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Abstract

Superexponential systems are characterized by a potential where dynamical degrees of freedom

appear in both the base and the exponent of a power law. We explore the scattering dynamics

of many-body systems governed by superexponential potentials. Each potential term exhibits a

characteristic crossover via two saddle points from a region with a confining channel to two regions

of asymptotically free motion. With increasing scattering energy in the channel we observe a

transition from a direct backscattering behaviour to multiple backscattering and recollision events

in this channel. We analyze this transition in detail by exploring both the properties of individual

many-body trajectories and of large statistical ensembles of trajectories. The recollision trajectories

occur for energies below and above the saddle points and typically exhibit an intermittent oscillatory

behaviour with strongly varying amplitudes. In case of statistical ensembles the distribution of

reflection times into the channel changes with increasing energy from a two-plateau structure to a

single broad asymmetric peak structure. This can be understood by analyzing the corresponding

momentum-time maps which undergo a transition from a two-valued curve to a broad distribution.

We close by providing an outlook onto future perspectives of these uncommon model systems.
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I. MOTIVATION AND INTRODUCTION

The interaction between the building blocks of matter typically involve potentials with a

power law dependence. For charged particles this is the long-range Coulomb potential (∝ 1
r
)

[1] whereas for neutral constituents such as atoms [2] or molecules [3] their interaction at

large distances can be of permanent dipolar character (∝ 1
r3

) or of induced dipolar origin,

i.e. van der Waals interaction (∝ 1
r6

). The importance of these interaction potentials is

closely connected to the fact that they describe the forces occuring in nature. This allows

us to understand the structures and properties as well as dynamics of few- to many-body

systems via a bottom-up approach.

Complementary to the above the development and analysis of more abstract models

of interacting few- and many-body systems possesses a rich history. These models are

motivated, for example, by the request for a thorough understanding of integrability versus

nonintegrability [4, 5], the mechanisms of the transition from few- to many-body systems [6],

and the emergence of thermodynamical behaviour in the particle number to infinity limit [7].

A particularly striking and impactful paradigm is a system of contact interacting particles in

one spatial dimension for which the interaction among the particles is contracted to a single

point providing corresponding boundary conditions. This leads to an intricate relationship

between impenetrable bosons and fermions in one dimension [8, 9]. After many years of

their discovery and investigation, these models are nowadays used extensively to describe

the physics of ultracold quantum gases and Bose-Einstein condensates [10]. Due to the

separation of length scales in dilute gases for which the range of the collisional interactions

is typically much smaller than the distance between the particles as well as the overall size

of the atomic cloud the model of contact interacting atoms provides a valid description of

the structure and properties as well as dynamics of these many-body systems [10, 11].

While many naturally occuring interactions involve power law potentials with a constant

exponent, the properties and dynamics of models with so-called superexponential interac-

tions have been explored very recently [12–15]. Rendering the exponent time-dependent

one arrives at a periodically driven power-law oscillator [12]. Covering weak and strong

confinement during a single driving period, the resulting classical phase space comprises
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not only regular and chaotic bounded motion but exhibits also a tunable exponential Fermi

acceleration. Note that the fundamental mechanisms of exponential acceleration and their

applications have come into the focus of research in nonlinear dynamics in the past ten years

[16–23]. A major step forward in the direction of superexponential dynamics is provided by

the so-called superexponential self-interacting oscillator [13]. The potential of this oscillator

takes on the unusual form V = |q|q where the exponent depends on the spatial coordinate

q of the oscillator. The exponentially varying nonlinearity leads to a crossover in the pe-

riod of the oscillator from a linearly decreasing to a nonlinearly increasing behaviour with

increasing energy. This oscillator potential possesses a hierarchy of (derivative) singularities

at its transition point q = 0 which are responsible for this crossover and lead to a focusing

of trajectories in phase space. The spectral and eigenstate properties of the correspond-

ing quantum superexponential oscillator [14] do reflect this transition equally: the ground

state shows a metamorphosis of decentering, asymmetrical squeezing and emergence of a

tail. Signatures of the crossover can be seen in the excited states by analyzing e.g. their

central moments which show a transition from an exponentially decaying to an increasing

behaviour.

A major step forward on the route to superexponentially interacting many-body systems

is represented by the very recently explored two-body case [15]. The latter represents a

fundamental building block for many-body systems and is therefore a key ingredient to

the present work. The underlying Hamiltonian contains the superexponential interaction

potential V = |q2|q1 which couples the degrees of freedom q1 and q2 in an exponential

manner. The resulting potential landscape exhibits two distinct regions: a region where

motion takes place in a confining channel (CC) with varying transversal anharmonicity and

a region with asymptotically free motion. These regions are connected via two saddle points

allowing for a deconfinement transition between the confined and free motion. In ref.[15]

the dynamics and in particular scattering functions have been analyzed in depth for this

peculiar interaction potential thereby demonstrating the impact of the dynamically varying

nonlinearity on the scattering properties.

On basis of our understanding gained for the fundamental two-body system it is now a

natural next step to investigate many-body superexponentially interacting systems which
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we shall pursue here. We thereby focus on systems with a single exponent (q1) and many

base (qi, i = 2, ..., N) degrees of freedom with interaction terms of the form ∝ |qi|q1 . We

provide a comprehensive study of the many-body scattering dynamics thereby analyzing the

mechanisms of the collisional dynamics in the CC with increasing energy. Due to the pres-

ence of many transversal channel degrees of freedom a plethora of energy transfer processes

are enabled. As a consequence the incoming longitudinal q1 scattering motion undergoes

in the low-energy regime a transition from a step-like to a smooth behaviour. While the

two-body scattering allows for energies below the saddle points only for a monotonous be-

haviour of the incoming and outgoing motion we show that many-body processes lead to

an intricate combination of backscattering and recollision events. This includes a highly

oscillatory behaviour with multiple turning points emanating from the saddle point region

and reaching out into the CC. This oscillatory and intermittent scattering motion exhibits

largely fluctuating amplitudes, a feature which is absent in the case of two-body scattering.

