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Spiral wave chimeras (SWCs), which combine the features of spiral waves and chimera states, are a new
type of dynamical patterns emerged in spatiotemporal systems due to the spontaneous symmetry breaking of
the system dynamics. In generating SWC, the conventional wisdom is that the dynamical elements should be
coupled in a nonlocal fashion. For this reason, it is commonly believed that SWC is excluded from the general
reaction-diffusion (RD) systems possessing only local couplings. Here, by an experimentally feasible model of
three-component FitzHugh-Nagumo-type RD system, we demonstrate that, even though the system elements
are locally coupled, stable SWCs can still be observed in a wide region in the parameter space. The properties
of SWCs are explored, and the underlying mechanisms are analyzed from the point view of coupled oscillators.
Transitions from SWC to incoherent states are also investigated, and it is found that SWCs are typically
destabilized in two scenarios, namely core breakup and core expansion. The former is characterized by a
continuous breakup of the single asynchronous core into a number of small asynchronous cores, whereas the
latter is featured by the continuous expansion of the single asynchronous core to the whole space. Remarkably,
in the scenario of core expansion, the system may develop into an intriguing state in which regular spiral
waves are embedded in a completely disordered background. This state, which is named shadowed spirals,
manifests from a new perspective the coexistence of incoherent and coherent states in spatiotemporal systems,
generalizing therefore the traditional concept of chimera states. Our studies provide an affirmative answer to
the observation of SWCs in RD systems, and pave a way to the realization of SWCs in experiments.
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I. INTRODUCTION

An intriguing phenomenon observed in systems of coupled
identical oscillators is the coexistence of coherent and inco-
herent regions in the space, knowing as the chimera states
[1, 2]. This counterintuitive dynamical behavior is discov-
ered first by Kuramoto and Battogtokh [1], and is named later
as “chimera state” for its analogy to the monster in Greek
mythology which owns lion’s head, goat’s body, and serpent’s
tail [2]. Since its discovery, chimera state has inspired exten-
sive theoretical and experimental studies during the past two
decades, with the systems investigated ranging from physi-
cal to chemical and to biological systems [3–27]. With these
studies, the strict conditions for generating chimera states as
adopted in the seminal works have been largely relaxed [28–
33], and the concept of chimera state has been largely broad-
ened and generalized [34–40]. For instance, instead of non-
local couplings which has been regarded as a necessary con-
dition for generating chimera states, recent studies show that
chimera states can also be generated in systems with global
[4, 28, 30] or local couplings [31, 32, 36, 38, 41–44]; and, be-
sides regular networks, a variety of chimera-like states have
been reported and studied in networks of complex structures
[45–51]. In particular, chimera-like states have been ob-
served in complex network of coupled neurons [49, 50], and
are regarded as having important implications to the neuronal
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functions, saying, for example, the unihemispheric slow-wave
sleep (USWS) of some aquatic mammals (e.g. dolphins and
whales) and birds [52], in which one half of the brain is in
sleep while the other part of the brain remains awake.

Whereas chimera state is originally observed in one-
dimensional systems, recent studies show that sophisticated
chimera-like patterns can be also generated in higher dimen-
sional systems. One example is the spiral wave chimera
(SWC) [39, 40], which combines the features of spiral
waves and chimera states, and is typically observed in two-
dimensional systems of nonlocally coupled oscillators. Dif-
ferent from the classical spiral wave in which the core (spiral
tip) is defined as the point of phase singularity (topological
defect), in SWC the core is constituted by a group of desyn-
chronized oscillators and occupies a small, circular region in
the space. Interestingly, it is shown that despite of the in-
coherent inner core, spiral wave is propagating stably in the
outer region. Discovered by Shima and Kuramoto in 2004
in nonlocally coupled periodic oscillators [39], SWC has re-
ceived growing interest in the field of nonlinear science in
recent years, particularly for researchers working on pattern
formations in reaction-diffusion (RD) systems [53–66]. For
the model of nonlocally coupled phase oscillators, an analyt-
ical description of SWC has been given in Ref. [40] and, by
the perturbation theory, both the rotation speed of the spiral
arms and the size of the asynchronous core can be predicted.
Besides phase oscillators, SWCs have been also observed in
nonlocally coupled chaotic oscillators [55], which are charac-
terized by the presence of synchronization defect lines along
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which the local dynamics is periodic. Experimental verifi-
cation of SWCs has been given in Ref. [67], in which a
large-size two-dimensional array of nonlocally coupled Be-
lousov–Zhabotinsky (BZ) chemical oscillators are employed
and some new dynamical features of SWCs are revealed, in-
cluding the erratic motion of the asynchronous spiral core,
the growth and splitting of the cores, and the transition from
SWCs to incoherent states. Despite the progresses made, the
mechanisms and properties of SWCs remain elusive and many
questions remain not clear, e.g., the roles of the phase-lag pa-
rameter in generating SWCs [40], the transitions from SWCs
to other states in the parameter space [67], and the observabil-
ity of SWCs in locally coupled systems [56, 59].

