach, instead
of in- and out-degrees, we use the in- and out-strength from the source and target nodes,
given by the sum of their in- and out-coupling weights. A positive assortativity coefficient
indicates that nodes tend to connect to other nodes with the same or similar strength.

FIG. 10. Representative illustration of an edge e and, the source j and target k nodes considered
in Eq. (21).

Figure 11 shows the results of the computations of the quantities discussed previously
as a function of τD in [0, 1000]ms. In all computations, we consider the final coupling
matrix obtained after t = 200000ms of simulated data. Figure 11(a) shows the modularity
Q for 3 initial couplings: ε̄initial = 0 in black, ε̄initial = 0.01 in red and, ε̄initial = 0.04 in



14

green and their random variants given by different symbols with their respective colors.
We note that for τD < 30ms (approximately) and for all 3 ε̄initial values, Q is low. For
30ms < τD < 120ms (approximately), Q depends on ε̄initial. In particular, the lower the
initial average coupling ε̄initial, the more modular the final configuration of the network. For
τD > 120ms (approximately), there is no dependence on ε̄initial and the resulting networks
exhibit similar modularity values. In all cases of ε̄initial, Q is higher than that calculated for
their random variants, which shows that the resulting networks do not have characteristics
of random networks.

Figure 11(b) shows the results for the average path length L̄ for the same three ε̄initial
values. For τD < 30ms, the average path L̄ = 1, in accordance with Fig. 7(d), (e) and
(f), where we observe a network where all nodes are connected to all other nodes with
unidirectional connections. For 30ms < τD < 120ms, the average path length L̄ is bigger
for weaker initial couplings. This is because weak initial couplings result in the formation
of a larger number of modular structures (as seen in Fig. 11(a)), which results in a greater
path for one node to access other nodes in different modules, possibly crossing through
other modules. For τD > 120ms, we see that L̄ ≈ 2.5 for all 3 ε̄initial values. In contrast,
the average path lengths L̄ for the random variants are smaller than those for the original
networks.

Figure 11(c), (d) and (e) present the 4 types of clustering coefficients for ε̄initial = 0,

ε̄initial = 0.01 and ε̄initial = 0.04. The black curve represents CCcyc, the red CCmid, the

green CCin and the blue CCout. In all cases, the results are similar. It is worth it to note

that for τD < 120ms, CCmid has the highest value and CCcyc the lowest. These results
build on what we have already observed: the action of STDP promotes connections from
faster to slower spiking neurons and do not permit cyclic connections (see Fig. 9(a)). As

τD increases, CCmid converges to CCin,CCout ≈ 0.15 and CCcyc increases to ≈ 0.09. For
the random variants of the networks (coloured symbols), we see that for τD < 120ms, all
clustering coefficients are similar and larger than those for the original networks. This is
because for such τD values, the networks from which they were generated (Fig. 7(d), (e),
(f)) are densely connected and the high number of connections allows for the formation
of triangular motifs without any of the 4 types occuring preferentially. For τD > 120,
all random networks have their clustering coefficients fluctuate near zero. In this case,
the generating networks are more sparse (as in Fig. 7(g), (h), (i)), which makes their
random variants have low probability in forming triangular motifs. We note here that these
clustering coefficients are not high enough to claim with certainty that the networks have
a small-world topology.

The right column of plots in Fig. 11 shows the 4 assortativity measures, r, computed for
the considered networks with ε̄initial = 0, ε̄initial = 0.01 and ε̄initial = 0.04. The black curves
represent the out-strength/in-strength correlation r(out, in) between the source and target
nodes, the red curve the in-strength/out-strength correlation r(in, out), the green curve the
out-strength/out-strength correlation r(out, out) and the blue curve, the in-strength/in-
strength correlation r(in, in). In Fig. 11(f), (g), (h) and for the three ε̄initial values, we
find that for τD < 100ms, the networks are disassortative as r(out, in) and r(in, out) are
negative and, at the same time, neither assortative nor disassortative as r(out, out) and
r(in, in) are approximately equal to 0. As τD increases, all correlations grow being mostly
positive with r(out, in) being the largest. This shows a greater correlation in the network of
high out-strength nodes to connect with nodes with high in-strength and corroborates the
results in Fig. 7 where connections occur preferably from the faster neurons (which have a
high out-strength) to the slower ones (with high in-strength). For the random variants of
these networks, all correlations are close to zero for the entire τD range, a result completely
different to those for the original networks. We thus conclude that the original networks
are far from being purely random networks, exhibiting a type of preferential attachment in
their connectivities.

In the analysis of the structural properties of the networks, the topology may vary greatly
depending on τD. In all cases studied, the networks were different from random or small-
world networks, since the average path lengths are bigger than in random networks and
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their clustering coefficients are small than in random networks. This corroborates further
the results obtained previously here that there is a complex configuration where modules
are formed following a kind of preferential attachment process.

FIG. 11. Structural properties of the final coupling matrix configuration (coloured curves) and their
respective random variants (averaged over 20 random networks, coloured symbols) as a function
of the recovery time τD. Panels (a) and (b) show the modularity Q and average shortest path
length L̄ for three different average initial couplings: ε̄initial = 0 in black, ε̄initial = 0.01 in red
and ε̄initial = 0.04 in green. In (c), (d) and (e), we show all clustering coefficients for ε̄initial = 0,
ε̄initial = 0.01 and ε̄initial = 0.04, respectively. Panels (f), (g) and (h) show the assortativity for
ε̄initial = 0, ε̄initial = 0.01 and ε̄initial = 0.04, respectively.

IV. CONCLUSIONS

In this paper, we studied the effects of plasticity (STP and STDP) on networks of ex-
citatory coupled Hodgkin-Huxley neurons. Neural plasticity is responsible for alterations
in the organisation and structure of the brain, and both play an important role in synap-
tic weights. Besides, STDP has a longer time scale than STP, so it affects differently the
structure and function in brain networks.
We started analysing the effect of STP in a pair of neurons that are initially, either

uncoupled or bidirectionally coupled. For initially uncoupled neurons, the action of STP and
STDP promotes directed connections among neurons with small spike frequency differences,
from the faster to the slower spiking neurons. The increase of the recovery-time shortened
the interval of frequency differences where connections are formed. When neurons are
initially coupled, their frequency difference is smaller and increases the size of the area of
directed connections. We found that STP induces uncoupling, depending on the recovery
time: the bigger the recovery time, the smaller the interval of frequency difference that
allows for the formation of connections.
Next, we build a neural network with an all-to-all topology. Considering only STDP, the

coupling matrix exhibits directed connections from neurons with high to neurons with low
spike frequencies. We have shown that due to STP, neural networks equipped with STDP
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facilitate the formation of synapses among neurons with similar spike frequencies only and
that modular neural networks can emerge as a direct result of the combined effect of STP
and STDP, a phenomenal structure also depicted by neurophysiological and experimental
studies. However, by increasing the STP recovery time, the number of connections de-
creased and as a consequence, the modules disappeared. That is actually a way to control
the modular organization in neural networks. The structure of these modular networks
is complex, unlike those in random or small-world networks, resembling more to networks
with preferential attachment properties.
In future, we plan to study neural networks with greater diversity in chemical synapses,

addressing other STP and STDP rules related to synapses between excitatory-inhibitory
and inhibitory-inhibitory neurons57. Finally, another interesting aspect of our work would
be the introduction of time delay in the synaptic transmission to study how it affects the
evolution of the couplings and the modular properties of neural networks.
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