Our analysis comprises the energy-dependent behaviour of individual trajectories as well as

the statistical behaviour of ensembles including an analysis via momentum-time and turning

point maps.

This work is structured as follows. In section II we introduce the Hamiltonian and

discuss the underlying interaction potential landscape as well as the classification of the

dynamics in terms of invariant subspaces. Section III contains a detailed discussion of the

individual many-body trajectories in the low-, intermediate and high energy regime. Section

IV provides an analysis of the statistical ensemble properties with a focus on the reflection

time distribution. Section V presents our summary and conclusions including a brief outlook.

II. THE SUPEREXPONENTIAL HAMILTONIAN AND POTENTIAL LAND-

SCAPE

This section is dedicated to the introduction of the Hamiltonian and a discussion of the

landscape of its interaction potential. We will also provide the invariant subspaces of the

dynamics. Our superexponential Hamiltonian takes on the following appearance
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H = T + V =
N∑
i=1

p2i
2

+
N∑
k=2

|qk|q1 (1)

where (qi, pi, i = 1, ..., N) are the canonically conjugate coordinates and momenta of our

’effective particles or entities’ respectively, and in this sense we refer to the above Hamil-

tonian as a many-body Hamiltonian. Equally the term ’interaction’ is employed here to

indicate that the individual potential terms ∝ |qk|q1 depend on two particles coordinates.

Note that both the base degrees of freedom (dof) (qk, k = 2, ..., N) as well as the exponent

dof q1 possess a corresponding kinetic energy and therefore evolve dynamically. The individ-

ual N − 1 interaction terms |qk|q1 share a single exponent dof and therefore the interaction

between the dof qk takes place indirectly via the dof q1. In other words the dof q1 could be

seen as a common dof shared by all the base dof (qk, k = 2, ..., N). The superexponential

potential V =
∑N

k=2 |qk|q1 (SEP) mediates the interaction among the dof qk, k = 1, ..., N .

Obviously, the above model Hamiltonian does not exhibit well-established symmetries such

as a translation invariance. It possesses however an exchange symmetry with respect to the

base dof qk, k = 2, ..., N since they all couple in the same manner to the exponent dof q1.

This will allow us to conclude upon invariant dynamical subspaces (see below). We remark

that the Hamiltonian 1 is a specific choice out of many possible superexponential Hamil-

tonians (see discussion in the conclusions section V) which is motivated by the appearance

of only a single exponent dof which promises a more straightforward interpretation of the

resulting many-body dynamics.

In ref.[15] the superexponentially interacting two-body system containing a single inter-

action term has been explored and analyzed in detail. To be independent and to set the

stage for the many-body case we will in the following briefly summarize the main properties

of the potential landscape for a single interaction term |q2|q1 . It shows (see Figure 1) for

q1 > 0 (region I) a CC leading to a bounded motion w.r.t. the coordinate q2 and an un-

bounded motion for the dof q1. The transversal confinement of this channel illustrated by

the intersection curves V (q1 = const, q2) (see inset of Figure 1) continuously changes with

increasing values of q1: the cusp for q1 < 1 turns into a linear confinement for q1 = 1, a

quadratic one for q1 = 2 and finally into a steep wall anharmonic confinement for q1 � 2.

5



Figure 1. The potential energy landscape of a single interaction term V (q1, q2) = |q2|q1 . The CC

(region I) as well as the two regions of asymptotically free motion, regions II and III, are indicated.

The inset shows intersections of the potential energy along the q2 coordinate i.e. V (q1 = const, q2)

for q1 = 0.1, 1, 2, 16 corresponding to the curves from top to bottom.

For q1 →∞ the channel confinement is that of a box with infinite walls.

The channel region I is connected via two saddle points at energy E = 1 to regions II and

III which exhibit asymptotically (q1 → −∞, q2 → ±∞) free motion. Regions II and III are

separated by a repulsive potential barrier with a (singular) maximum at q2 = 0. In region II

both particles move in a correlated manner in the same direction (p1, p2 < 0) and in region

III they move in opposite directions (p1 < 0, p2 > 0). To conclude, while the appearance of

the SEP is very simple it shows an interesting geometrical structure. Let us now turn back

to the many-body problem.

The SEP V(q1, q2, ..., qN) =
∑N

k=2 |qk|q1 in eq.(1) possesses stationary points, i.e. zero

derivatives ∂V
∂qi

= 0,∀i = 1, ..., N , at the positions q1 = 0, qi = ±1, i = 2, ..., N . The resulting

Hessian possesses a zero determinant, but a more detailed analysis shows that the extrema

have unstable and stable directions, i.e. they are saddle points. The energies of the extrema

are E = V(q1 = 0, {qi = ±1}) = (N − 1).