For experimental physicists and chemists, a question of par-
ticular interest is whether SWCs can be generated in the gen-
eral RD systems in which the dynamical elements are locally
coupled through diffusions. Whereas results based on numer-
ical simulations indicate that SWCs could be generated in lo-
cally coupled systems [56, 62], the models employed in these
studies seems somewhat artificial and are difficult to be real-
ized in experiments. The experiment conducted by Totz et al.
[67], whereas is able to generate SWCs successfully, relies on
the non-physical, nonlocal couplings that are realized through
computer interface. As such, from the point of view of exper-
imental studies, an urgent question to be answered is whether
SWCs can be observed in the general RD systems possessing
local, diffusive couplings. Should the answer be positive, the
following-up questions are: (1) What are the properties of the
SWCs? (2) How the SWCs are destabilized and transited to
other states as the system parameters vary? and (3) Can the
theoretical models be realized in experiments? In the present
work, we attempt to address these questions by investigating
the dynamics of an experimentally feasible RD system of lo-
cal couplings. We are able to demonstrate that, even though
the system elements are coupled locally, stable SWCs can still
be generated in a wide region in the parameter space. We con-
duct a detailed numerical analysis on the properties of SWCs,
and also the transitions of SWCs to other states in the parame-
ter space. It is found that, while the SWCs share the properties
of the conventional SWCs as observed in nonlocally coupled
systems, they do possess some unique features, including the
presence of SWCs in partial variables, the destabilization sce-
narios of SWCs, and the phenomenon of shadowed spirals.
In particular, in shadowed spirals, regular spirals are emerged
on top of the desynchronization background, which manifests
from a new viewpoint the coexistence of coherence and inco-
herence in spatiotemporal systems, generalizing thus the con-
cept of chimera states. Furthermore, treating the system as an
ensemble of oscillators coupled through a common medium,
we conduct a phenomenological analysis on the formation of
SWCs, which provides insights on the mechanism of SWCs.

The rest of the paper is organized as follows. In Sec. II,
we will present the model of a three-component FitzHugh-
Nagumo-type RD system, and describe the numerical meth-
ods used in simulations. In Sec. III, we will demonstrate the
typical SWC states observed in simulations and, by the con-
ventional approaches, characterize the properties of SWCs.
In Sec. IV, we will propose the phenomenological theory,

based on which the underlying mechanism of SWCs will be
explored. In Sec. V, we will study the transition behaviors
of SWCs in the parameter space, in which the two destabi-
lization scenarios, namely core breakup and core expansion,
will be discussed and the new phenomenon of shadowed spi-
rals will be presented. Candidate experiments for verifying
the theoretical findings will be given in Sec. VI, together with
discussions and conclusion.

II. MODEL AND NUMERICAL METHODS

Our model of locally coupled RD system reads [59, 68, 69],

∂u

∂t
= φ(au− αu3 − bv − cw) +Du∇2u, (1)

∂v

∂t
= φε1(u− v) +Dv∇2v, (2)

∂w

∂t
= φε2(u− w) +Dw∇2w, (3)

which describe the dynamics of the concentrations of three
chemical reactants, u, v and w. This three-component RD
system consists of a FitzHugh-Nagumo (FHN) kernel (con-
sisting of u and v) coupled to the third component w, and
has been used in literature to investigate pattern formations in
BZ systems dispersed in a water-in-oil Aerosol OT (AOT) mi-
croemulsion (BZ-AOT system) [70] or to model spot dynam-
ics in gas discharges [71]. In specific, in the BZ-AOT system
u is associated with the activator species HBrO2, while v and
w represent the inhibitors Br− and Br2, respectively [70]. The
parameters characterizing the local dynamics are φ, α, a, b, c,
ε1 and ε2 (see Ref. [68] for details). In specific, a governs the
reaction rate of u, and plays as the bifurcation parameter of
the local dynamics; ε2 governs the reaction rate of w, through
which the time-scale of w can be tuned. In the present work,
we fix the other parameters in the model, while investigating
the variation of the system dynamics with respect to param-
eters a and ε2, as a and ε2 can be adjusted conveniently in
experiments. The reactants diffuse in the space, with the co-
efficients being Du, Dv and Dw for components u, v and w,
respectively. We note that the parameter φ, which represents
the fraction of the dispersed phase in the BZ-AOT system,
in principle can be absorbed into the other parameters by a
rescaling operation, but here we keep it in the equations so as
to keep the model identical to the one studied in Ref. [68].

Whereas diffusions exist for all chemical reactants, we fo-
cus on the case of single-component diffusion, i.e., Du =
Dv = 0 and Dw > 0. This setting is a good approxi-
mation for the realistic situations where the diffusion coef-
ficient of one component is much larger than the others (e.g.
Dw > 0 and Du = Dv ≈ 0), and captures the essence of
many chemical and biological systems in experiments, e.g.,
the synthetic genetic regulation network used in Escherichia
coli cells [72], yeast cell layers [73] as well as a dense popula-
tion of Dictyostelium cells [74]. We note that with this setting,
the RD system can be alternatively regarded as a population of
FHN oscillators coupled through a dynamics environment de-
scribed by w, namely the scheme of quorum sensing coupling
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[75, 76]. In this picture, the component u of the local oscilla-
tors is affected by the environment through the term −φcw in
Eq. (1), while the environment componentw is affected by the
oscillators through the term φε2(u − w) in Eq. (3). This pic-
ture of indirectly coupled FHN oscillators, as will be shown
later, facilitates our analysis of the underlying mechanism of
SWCs.

In simulations, we employ the explicit forward Euler
method to solve Eqs. (1-3), with the space step being dx =
dy = 0.2 and the time step being dt = dx2/(5Dw) =
0.016. The two-dimensional spatially continuous RD sys-
tem is discretized into a grid of Ntot = N × N oscilla-
tors, with N = 1024. In implementing the Laplace term
in Eq. (3), a five-point stencil has been used. Throughout
our present work, we fix the parameters (φ, b, c, ε1, α,Dw) =
(0.62, 3.0, 3.5, 1.0, 4/3, 0.5), while varying the parameters a
and ε2 to change the system dynamics. The no-flux boundary
condition is adopted in simulating the evolution of component
w. As in other systems [39, 40], special initial conditions are
required in generating SWCs. Here, to generate SWCs, we
initialize the systems with a SWC core, with the details the
following. First, by simulating the dynamics of an isolated
FHN oscillator [Du = Dv = Dw = 0 in Eqs. (1-3)], we
obtain the time series of a component for one period of the os-
cillation, saying the series u1, u2, u3, · · · , uM , withM the se-
ries length. Then, we assign each point on the grid with a data
from the series uj,k = u[Mφj,k/(2π)], with (j, k) the location
of the grid point, φj,k the geometry phase associated to (j, k),
and [·] the floor integral function. The geometry phase is de-
fined as φj,k = tan−1(yj,k−yc)/(xj,k−xc), where xj,k = j
and yj,k = k are the coordinates of the grid point (j, k) in the
two-dimensional space, and (xc, yc) = (N/2, N/2) denotes
location of the system center. The initial condition of the cen-
ter point is set as 0. Finally, we repeat the process for the
other two components (v and w), which completes the state
initialization.

III. SPIRAL WAVE CHIMERAS AND PROPERTIES

Setting a = 3.8 and ε2 = 0.2, we plot in Fig. 1(a) a snap-
shot of the u component taken around t = 2×104. We see that
the whole space is occupied by a single spiral wave centered at
(0, 0). As time increases, the spiral wave is rotating inwardly,
e.g., towards the center, with the angular speed ωs ≈ 0.85. A
zoom-in plot of the core region is plotted in Fig. 1(b). We see
that, encircled by the spiral arms, a circular region consisting
of a group of disordered, asynchronous points is formed. (See
Supplementary Materials for the movie.) To characterize the
asynchronous core, we plot in Fig. 1(c) the variation of the
reactant gradient ∆u = uN/2,k+1 − uN/2,k with respect to y
along the vertical axis crossing the center. We see that ∆u is
fluctuating randomly in the central region, y ∈ (496, 529), but
is staying around 0 outside. The physical diameter of the asyn-
chronous core thus is estimated to be d = ∆yasy × dy = 6.6.
To show the asynchronous feature of the core, we plot in Fig.
1(d) the time evolutions of two neighboring points inside the
core, (512, 508) and (512, 507). Apparently, the two trajec-

tories are desynchronized from each other. Figure 1(e) shows
the time evolutions of two neighboring points adopted out-
side of core region, (512, 256) and (512, 255). We see that
the two trajectories are completely overlapped. Similar to the
component u, SWC is also observed for the component v (not
shown). Numerical results thus show that SWC can be gener-
ated in the locally coupled RD system.

However, SWC is not observed for the third component w,
as depicted in Figs. 1(f) and (g). In particular, Fig. 1(g)
shows that in the central region the asynchronous core is dis-
appeared. As such, the patten is evolving as a normal spiral.
The absence of the asynchronous core is further verified by
the gradient profile along the vertical central axis. As shown
in Fig. 1(h), the value of ∆w = wN/2,k+1−wN/2,k is staying
around 0 in both the core and outer regions. The absence of
SWC in the component w is understandable, as w is diffusing
in the space with a fast speed (Dw = 0.5), which smooths
the distribution of w in the core region. In contrast, as dif-
fusion is absent for components u and v, the asynchronous
cores are stable. The coexistence of SWC (for components u
and v) and normal spiral (for the component w) is a unique
feature for SWCs generated in locally coupled RD systems
with single-component diffusion.

To study the properties of SWCs, we introduce the phase
variable, Φj,k = tan−1(vj,k/uj,k), and the local order pa-
rameter [24]

Rj,k(t) =

∣∣∣∣∣∣ 1

2m+ 1

∑
j′,k′∈Vj,k

eiΦj′,k′

∣∣∣∣∣∣ . (4)

Here i =
√
−1 is the imaginary unit, and Vj,k denotes the set

of points around (j, k) on the grid, including the point (j, k)
itself and its four nearest neighbors. m = 2 denotes the di-
mensionality of the RD system. It is straightforward to find
that Rj,k ≈ 1 if the set of points in Vj,k are synchronized, and
0 < Rj,k < 1 if the points are desynchronized. The spatial
distribution of Φj,k around the core region is shown in Fig.
2(a), which is analogy to the SWC shown in Fig. 1(b). The
phase difference ∆Φ(y) = ΦN/2,k+1−ΦN/2,k along the ver-
tical central axis is shown in Fig. 2(b). We see that, similar
to the behavior of ∆u [see Fig. 1(c)], ∆Φ is fluctuating ran-
domly in the core region but is staying around 0 outside. The
distribution of the order parameter R in the two-dimensional
space and along the vertical central axis are presented in Figs.
2(c) and (d), respectively. We see that R < 1 for points inside
the core region, and R ≈ 1 for the outside points, signifying
the fact that points inside the core are desynchronized from
their neighbors, while points outside the core are highly syn-
chronized with their neighbors.