Since the Hamiltonian equations of motion belonging to the Hamiltonian (1) possess a
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singularity for q1 < 0, qi = 0, i = 2, ..., N , we introduce a regularization parameter ε > 0

for the SEP which now reads Vreg(q1, q2, ..., qN ; ε) =
∑N

k=2(
√
q2k + ε)q1 . This facilitates the

numerical integration of the corresponding Hamiltonian equations of motion which read

q̇i = pi i = 1, ..., N (2)

ṗ1 = −
N∑
k=2

(√
q2k + ε

)q1

ln

(√
q2k + ε

)
(3)

ṗi = −
(√

q2i + ε

)q1−2

q1qi i = 2, ..., N (4)

Typical values chosen for the numerical simulations are ε = 10−8. The equation of motion

for p1(t) depends symmetrically on all qk, k = 2, ..., N due to the above-mentioned exchange

symmetry. Note the appearance of the logarithm which will be of major importance for

the later on observed dynamics. The equation of motion of pi(t), i = 2, ..., N depends only

on the coordinates qi and q1 and these equations (i = 2, ..., N) are structurally invariant

due to the exchange symmetry. This means, that for equal initial conditions (ICs) of all

(qi, pi), i = 2, ..., N at t = t0 = 0 the dynamics of all qi(t), i = 2, ..., N will be identical.

Let us elaborate on this in some more detail since it allows us to identify a hierarchy of

invariant subspaces that classify the dynamics. The exchange symmetry among the N − 1

particles with respective coordinates and momenta (qi, pi), i = 2, ..., N can be either (i)

completely broken (ii) partially broken or (iii) fully maintained by the corresponding ICs.

We therefore partition the complete phase space of ICs into subspaces as follows. We divide

the 2N − 2-dimensional total phase space P of the dof qi, i = 2, ..., N into dynamically

invariant subspaces Ci of identical ICs which lead consequently to an identical dynamics

(trajectories). Here the invariance refers to the exchange of (initial) phase space coordinates

in the corresponding subspace Ci. These subspaces represent a classification of the dynamics.

More specifically, we define a series of positive integers {ni} = n1, ...., nk with
∑k

i=1 ni =

(N − 1) where ni is the maximal dimension of the subspace Ci with identical initial phase

space coordinates. A complete set of ICs (and resulting trajectories) is then given by the

decomposition ∪ki=1Ci = P . This set involves, per definition, k different classes of identical

trajectories, the i − th class containing ni identical phase space coordinates. A remark
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concerning the resulting combinatorics is in order. For a single subset of l identical ICs only

there is
(
N−1
l

)
possible configurations or subspaces with l ≤ (N − 1). For r subsets each one

with k identical ICs the number of possibilities is
∑r−1

i=0

(
N−ik−1

k

)
. This generalizes to the

case of an arbitrary number of subspaces of properly chosen dimensions with identical ICs.

III. DYNAMICS: INDIVIDUAL MANY-BODY TRAJECTORIES

This section is devoted to the exploration of the many-body dynamics by analyzing in-

dividual trajectories which illustrate the relevant collisional processes. We note that these

trajectories are representative and show the typical observed behaviour. The general proce-

dure is as follows. We will simulate the dynamics in the CC (region I) for incoming (p1 < 0)

trajectories starting at t = 0 in the outer part of the channel at q1 = 30. At this value

of q1 the transverse profile of the channel represented by the intersections of the individual

interaction potential terms V(q1 = const, q2) is already very similar to a box confinement.

We will then study the dynamics with increasing total energy and for different subspaces of

identical ICs.

A. Low energy scattering

Let us start by assuming that all ICs of the coordinates and momenta (qi, pi), i = 2, ..., N

are identical. Since then (see discussion in section II) all dynamical evolutions qi(t), pi(t)

are identical this case is similar to the case of the corresponding superexponentially inter-

acting two-body system [15]. Let us summarize the main features and characteristics of the

dynamics for the two-body case (where the total potential reads V = |q2|q1) for reasons of

comparison to the actual many-body case. Since the exponent dof q1 provides the confine-

ment for the dof q2 the time evolution of q2(t) shows bounded oscillations in the channel

(see Figure 3(a) for a specific case of the many-body system). For large values of q1 this

confinement is strongly anharmonic and close to a box-like confinement: as a consequence

the channel is approximately flat for −1 . q2 . +1 and energy exchange processes (between

particles but also from kinetic to potential energy for a single dof) happen only close to the
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turning points of the q2 oscillations. Opposite to this the q1-motion is not oscillatory and is

unbounded. This can be argued as follows. Inspecting eq.(3) and specializing it to the case

of a single base dof q2 one realizes that the r.h.s. is positive (ε = 0) as long as the logarithm

is negative, which implies q2 < 1. A necessary condition for ṗ1 < 0 to happen is then given

by the occurence of q2 > 1 which implies that the total energy E > 1. The latter is however

the energy of the saddle points in the two-body problem. To conclude, this means that for

energies below the saddle point energies the two-body scattering in the CC involves a time

evolution q1(t) with exclusively q̈1 > 0 i.e. the incoming q1(t) trajectory possesses a single

turning point ! As a consequence, q1(t) cannot perform an oscillatory bounded motion but

describes simply a direct in-out scattering process finally escaping asymptotically to q1 →∞.

In this sense multiple scattering processes are not encountered and scattering is not chaotic,

i.e. there is even no transient dynamics with nonzero Lyapunov exponents. This situation

changes when considering the many-body situation. Here the saddle point energy is given

by Es = (N − 1) and the dynamics of (q1, p1) is determined (see eqs.(2,3)) by the sum over

all forces involving the dof qi, i = 2, ..., N . This sum has to become overall positive (as a

combination of the appearing logarithms and their ’above threshold’ qk > 1, k ∈ {2, ..., N}

arguments) in order to enable ṗ1 < 0 and to provide multiple turning points as well as an

oscillatory dynamics: it is an inherent many-body process.

Figure 2(a) shows the kinetic energies Ek1 =
p21
2

and Eki =
p2i
2

as well as the corresponding

potential energies Epi = |qi|q1 (see inset) as a function of time for the scattering process of

a system of N = 10 particles with the total energy E = 0.28. Here all ICs of the base

dof are identical i.e. the particle exchange symmetry among the dof qi, i = 2, ..., N is fully

maintained and their dynamics is the same. Therefore, we expect that the above described

properties of the two-body scattering dynamics should also appear here.