We move on to characterize SWC by the topological charge
[65, 77]

W =
1

2π

∮
C

∇Φ · d~s, (5)

with Φ the phase variable defined above and C a closed curve
surrounding the asynchronous core. Previous studies show
that for the case of single SWC (e.g. one asynchronous core
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FIG. 1. For parameters a = 3.8 and ε2 = 0.2, a typical SWC observed in simulations. (a) A snapshot of the u component. (b) Enlarged view
of the core region in (a). (c) The variation of ∆u(y) = uN/2,k+1 − uN/2,k with respect to y along the vertical central axis. The physical
diameter of the asynchronous core is d ≈ ∆yasy × dy ≈ 33 × 0.2 = 6.6. (d) Time evolutions of two neighboring points inside the core
region. (e) Time evolutions of two neighboring points outside the core region. (f) A snapshot of the w component. (g) Enlarged view of the
core region in (f). (h) The variation of ∆w(y) = wN/2,k+1 − wN/2,k with respect to y along the vertical central axis.

and one spiral), the integral gives ±2π, resulting in W = ±1,
with the sign of W denoting the chirality of SWC. For the
SWC shown in Figs. 1 and 2, we have W = −1, indicating
that the SWC is left-handed [77]. When multiple SWCs exist,
the net charge of the system will be keeping unchanged during
the process of system evolution, which will be discussed later
in exploring SWC transitions.

IV. MECHANISM ANALYSIS

The fact that SWCs can be generated in locally coupled RD
systems seems contradictory to the existing studies on spiral
waves, as it is well known that the presence of diffusion in RD
systems will lead to a smooth distribution of the reactants in
space (except the point at the spiral tip) [78]. The key to gen-
erating SWCs in our model of locally coupled RD systems

lies in the special scheme of single-component diffusion, i.e.,
diffusion exists only for the component w, while are absent
for components u and v. Such a scheme sets a barrier be-
tween the diffusive and non-diffusive components, protecting
therefore the asynchronous cores from destruction. Indeed, as
depicted in Fig. 1, the behaviors of the diffusive (w) and non-
diffusive (u and v) components are clearly different from each
other. This might explain why SWCs have not been reported
in locally coupled RD systems in literature.

The mechanism of SWCs can be analyzed by a phenomeno-
logical theory, as follows. We first note that the RD system
described by Eqs. (1-3) can be treated as a population of FHN
oscillators (each has two variables, u and v) coupled indirectly
through a common medium (described by w) [59, 79, 80]. In
this picture, the local oscillators are isolated from each other,
but are all driven by a spatially extended dynamical medium.
Denoting F (wy, t) = −φcwy(t) as the driving force at y
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FIG. 2. Characterizing SWC by the phase variable and local order parameter. (a) The distribution of the phase variable Φ around the central
region. (b) The variation of ∆Φ(y) = ΦN/2,k+1 − ΦN/2,k with respect to y along the vertical central axis in (a). (c) The distribution of the
local order parameter R around the central region. (d) The variation of R with respect to y along the vertical central axis in (c). The SWC is
the same to one shown in Fig. 1.

(x = N/2), the dynamics of the oscillator at y is governed
by the equation

duy
dt

= φ(auy − αu3
y − bvy) + F (wy, t), (6)

dvy
dt

= φε1(uy − vy). (7)

We note that the driving force F (wy, t) depends on both the
spatial location of the oscillator and time, i.e., its a spatiotem-
poral signal. For the reason that the dynamics governing w is
linear [see Eq. (3)] and u is oscillatory [see Fig. 1], the local
component wy will be also oscillating with time. The oscilla-
tory feature of wy is confirmed by simulations, as depicted in
Fig. 3(a). It is noticed in Fig. 3(a) that the two oscillations,
one in the core region and the other one in the outer region,
are of similar frequency but different amplitudes. Specifically,
the amplitude of the inner point is clearly smaller than that of
the outer point. Denote Aw(y) as the time-averaged ampli-
tude of the oscillation at y, we plot in Fig. 3(b) the variation
of Aw(y) with respect to y along the vertical central axis (i.e.
x = N/2 in the pattern). We see that Aw(y) ≈ 0.24 in the
outer region, but is gradually decreased in the core region as y
approaches the central point. In particular, the value ofAw(y)
is decreased to about 0.02 at y = N/2.

Based on the numerical results [Fig. 3(a)], we may ap-
proximate the oscillations of wy(t) by a sinusoidal function,
wy(t) = Aw(y) sin(ωf t). Accordingly, the driving force
can be written as F (wy, t) = Ay sin(ωf t), with Ay =
−φcAw(y). With this approximation, we are able to ana-
lyze the formation of SWC by a phenomenological approach,
with the details the following. According to the synchroniza-
tion theory [81], periodic oscillator of natural frequency ω0

can be locked to the external forcing given that the frequency
mismatch between them is small and the driving amplitude is
large enough. For the isolated FHN oscillator adopted in our
study, the natural frequency is about ω0 = 0.57. Defining the
frequency ratio r = ωf/ω0 and characterizing synchroniza-
tion degree by the frequency error, ∆ω = Ω0−ωf with Ω0 the
practical frequency of the FHN oscillator, we calculate numer-
ically the distribution of ∆ω in the two-dimensional parame-
ter space spanned by r and Ay . The results are plotted in Fig.
4. We see that with the increase of r, the critical amplitude,
Ac, required for phase synchronization is gradually increased.
As ωf ≈ 0.85 (the rotating frequency of the spiral arms), the
frequency ratio therefore is r ≈ 1.5, which, according to the
numerical results shown in Fig. 4, gives the critical ampli-
tude Ac ≈ 0.5. From the relation Aw = Ay/(cφ) and setting
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FIG. 3. Properties of the component w. (a) Time profile of w for
two grid points, one is far from the core region (red, solid line) and
the other is inside the core (blue, dotted line). (b) Time-averaged
amplitude,Aw(y), along central vertical axis (x = 512). Ac

w ≈ 0.24
denotes the critical amplitude for synchronization, below which the
oscillator is not locked to the medium. The parameters are the same
as in Fig. 1.