Indeed, the initial kinetic energy Ek1(t = 0) = 0.1 belonging to the subsequent time

evolution (q1(t), p1(t) decreases monotonically to zero and subsequently increases in the

course of the scattering process (see Figure 2(a)). Ek1(t) exhibits a sequence of plateaus

which correspond (see discussion above) to the traversal of qi(t) of the bottom of the CC,

while the phases of rapid changes of Ek1(t) between two plateaus is caused by the dynamics

in the vicinity of the potential walls. These facts are consistent with the behaviour of the
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Figure 2. The kinetic energies Ek1 (blue solid curve), Eki (dotted, dashed and dot-dashed curves),

and potential energies Epi (see inset), belonging to the dof q1, qi, respectively, as a function of time

t for individual trajectories. Initial conditions are q1 = 30, qi = 0, i = 2, ..., N . (a) Total energy

E = 0.28 and initial conditions Ek1 = 0.1, Eki = 0.02. Note that all curves Eki, i = 2, ..., N are

identical due to identical ICs. Similar statements hold for (b,c). (b) Total energy E = 0.29 and

initial conditions Ek1 = 0.1, Eki = 0.01, i = 2−5, Ekj = 0.03, j = 6−10. (c) Total energy E = 0.37

and initial conditions Ek1 = 0.1, Eki = 0.01, i = 2−4, Ekj = 0.03, j = 5−7, Ekl = 0.05, l = 8−10,

(d) Total energy E = 0.95 and initial conditions Ek1 = 0.5, Eki = 0.01 · (i − 1), i = 2 − 10. All

simulations involve N = 10 particles.

potential energy Epi (see inset of Figure 2(a)) which exhibits pronounced peaks during these

collisions with the potential walls. For reasons of energy conservation Eki(t) show then

corresponding dips.
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As a next step let us break the (total) exchange symmetry among the base dof by firstly

inspecting the case of two sets of identical ICs. Figure 2(b) shows the kinetic Ek1, Eki and

the potential energies Epi for a total energy E = 0.29 and ICs (Eki = 0.01, i = 2−5); (Ekj =

0.03, j = 6−10). Since we have now two different sets of identical dynamics namely (qi(t), i =

2 − 5); (qj(t), j = 6 − 10) a partial exchange symmetry remains. The corresponding time

evolution Ek1(t) carries now the signatures of two different transversal motions (qi(t), qj(t)):

the overall decrease and subsequent increase due to the collision process exhibits now a

’superposition’ of plateau-like structures. Correspondingly, there is two different kinds of

time evolution of kinetic energies Eki(t), Ekj(t) which show sharp dips at the time instants

where the kinetic energy Ek1(t) varies rapidly in between two plateaus. The associated

potential energies Epi(t), Epj(t) (see inset of Figure 2(b)) show pronounced peaks at the

time instants of collisions with the potential walls which correspond to the time instants of

the previously mentioned dips of Eki(t), Ekj(t).

Figure 3(a) shows the channel dynamics for the base and exponent dof q1, qi, i = 2, ..., N

and Figure 2(c) the corresponding kinetic and potential energies for a total energy E = 0.37

for the case of three sets of identical ICs. The dynamics of Ek1(t) shows a larger number of

plateaus which, due to their partial overlap, gradually become washed-out. This becomes

even more pronounced for the case of no identical ICs and a total energy E = 0.95 shown

in Figure 2(d): here the time evolution Ek1(t) becomes almost smoothly decreasing and

subsequently increasing, i.e. without any pronounced plateau-like structures. In Figures

2(c,d) the time evolutions of the kinetic energies Eki(t) show an increasing number of dips

and in case of the potential energies Epi(t) an increasing number of peak structures (see

corresponding insets). In Figure 2(d) there exists already a rather dense accumulation of

peaks (Epi(t), see inset) and dips (Eki(t)) due to the many collisions of the particles with

dof qi(t) with the walls of the interaction potential V .

B. Intermediate energy scattering

We remind the reader of the fact that the saddle point threshold energy is Es = (N − 1)

which amounts to Es = 9 for our prototypical 10 particle system. As discussed above (see
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Figure 3. (a) A (q1, qi) graph of scattering trajectories in the CC with initial conditions q1 = 30, qi =

0, i = 2, ..., N and Ek1 = 0.1, (Eki = 0.01, i = 2−4), (Ekj = 0.03, j = 5−7), (Ekl = 0.05, l = 8−10)

and for a total energy E = 0.37. Clearly visible are three types of transversal qi(t) oscillations and

the reflection process at the minimal value of q1. (b) Time evolution q1(t), (qi(t), i = 2, ..., N) of a

scattering trajectory with total energy E = 10.6 via the CC. Initial conditions for the coordinates

are the same as in (a), and Eki = 4.5, 1, 0.4, 0.7, 0.9, 1.1, 0.5, 0.8, 0.6, 0.1 corresponding to i =

1, ..., 10. An oscillatory behaviour in the saddle point region is clearly visible. (c) Same as in (b)

concerning the parameters and ICs. Shown are the kinetic energies Ek1(t), Eki(t) for a few selected

particles to get a representative view. Multiple oscillations and inelastic processes are evident.
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section III A) the two-body case as well as the case of identical ICs for all base dof (in

the many particle case) show only a single turning point, i.e. a direct in-out scattering

behaviour, for the exponent dof q1(t) for energies E < Es. This statement holds also for

the low energy scattering E � Es discussed in the previous subsection where a transition

of the dynamics Ek1(t) from plateau-dominated to a smooth behaviour has been observed

with increasing number of different ICs.