Ay = Ac, we finally have the critical amplitude Acw ≈ 0.23,
which defines the boundary of the asynchronous core. As de-
picted in Fig. 3(b), this predication is in good agreement with
the results of direct simulations where Aw ≈ 0.24 in the outer
region.

The above mechanism provides insights on the necessary
conditions for generating SWC in locally coupled RD sys-
tems. Our above analysis shows that the nature of single-
component diffusion is to weaken the synchronization of the
local oscillators, so as to form the asynchronous core. Oth-
erwise, if diffusions are introduced to all three components,
the local oscillators will be strongly coupled and be synchro-
nized, therefore destroying the asynchronous core. As such,
the essence for generating SWC is that the local oscillators
should be weakly coupled, instead of the scheme of single-
component diffusion. This new understanding has been ver-
ified by simulations. For instance, if weak diffusions are in-
troduced to component u and v (Du, Dv � Dw), the SWC
shown in Fig. 1 can still be observed (not shown).

FIG. 4. Driving FHN oscillator by the periodic forcing, F (wy, t) =
Ay sin(ωf t), the distribution of the frequency error, ∆ω, in the two-
dimensional parameter space spanned by the frequency ratio, r =
ωf/ω0, and the driving amplitude, Ay . Vertical dashed line at r =
1.5 corresponds to the frequency ratio of the SWC shown in Fig. 1.
Along the vertical dashed line, we have ∆ω ≈ 0 forAy > Ac ≈ 0.5.

V. TRANSITIONS FROM SPIRAL WAVE CHIMERAS TO
OTHER STATES

By varying the system parameters, the system may tran-
sit from SWC to other states. In the current study, we focus
on the transitions of SWCs to other states with respect to the
variations of a and ε2. As discussed in Sec. II, a plays as
the bifurcation parameter of FHN oscillator and ε2 character-
izes the reaction rate of the diffusive component w. We thus
expect that by varying a and ε2, rich dynamics could be ob-
served. In what follows, we will present two typical scenarios
governing the transitions: core breakup and core expansion.
The former is featured by the continuous breakup of the asyn-
chronous core, by which the system is finally developed into
SWC turbulence. The latter, on the other hand, is featured by
the continuous expansion of the asynchronous core, by which
the system might develop into a new type of chimera state, the
shadowed spirals.

A. Core breakup and SWC turbulence

To demonstrate the scenario of core breakup, we fix the
parameter a = 3.8, while increasing ε2 gradually from 0.2
(the same parameter and initial condition as used in Fig. 1
for generating SWC). Numerical results show that when the
increment is small, SWC survives, but with the wave length
being slightly decreased. The SWC, however, becomes un-
stable when ε2 exceeds a critical value εc2 ≈ 0.24. To show
an example, we set ε = 0.245 and plot in Fig. 5 the typical
states observed in the system evolution. The time evolution
of the component u is plotted in Fig. 5(a-c). We see that as
time increases, the single asynchronous core is broken into
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FIG. 5. Transition from SWC to SWC turbulence through core breakup. Shown are the typical states of the component u (a-c), the local order
parameter R (d-f) and the component w (g-i) observed in the process of system evolution at t = 2000, 6000 and 20, 000. (j) Time evolution
of the fraction of asynchronous oscillators, p, in the system. The parameters are a = 3.8 and ε2 = 0.245.

many small-size asynchronous cores, leading to a state sim-
ilar to spiral wave turbulence [78]. However, different from
the conventional picture of spiral wave turbulence, here the
tips of the small spirals are replaced by asynchronous cores.
For this reason, we call this new state SWC turbulence. The
time evolution of the local parameter R are plotted in Fig.
5(d-f), which show clearly how new asynchronous cores are
born with the vanishing of the original core. The similar phe-
nomenon is also observed for component w [Fig. 5(g-i)]. As
asynchronous core is absent in w, the state should be classi-

fied as spiral wave turbulence. To explore further the transi-
tion from SWC to SWC turbulence, we plot in Fig. 5(j) the
time evolution of the fraction of asynchronous oscillators in
the system, p = Nasy/Ntot [29]. Here Nasy is the number
of oscillators whose local parameter is smaller to a threshold.
For illustration, we set the threshold as R = 0.95. Figure 5(j)
shows that p starts to increase at about t = 4800, indicating
the breaking of the asynchronous core at this moment. After
that, p is gradually increased with fluctuations, signifying the
fact that more asynchronous cores are emerged and the SWCs
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FIG. 6. Details of core breakup. (a-j) Successive snapshots of the component u, with time interval being ∆t = 32. The parameters are the
same as in Fig. 5.