Let us now increase the total energy available in the scattering process for non-identical

initial conditions. A necessary condition for further turning points to occur in the dynamics

of q1(t) is (see corresponding discussion in section III A) the positivity of the logarithmic

terms in the equation of motion (3) which implies that qi > 1 has to occur for some particles

such that the overall sum becomes positive. Consequently certain interaction potential

contributions obey Epi > 1. Figure 3(b) shows for an energy E = 10.6 the dynamics

q1(t), (qi(t), i = 2, ..., N) of an example trajectory with no identical ICs. Here it is clearly

visible that the dof q1(t) enters in the course of the scattering process from the CC to the

saddle point region and performs thereafter an oscillation followed by an escape back into

the CC. The dof qi(t), i = 2, ..., N show an increase of the amplitude of oscillations during

the the dynamics in the saddle point region. Figure 3(c) shows the kinetic energy Ek1(t) and

exemplarily two of the kinetic energies Eki(t), i 6= 1 for the same trajectory. Ek1(t) shows

according to the oscillation of q1(t) in the saddle point region an oscillation with three zeros.

Inspecting the incoming and outgoing Ek1(t), Eki(t), i 6= 1 the inelasticity of this scattering

event for intermediate energies becomes visible: Ek1 and one of the Eki loose energy in the

course of the scattering whereas the other Eki component gains energy. While this example

trajectory possesses an energy E > Es the principal process that an oscillatory dynamics of

q1(t) becomes now possible is by no means restricted to an energy above the saddle point

energy. This is impressively demonstrated in Figure 4(a,b,c).

Figure 4(a) shows the time evolution of q1(t) of a scattering trajectory emerging from

q1(t = 0) = 30 and traveling towards the saddle point region. Reaching the latter we observe

a series of oscillations until, at time t ≈ 1700, backscattering into the CC takes place with

no further turning points to occur. The many oscillations taking place possess very different

amplitudes. Indeed, the first oscillation has its turning point at q1 ≈ 18 followed by a large
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Figure 4. (a) Time evolution q1(t) of a scattering trajectory closely approaching the saddle point

region and showing oscillations of largely different amplitudes. Initial conditions are q1 = 30, qi =

0, i = 2, ..., N and pi = −0.53, 0.65, 1.08, 0.58, 1.92, 2.15, 0.35, 2.57, 0.53, 0.06 and the total energy is

E = 8.8. (b) and (c) show the specific kinetic Ek1(t) and potential Ep4(t) energies. (d) The time

Tat spent above the threshold q2 = 1↔ E = 1 within the single particle dynamics as a function of

q1. The curves from top to bottom correspond to the energies E = 2.0, ..., 1.1 in steps of 0.1.

number of oscillations with a significantly smaller amplitude. At t ≈ 600 a huge amplitude

oscillation with a turning point deep into CC is observed. Subsequently a series of small

amplitude oscillations occurs until the final escape into the CC happens. We emphasize that

such an intermittent behaviour involving backscattering and recollision events is completely
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absent for the corresponding two-body system but is an inherent feature of the many-body

case. Although being a high-dimensional phase space, we could exemplarily show that this

highly oscillatory behaviour traces unstable periodic orbits which occur in the saddle point

region. This means once the trajectory gets close to one of those orbits it stays temporarily

in its vicinity i.e. it temporarily shadows the unstable periodic motion.

A few remarks are in order. As emphasized above the corresponding two-body system

shows only simple backscattering into the CC. Scattering trajectories of the many-body

system can, however, show backscattering into the CC followed by recollision events. Once

the system recollides it dwells in the saddle point regime and finally gets backscattered into

the CC. Of course, since oscillations take place also for small amplitudes this is a crude

picture of what happens indeed. According to the analysis in section III A a necessary

condition for the occurence of a recollision event is the surpassing of the threshold value

qi = 1 for some dof i. A closer inspection reveals that there is generically several transversal

channel dof from the set qi, i = 2, ..., N involved in this process: it is the sum on the

r.h.s of eq.(3) which has to change sign in order to introduce the possibility of a recollision

event. Indeed, the surpassing of the threshold value leads to a deceleration and finally a

turning point in the dynamical evolution. Note that this process of repeated backscattering

and recollision does not require a fine tuning but happens generically for the regime of

intermediate energies below (and above, see next section III C) the saddle point threshold

energy Es. We remind the reader of the fact that this oscillatory behaviour is a pure

dynamical interaction effect and there is no stable equilibria of the potential landscape that

would be responsible for these processes.

To get a simple measure for the probability that our dynamical system resides in the

above-threshold regime qi > 1, which enables a pronounced deceleration dynamics and

finally leads to an oscillatory behaviour, we take the following approach. We focus on the

case of a single particle in the one-dimensional potential V (q2; q1) = |q2|q1 with a constant

value for the parameter q1 > 0. Assuming q2 > 1 means for the energy E > 1. The time

which the particle spends in this regime q2 > 1 in the course of a positive half-period of its

oscillation reads as follows
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Tat =
√

2

∫ qt

1

dq√
E − |q|q1

(5)

for qt = E
1
q1 . Figure 4(d) shows Tat as a function of q1 which represents the power of the

potential V (q2; q1) for varying energy E = 1.1 − 2.0 in steps of 0.1. Obviously, Tat is very

small for large q1 due to the box-like confinement and the steep walls which lead to a very

short time spent in the course of the dynamics in the region q2 > 1. Tat increases strongly

with decreasing value of q1 - this increase is neither a power law nor an exponential one but

of superexponential character. It reflects the flattening of the increase of the potential V for

q2 > 1 in particular for q1 < 1. With increasing energy the dependence of Tat on q1 becomes

more pronounced. This analysis provides an intuitive explanation of the observation that

the oscillations of the trajectories of the many-body system, i.e. the backscattering and

recollision events, emanate from the saddle point region for which q1 < 1 and where the

particles possess a large dwell time in the ’reactive zone’ qi > 1.