are evolving as turbulence [29].
To have a close look at the transition dynamics, we focus

on the behavior of the asynchronous core at the onset of the
breaking (t ≈ 4800). Typical states of u observed during the
breaking process are shown in Fig. 6. We see that the break-
ing starts with the emergence of a synchronous core inside the
asynchronous core [see the region indicated by the white ar-
row in Fig. 6(a)]. As time increases, the synchronous core
expands in space and, as the consequence, the asynchronous
core is reshaped into an annulus [Fig. 6(b)]. The expansion
of the synchronous core eventually leads to the breaking of
the asynchronous annulus, resulting in two disconnected asyn-
chronous segments [Fig. 6(c)]. In the following evolution, the
asynchronous segments are pushed outward by the expanding
synchronous core [Fig. 6(d)], and reshaped continuously by
the rotation of the spiral arms [Figs. 6(e-i)]. Finally, with the
insertion of the spiral arm, the synchronous core is broken into
two parts [Fig. 6(j)]: the one connected with the spiral arms is
developed to a small-size SWC, while the one detached from
the arms is eventually developed into two small-size SWCs.
(See Supplementary Materials for the movie.)

The above process of core breaking continues, resulting
in SWC turbulence in which many small-size SWCs coexist,
which, as the system evolves, are continuously broken and
eliminated. It is just the breaking and elimination of the small
SWCs that results in the wild fluctuation of p, as depicted in
Fig. 5(j). To characterize SWC turbulence, we calculate the
network topological charge of the system and investigate its
time evolution. Previous studies on spiral wave turbulence
show that, despite the continuous breaking and elimination of
the spirals, the net topological charge is keeping unchanged
[78]. For the case of SWC breaking, this is indeed what we
find in simulations. For instance, for the breaking process
shown in Fig. 6, the breaking of the original core finally leads
to the generation of three new cores [Fig. 6(j)]. The one con-
nected to the spiral arms has the topological charge W = −1,
while the other two detached from the arms have the charge
W = +1 and W = −1. As such, the net topological charge

of the system is keeping as−1. This finding is consistent with
the results reported in Ref. [67], in which splitting of SWCs
in a nonlocally coupled oscillator system has been studied.

B. Core expansion and shadowed spirals

Besides the scenario of core breakup, SWC may also be
destabilized through the scenario of core expansion, which
occurs when ε2 is large. Setting ε2 = 0.45, we plot in Figs.
7(a-c) three typical states observed in the evolution of u. We
see that as time increases, the asynchronous core is gradu-
ally expanded and finally dominates the whole space. More
interestingly, inside the expanding core, a distinct pattern of
spiral waves is emerged on top of the disordered, desynchro-
nization background. (See Supplementary Materials for the
movie.) The feature of core expansion is also reflected in the
evolution of the local parameter R, as can be seen in Figs.
7(d-f). Moreover, in Fig. 7(f) it is clearly seen that the local
order parameter is close to 1 for sites outside the core region,
while is smaller to 1 for sites inside the core. For the rea-
son that the spiral waves are embedded in the background of
desynchronized sites, we call this new phenomenon shadowed
spirals, so as to distinguish it from the conventional spirals ob-
served in RD systems. The development of new spiral waves
is more clearly presented in the componentw [Figs. 7(g-i)], in
which the desynchronization background is disappeared and
only the spirals are shown. To explore the transient behavior
of the core expansion, we plot in Fig. 7(j) the time evolu-
tion of the fraction of asynchronous oscillators, p. Different
from the core breakup scenario [see Fig. 5(j)], here we see
that p is smoothly increased with time, and reaches 1 at about
t = 4 × 103, indicating that at this moment the whole space
is dominated by shadowed spirals. Numerically, we find that
the behavior of p can be fitted by the logistic growth

p(t) =
β

1 + γ exp(−kt)
, (8)
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FIG. 7. Emergence of shadowed spirals through core expansion. Shown are the typical states of the component u (a-c), the local order
parameterR (d-f) and the component w (g-i) observed in the process of system evolution at t = 500, 2000 and 5000. (j) Time evolution of the
fraction of asynchronous oscillators, p, in the system. The numerical results (red dots) can be fitted by the logistic growth (blue curve). The
parameters used in simulations are a = 3.8 and ε2 = 0.45.

with the fitted coefficients being β = 0.9836, γ = 6.1 and
k = 2× 10−3.

To characterize the phenomenon of shadowed spirals fur-
ther, we focus on the behaviors of the core area, and investi-
gate the spatial distribution of the components u andw and the
local order parameter R. The enlarged view of the core area
for component u is plotted in Fig. 8(a). Fixing x = 512 in
Fig. 8(a), we plot in Fig. 8(b) the distributions of u (top) and
its gradient ∆u (bottom), respectively. The top panel in Fig.
8(b) shows that, while u is varying wildly along y, some reg-
ular patterns are found in the variation. To be more specific,

the variation reaches its local maxima at a regular spatial dis-
tance λu ≈ 26. However, when looking at the gradient ∆u,
the patterns found in u are disappeared and the variation is
completely random, as depicted in the bottom panel in Fig.
8(b). Figures 8(a) and (b) confirm the fact that spiral wave is
only observable at large scale (> λu), while at small scales
the system is completely disordered. The similar features are
also observed for the local order parameter R, as depicted in
Figs. 8(c) and (d). Comparing to the distribution of u, we see
that in the top panel of Fig. 8(d) the distribution of R is more
irregular. The irregular variation of R is understandable, as it
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FIG. 8. Properties of shadowed spirals in the core area. (a) Enlarged view of component u. (b) Distributions of u (top) and ∆u (bottom) along
the central vertical axis (x = 512) in (a). The wave length of u is λu ≈ 26. (c) Enlarged view of the local order parameterR. (d) Distributions
of R (top) and ∆R (bottom) along the central vertical axis in (c). (e) Enlarged view of component w. (f) Distributions of w (top) and ∆w
(bottom) along the central vertical axis in (e). The wave length of w is λw ≈ 26. The parameters are the same as in Fig. 7.