Let us now return to our superexponential many-body system. Figure 4(b) presents

the kinetic energy Ek1(t) belonging to this heavily oscillating scattering trajectory. We

observe that small amplitude oscillations involve high frequency energy exchange processes

whereas large amplitude excursions into the CC involve low frequency oscillations of the

kinetic energy. Since small amplitude oscillations (see q1(t) in Figure 4(a)) are interdispersed

between large amplitude oscillations we correspondingly observe in Figure 4(b) bursts of high

frequency kinetic energy oscillations interdispersed between intervals of smooth variations.

Correspondingly a representative of the potential energy Ep4 is shown in Figure 4(c) which

peaks whenever a collision with the confining walls takes place.

C. High energy scattering

We now turn to a discussion of the dynamics for energies above the saddle point threshold

Es = (N − 1). Due to the structure of our Hamiltonian (1) which possesses many base dof

but only a single exponential dof q1, the dynamics q1(t) determines whether backscattering

into the CC or transmission to the regions II and III of asymptotically free motion hap-

pens. Indeed, either all particles are backscattered or transmitted - a splitting into partial
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Figure 5. Transmitting trajectories in the (q1, qi)-plane above the saddle point energy

Es = 9 for N = 10 particles. ICs are q1 = 30, qi = 0, i = 2, ..., N and (a) p1 =

−2.45, (pi = 1.411; i = 2 − 5), (pj = 1.55; j = 6 − 10) for a total energy E = 13 (b)

pi = −2.45, 1.18, 1.41, 1.27, 1.18, 1.61, 1.48, 1.61, 1.48, 1.00; i = 1 − 10 for a total energy E = 9.1

as well as (c) pi = −2.82, 1.45, 1.48, 1.52, 1.55, 1.58, 1.61, 1.64, 1.67, 1.70; i = 1 − 10 for a total en-

ergy E = 15.2. From (a) to (c) the distribution of the particles onto the regions II and III of the

potential landscape varies significantly.

backscattering and partial transmission is not possible.

Figure 5(a) shows a many-body trajectory in the (q1, qi)-planes for a total energy E = 13,

i.e. well above the saddle point energy Es = 9, and for two sets of identical ICs. Consequently

two scattering processes are observed in Figure 5(a): the one set of identical ICs is scattered
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to region II and the other set to region III (see Figure 1). Figure 5(b) shows a trajectory

in the (q1, qi)-planes for an energy E = 9.1 slightly above the saddle point energy Es and

for non-identical ICs except three sets of two identical ICs. In this case four scattering

paths go to the region II whereas two enter the region III while overall transmission takes

place. Finally Figure 5(c) shows a trajectory with energy E = 15.2 with no identical ICs

and as a result nine distinct paths can be observed. Eight of them go to region II and one

to region III. The above clearly demonstrates that particles can be arbitrarily distributed,

after passing the saddle point region, onto the regions II and III of asymptotic freedom. Dof

with identical ICs, of course, show identical paths.

IV. DYNAMICS: STATISTICAL PROPERTIES

Let us now explore the statistical properties i.e. the behaviour of an ensemble of trajec-

tories scattering in the CC of the superexponential potential landscape. Initial conditions

are q1 = 30, qi = 0, i = 2, ..., N , as in the case of the individual trajectories analyzed in

the previous section, and we choose the kinetic energies Eki, i = 2, ..., N randomly from a

uniform distribution with the constraint to match the energy shell. First we analyze the case

of identical ICs for the momenta p2, ..., pN , followed by the case of two sets of identical ICs

and finally the case of all ICs being different. This way the particle exchange symmetry of

the Hamiltonian is broken to an increasing extent by the chosen ICs. The main observables

of our analysis are the so-called reflection time distribution (RTD) and the momentum-time

map (MTM). The reflection time is the time interval a scattering trajectory needs to travel

back to its starting-point in the CC at q1 = 30. The RTD represents then a histogram

of the distribution of these reflection times with varying initial conditions from the chosen

ensemble. The MTM shows the intricate connection between the initial momentum p1 and

the reflection time for corresponding ensembles.
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Figure 6. Reflection time distribution for scattering in the CC (region I). ICs are q1(t = 0) =

30, qi(t = 0) = 0. All further ICs for pi, i = 2, ..., N are identical. (a) Parameters are E = 1, N = 10.

The ensemble consists of 4 · 105 trajectories with randomly chosen kinetic energies. Inset: The

corresponding momentum-time map which provides the initial momentum p1 versus the reflection

time. (b) E = 8.8 and the ensemble consists of 105 trajectories with randomly chosen kinetic

energies. Inset: The corresponding momentum-time map.

A. Ensemble properties: Identical initial conditions

As discussed in section III A the case of identical ICs w.r.t. the momenta pi, i = 2, ..., N

for the many-body scattering dynamics is reminescent of the corresponding behaviour of

the two-body superexponential scattering dynamics as discussed in detail in ref.[15]. Never-

theless, for reasons of comparison to the generic symmetry-broken case of non-identical ICs

we summarize here the main characteristics of this case. Figure 6(a,b) show the RTD and

MTM for a low energy E = 1 (a) and an energy E = 8.8 (b) close to the saddle point energy

Es = 9. The most striking observation in Figure 6(a) is the appearance of two plateaus.