represents the synchronization degree of five neighboring os-
cillators on the grid, which smears the patterns shown in the
top panel of Fig. 8(b). The pattern of spiral waves is more
prominent for the component w, as depicted in Figs. 8(e) and
(f). The distribution ofw along the vertical central axis is plot-
ted in the top panel of Fig. 8(f). We see that w is varying in a
regular manner along y, with the wave length being λw ≈ 26
[identical to that of u shown in the top panel of Fig. 8(b)].
The distribution of ∆w is plotted in the bottom panel of Fig.
8(f), which shows that ∆w ≈ 0 along the axis. We note that,
while the similar phenomenon can be observed by introduc-
ing noise perturbations to the conventional spiral waves, the
phenomenon of shadowed spirals reported here is emerged as
a self-organization pattern of the locally coupled dynamical
elements. That is, shadowed spirals is an inherent pattern of
the system.

The expansion of the asynchronous core does not always
lead to shadowed spirals. Varying the parameters a and
ε2, cases can be found in which the expansion of the asyn-
chronous core leads to the development of completely inco-
herent state. (See Supplementary Materials for the movie.)
An example of this is shown in Fig. 9, in which the parameters
are a = 3.0 and ε2 = 0.4. Typical states in the evolution of the
component u are shown in Figs. 9(a-c). We see that as time
increases, the asynchronous core is expanding in size, and fi-
nally occupies the whole space. Yet, different from shadowed
spirals, no pattern is observed in the asynchronous core in the
transient states, neither in the finally state. That is, oscillators
in the asynchronous core are completely desynchronized. The
feature of desynchronized oscillators inside the core is shown
more clearly in the evolution of the local parameter R, as de-
picted in Fig. 9(d-f). We see that R < 1 inside the core while
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FIG. 9. Transition from SWC to completely incoherent state. The parameters are a = 3.0 and ε2 = 0.40. (a-c) Typical states observed in the
evolution of component u at t = 500, 2000 and 5000. (d-f) Typical states of the local order parameterR. (g-i) Typical states of the component
w. (j) The time evolution of the fraction of asynchronous oscillators, p. Red dots: numerical results obtained by simulations. Blue curve: the
fitted growth, which is identical to the one obtained for SWC in Fig. 7(j).

R ≈ 1 outside. The evolution of the component w is shown in
Fig. 9(g-i). We see that, unlike the behaviors of u and R, the
distribution of w is almost uniform. Comparing completely
incoherent state with shadowed spirals, we see that the former
might be regarded as the removal of the spirals from the latter.
As a verification of this conjecture, we plot in Fig. 9(j) the
variation of p, the fraction of asynchronous oscillators on the

grid, with respect to time. The results are similar to that of
shadowed spirals shown in Fig. 7(j).

To have more details on the properties the complete inco-
herent state, we plot in Fig. 10 the distributions of u, R and w
in the core region, together with their distributions along the
vertical central line (x = 512). Comparing the results with
that of shadowed spirals [see Fig. 8], we see that in Fig. 10 no



12

FIG. 10. Properties of completely incoherent state in the core area. (a) Enlarged view of component u. (b) Distributions of u (top) and ∆u
(bottom) along the central vertical axis (x = 512) in (a). (c) Enlarged view of the local order parameter R. (d) Distributions of R (top) and
∆R (bottom) along the central vertical axis. (e) Enlarged view of componentw. (f) Distributions ofw (top) and ∆w (bottom) along the central
vertical axis. Note that in the top panel the value of w is fluctuating around 0 with a very small amplitude (∼ 5 × 10−2). The parameters are
the same as in Fig. 9.

regular pattern is observed in u, R and w, neither in the varia-
tions of ∆u, ∆R and ∆w. In particular, the top panel of Fig.
10(f) shows that w ≈ 0 for all sites, which is apparently dif-
ferent from the results of shadowed spirals [see the top panel
in Fig. 8(f)]. The results in Fig. 10 confirm the absence of
any pattern in the core area, and imply that oscillators inside
the core are completely desynchronized.

C. The global picture

To have a global picture on the bifurcation diagram, we
check numerically the distribution of the final state in the pa-
rameter space of (a, ε2). In simulations, the system is always
initialized with the same conditions (as described in Sec. II),

and the final state is taken at t = 2× 105 of the system evolu-
tion. The results are presented in Fig. 11. In Fig. 11, SWC is
observed in region I (green color), SWC turbulence generated
by core breakup is observed in region II (yellow color), shad-
owed spirals and completely incoherent states generated by
core expansion are observed in region III (red color), and re-
gion IV (blue color) denotes the other states. Please note that
region III is constituted by two disconnected small regions,
one at the top left corner and the other one at the top right cor-
ner. Shadowed spirals and completely incoherent states are
observed in both two small regions, and are entangled in the
parameter space without a clear boundary. However, in terms
of shadowed spirals, numerically we find that the wave length
of the spirals generated in the top right region is much larger
than that in the top left region. Figure 11 reveals the rich dy-
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FIG. 11. Phase diagram in the parameter space of (a, ε2). Region
I (green color): stable SWC. Region II (yellow color): SWC turbu-
lence generated by core breakup. Region III (red color): shadowed
spirals and completely incoherent states generated by core expan-
sion. Region IV (blue color): other states observed in simulations.

namics inherent in the model of locally coupled RD system
we have proposed, and provides a guideline for finding SWCs
and shadowed spirals in simulations and experiments.