For the first plateau given by the range 0 < t . 42.5 the typical values of the RTD are by

several orders of magnitude smaller as compared to the corresponding values in the range

42.5 < t < 87.5 of the second plateau. Finally a prominent peak occurs at t ≈ 87.5. The

second plateau exhibits a broad valley towards this dominant peak.

The origin of the above-described features of the RTD can be understood by inspecting

19



the corresponding MTM which is shown in the inset of Figure 6(a). The appearance of the

MTM, i.e. whether it is e.g. a (single-valued) curve or a spreaded point pattern, is not

determined a priori. The inset of Figure 6(a) shows that the MTM for the present case is

a well-defined curve. For reflection times 0 < t . 42.5, this curve is single-valued whereas

for 42.5 < t < 87.5 it is double-valued, i.e. there appear two momentum branches of the

MTM. These two regimes correspond to the first and the second plateau of the RTD (see

main figure 6(a)). The time instant of the appearance of the second branch in the MTM

with increasing reflection time is the time of the appearance of trajectories that travel to

the origin of the SEP in the saddle point region and back. The lower branch for strongly

negative values of the momentum p2 provides the dominant contribution to the RTD for

t > 42.5 providing much larger values as compared to the contribution provided by the

upper branch for t < 42.5. The prominent peak at t ≈ 87.5 can be understood by the

observation that the MTM possesses at this maximal reflection time a vertical derivative:

The integrated contribution to the RTD is therefore particularly large. This explains the

overall appearance of the RTD. For more details we refer the reader to ref.[15].

Figure 6(b) shows the RTD and MTM (see inset) for an energy E = 8.8 close to, but still

below, the saddle point energy. For 0 < t < 13.6 the RTD is strongly suppressed. It shows

for t & 13.6 a series of peaks followed by a smooth decay up to t ≈ 63. These peaks stem

from the small scale oscillations present in the MTM (see inset) near the onset of its second

branch.

B. Ensemble properties: Two classes of initial conditions

Let us now analyze the RTD for a random ensemble of trajectories that possess two sets

of identical ICs for pi, i = 2, ..., N , i.e. the particle exchange symmetry of the Hamiltonian

is partially broken. These ICs of the coordinates of these trajectories obey q1 = 30, qi =

0, i = 2, ..., N as in section IV A. Figure 7(a) shows the RTD for an energy E = 1. Again

two plateaus can be observed: the first one for 0 < t . 43 with a very low probability and

a second plateau for 43 . t < 104. Opposite to the case of all identical ICs the increase

from the first to the second plateau as well as the decrease following the main peak is much
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Figure 7. Reflection time distribution for scattering in the CC (region I). ICs are q1(t = 0) =

30, qi(t = 0) = 0. All further ICs of the dof qi, i = 2, ..., N belong to two classes of identical

ICs. (a) Parameters are E = 1, N = 10. The ensemble consists of 105 trajectories with randomly

chosen kinetic energies. Inset: The corresponding momentum-time map which provides the initial

momentum p1 versus the reflection time. (b) Same as (a) but for E = 6. Inset: The corresponding

momentum-time map.

smoother. The second plateau is essentially flat and possesses no undulation (compare to

Figure 6(a)). These changes can be traced back to the corresponding changes in the MTM

which is shown as an inset in Figure 7(a). We remind the reader that the MTM for all

identical ICs concerning pi, i = 2, ..., N represented a curve with two-branches (see inset of

Figure 6(a)). The present MTM shows a similar overall structure but the branches possess

now a finite width which increases with increasing reflection time. Again, the appearance of

the second branch is responsible for the onset of the second plateau, but now the continuous

increase of the widths of the branches leads to the observed smoothened behaviour of the

RTD. Equally the smooth decay following the main peak of the RTD at t ≈ 88 is due to the

substantial extension of the MTM following the contact of the two distinct branches, i.e. for

reflection times t > 88.

Figure 7(b) shows the RTD and MTM (see inset) for a significantly larger energy E = 6.

Compared to the case E = 1 (Figure 7(a)) a major reshaping of the RTD has taken place.
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The two regions of reflection times with largely different probabilities (plateaus) are still

present, but the second plateau has become a highly asymmetric, broad and dominant peak

with a maximum at t ≈ 25. The peak at t ≈ 60 where the two branches of the MTM fuse

(see inset of Figure 7(b)) has decreased significantly. The features of the RTD can again be

interpreted in terms of the significantly changed shape of the MTM: the onset of the second

branch possesses a very steep slope and this branch exhibits for increasing reflection times

t & 25 a series of ’spread transversal oscillations’. This adds up to the broad asymmetric

peak of the RTD.

C. Ensemble properties: Mutually different initial conditions

Let us now address the statistics of an ensemble for which all ICs of pi, i = 2, ..., N are

different which refers to the case of a completely broken particle exchange symmetry of

the Hamiltonian. Figure 8(a) shows the RTD and in the inset the corresponding MTM

for an energy E = 1. The plateau-like structure observed in sections IV A and IV B for

the unbroken and partially exchange symmetry-broken cases, respectively, is now absent

and is replaced by a single strongly asymmetric peak centered at t ≈ 90. With increasing

reflection times the RTD shows an accelerated increase culminating in the one central peak

while decreasing rapidly thereafter. The underlying MTM (see inset of Figure 8(a)) shows

the typical boomerang-like structure with two broadened branches. The first branch is

widening systematically from its start at t = 0 which is responsible for the substantial

increase of the RTD for low reflection times.

Figure 8(b) shows the RTD and MTM for an energy E = 6. The main differences

compared to the case E = 1 is the reshaping of the asymmetric peak and the emergence of

a very dilute tail for large reflection times. This is reflected in the strongly distorted MTM

shown in the inset of Figure 8(b). The steep rise of the peak of the RTD for low reflection

times emerges again from the large slope of the second branch of the MTM. The diffuse tail

of the RTD has a corresponding counterpart in the MTM for large reflection times.

22



Figure 8. Reflection time distribution for scattering in the CC (region I). ICs are q1(t = 0) =

30, qi(t = 0) = 0. All further ICs (kinetic energies) of the dof qi, i = 2, ..., N are different from each

other. (a) Parameters are E = 1, N = 10. The ensemble consists of 105 trajectories with randomly

chosen kinetic energies. Inset: The momentum-time map. (b) Same as (a) but for E = 6. Inset:

The momentum-time map.

D. Ensemble properties: Turning point distributions

In section III we have investigated our superexponential many-body Hamiltonian by

analyzing the dynamics in terms of individual trajectories. The underlying basic two-body

system [15] shows a scattering dynamics without oscillatory behaviour w.r.t. the exponential

dof, i.e. q1(t) possesses for energies below the saddle point energy only a single turning point

which occurs at the minimal distance of the trajectories from the center of the SEP at q1 = 0.

In section III B we have shown that a major novelty in the many-body case is the oscillating

structure with largely fluctuating amplitudes of trajectories experiencing the saddle point

region or physically speaking the occurrence of multiple backscattering and recollision events.

Let us now analyze the map between the reflection time of a trajectory and its number of

turning points, which we call the RTPM, for the case of mutually different IC w.r.t. the

momenta pi, i = 2, ..., N .

Figure 9(a) shows the RTPM for the energy E = 1 for the scattering dynamics in the
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Figure 9. Reflection time versus number of turning points of the q1(t)-motion for E = 1, 6, 8.8 in

(a,b,c), respectively, for an ensemble of 105 trajectories. ICs as in Figure 8.

CC. Clearly, all trajectories and scattering events exhibit only a single turning point, and no

oscillatory dynamics is encountered. The corresponding reflection times vary continuously

from zero up to a maximal value t ≈ 114. Increasing the energy to E = 6 Figure 9(b) presents

the corresponding RTPM which shows now a large number of events up to 9 turning points

and a few further events up to 25 turning points. Note, that the number of turning points

is always odd due to the fact that scattering takes place in the CC parametrized by the

coordinate q1. As a general tendency one observes that the reflection time increases with

the number of turning points which is natural due to the fact that the dwell time in the saddle

point region increases with increasing number of oscillations taking place in or traversing

this region. Finally Figure 9(c) shows the RTPM for the energy E = 8.8 rather close to the

threshold energy Es = 9. As compared to the case of E = 6 the number of turning points

possible now extends even up to approximately 90, while the absolute majority of events
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lies below 21 turning points.

V. SUMMARY AND CONCLUSIONS

Model systems with superexponential interaction represent a peculiar type of dynamical

systems with uncommon properties. Already for a two-body system the potential landscape

shows a crossover from a confining channel (CC) with a strongly varying transversal profile

via two saddle points to a region of asymptotic freedom. The scattering dynamics in the

CC is intricate but at the same time restricted in the sense that it is a direct in-out scat-

tering with a single turning point of the longitudinal channel coordinate q1. This situation

changes fundamentally when passing to many-body systems. In the present approach we

have chosen a model system with a single exponent degree of freedom q1 for the superexpo-

nential interactions and many base degrees of freedom qi, i = 2, ..., N . The exponential dof

q1 might be considered as a ’background’ or a ’guiding’ dof that determines the potential felt

by the base dof. Each of the interaction terms |qi|q1 shows the above-described geometrical

crossover from channel confinement to asymptotic freedom. The many-body Hamiltonian

exhibits a particle exchange symmetry of the dof qi, i = 2, ..., N which can be respected,

partially broken, or completely broken by the initial conditions.

Simulating the dynamics of the many-body system we have revealed a number of impor-

tant differences to the two-body case. For low energies in the CC the q1(t) dynamics shows a

transition from a step-like behaviour due to the spatially localized energy transfer processes

to a smooth in-out scattering transition. Increasing the energy the trajectories incoming

from the CC exhibit an oscillatory behaviour emanating from the saddle point region and

possessing largely fluctuating amplitudes. This oscillatory dynamics comprised of backscat-

tering and recollision events becomes increasingly more pronounced with increasing energy.

It represent an inherent many-body effect since, generically, all of the dof qi, i = 2, ..., N

contribute to this process. We have analyzed this on the level of individual trajectories but

also for the case of statistical ensembles. Here the reflection time distribution shows a char-

acteristic transition from a two plateau structure to a single asymmetric peak behaviour.

The latter has been analyzed by inspecting the so-called momentum-time map which shows
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a transition from a one-dimensional curve with two-branches to a spatially two-dimensional

distribution with a characteristic shape.

There are several directions for possible future research on superexponential few- and

many-body systems. The generalization of the interaction potential to higher spatial di-

mensions might lead to an even more intricate potential landscape with novel properties.

The present case of a single exponent degree of freedom and many base degrees of free-

dom is certainly a specific choice, and it is an intriguing perspective to explore the case

of several exponent degrees of freedom. An intriguing topic is the statistical mechanics of

our many-body system in the thermodynamical limit, where one could pose the question

whether superexponential systems relax to a stationary state of thermal equilibrium. Finally

quantum superexponentially interacting systems resulting from a canonical quantization of

the many-body Hamiltonian might show interesting scattering properties in particular due

to the squeezing channel structure and the saddle point crossover.
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