Besides the aforementioned states, other interesting states
can be also emerged in the locally coupled RD system. These
states are observed in region IV in Fig. 11. For instance, a
new type of traveling wave containing an asynchronous strip
is observed. As time increases, the plane waves are travel-
ing inward, and are vanished after reaching the asynchronous
strip. (See Supplementary Materials for the movie.) Differ-
ent from the conventional traveling and target waves observed
in RD systems, a fascinating feature of this state is that the
source of the waves is composed of a group of desynchronized
oscillators. As the oscillators in the strip are desynchronized,
the new type of traveling wave thus is generated without the
presence of periodic forcing or heterogeneity – a necessary
condition for generating traveling and target waves in conven-
tional RD systems. A full exploration of the states in region
IV is out the scope of the current study.

VI. DISCUSSIONS AND CONCLUSION

Whereas chimera-like patterns have been reported in a va-
riety of systems in literature, most of the studies rely on the
adoption of nonlocal couplings. As nonlocal couplings are
absent in typical RD systems in which elements are inter-
acted through local diffusions, it is commonly believed that
chimera-like pattens such as SWC can not be observed in typ-
ical RD systems. This believing is validated further by ex-
periments in Ref. [67]. There, to generate SWC in chemical
BZ oscillators, nonlocal couplings are established between re-
mote oscillators through a computer interface. In contrast to
the conventional wisdom, our present work shows that SWC

can be generated in typical RD systems of local diffusion
as well. Moreover, we demonstrate that by varying the sys-
tem parameters, rich dynamics and bifurcation scenarios can
be presented in the proposed system. In particular, a new
phenomenon named shadowed spirals is observed, in which
regular spirals are embedded in the background of globally
desynchronized oscillators. This new phenomenon, which to
the best of our knowledge has not been reported in literature,
manifests from a new viewpoint the coexistence of incoherent
and coherent states in spatially extended systems, generalizing
thus the traditional concept of chimera states. Besides offer-
ing rich dynamics, the system presents also clear scenarios on
the transitions of the system dynamics. Specifically, two dif-
ferent scenarios have been revealed in the destabilization of
SWCs: core breakup and core expansion. While similar sce-
narios have been reported in Ref. [67], the results in Ref. [67]
are obtained in nonlocally coupled oscillators. Moreover, we
conduct in the present work a detailed analysis on scenarios of
SWC transitions and, more importantly, explore the bifurca-
tion diagram of SWC in the two-dimensional parameter space,
which deepens our understandings on the nature of SWCs. As
nonlocal couplings are employed in Ref. [67] and the present
work utilizes local couplings, our study thus suggests that the
above scenarios might be universal for the transitions of SWC
in RD systems.

The theoretical model we have proposed could be realized
in experiments. As analyzed in Sec. IV, the key to generat-
ing SWC lies in the single-component diffusion of the chem-
ical reactants, i.e., diffusion exists only for the component w,
while is absent or very weak for components u and v. The
essence of such a setting is to separate the diffusive compo-
nent from the non-diffusive ones, protecting thus the asyn-
chronous cores of the latter from diffusion-induced destruc-
tions. A candidate system approximately satisfying the re-
quirement of single-component diffusion is the BZ-AOT sys-
tems [70], in which the diffusion coefficients of the activator
species HBrO2 (water soluble) and the inhibitors Br− (wa-
ter soluble) are much smaller to that of the inhibitors Br2 (oil
soluble). Single-component diffusion can be also realized in
synthetic biological systems, saying, for instance, the genetic
regulation network of Escherichia coli cells [72], the yeast
cell layers [73], and the Dictyostelium cells [74]. In these sys-
tems, the dynamical elements are not interacting directly, but
through a common diffusive environment. From the point of
view of indirectly coupled oscillators, these systems share the
same nature of the model we have proposed, and therefore are
also suitable candidates for generating SWCs.

In summary, we have proposed an experimentally feasible
model of locally coupled RD system, and investigated the for-
mation of SWC and the transitions from SWC to other states.
The conditions for generating SWC have been given, and the
underlying mechanism has been analyzed by a phenomeno-
logical theory. The transitions from SWC to other states in
the two-dimensional parameter space of experimental interest
have been studied, which shows that SWC is typically desta-
bilized through two scenarios, core breakup and core expan-
sion. Details of the transition processes have been explored,
and new patterns have been observed. In particular, a new
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type of chimera, namely shadowed spirals, has been uncov-
ered. A global picture of the bifurcation diagram has been
given, which shows that, in contrast to the conventional wis-
dom, SWC can be generated in a wide region in the parameter
space of the locally coupled RD system. Our studies shed
new lights on the formation of chimera states in spatiotempo-
ral systems, and pay the way for generating SWC in typical

RD systems in experiments.
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