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1 West University of Timişoara, Bd. V. Pârvan nr. 4, 300223, Timişoara, Romania
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Abstract

The traditional Wilson-Cowan model of excitatory and inhibitory meanfield interactions in
neuronal populations considers a weak Gamma distribution of time delays when processing inputs, and
is obtained via a time-coarse graining technique that averages the population response. Previous
analyses of the stability of the Wilson-Cowan model focused on more simplified cases, where the
delays were either not present, constant or were of a specific type. Since these simplifications may
significantly alter the behavior of the model, we focus on understanding the behavior of the system
before time-course graining, and for a wider range of delay distributions.

For these generalized delay equations, we perform stability and bifurcation analyses with respect
to parameters that capture both the coupling profile, and the time delay. The investigation is done
through the examination of the system’s associated characteristic equation. Under mild assumptions,
we give complete mathematical proofs of our theoretical results, for the model with general delay
distributions and prove the transversality condition for the possible Hopf bifurcations, in a generalized
context. The stability region in this parameter space is described theoretically for several types of
delay kernels, and numerical simulations are presented to substantiate the theoretical results.

We found that the stability regions and bifurcations differ significantly between different types
of delay distributions: weak Gamma distributions promote stable firing rates, while strong Gamma
distributions are associated with regular oscillations, and Dirac distributions appear to facilitate more
complex , aperiodic patterns. This supports the unexplored possibility of different delay distributions
being used as the substrate for different functional behaviors, and emphasizes the importance of a
careful choice of the delay kernel in the mathematical model.

We illustrate these theoretical principles in an application to a basal ganglia circuit, in which
β-band oscillations have been associated with Parkinson’s Disease.

1 Introduction

1.1 Modeling background

Computational modeling of neuronal behavior covers a large range of spatio-temporal scales, from
detailed, membrane potential based models of single spiking neurons, to broad network models of
interacting brain regions. At the lower scale, typically associated with electrode recordings from
single cell in vitro preparations, modeling difficulties often arise from the inherent complexity and high
dimensionality associated with considering detailed molecular mechanisms that govern ionic currents
and spiking activity in a single cell. The Hodgkin-Huxley model was in its original form limited to the
two voltage-dependent currents found in the squid giant axon, but it has to be extended to dozens of
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equations per neuron if it includes other ion channels involved in neuronal excitability [1, 2]. In the
context of studying behavior in functional neuronal networks, which may involve thousands of neurons,
the dimensionality of a network formed of single cells may become an obstacle to computational feasibility.
At the opposite end, often associated with functional imaging data, modeling activity within entire brain
regions as a whole lacks specificity, and prevents clear interpretations of what “activity” of a state variable
may actually represent [3].

The middle range between the two ends consists of a rich variety of models. One wide-spread possibility
has been creating reduced models as modifications of Hodgkin-Huxley equations, by modeling the
behavior of multiple ion channels into one comprehensive variable [4]. Another practical option has
been using state variables to characterize the meanfield spiking activity in a population of cells [5]. This
type of model is still able to incorporate information on spiking mechanisms, and efficiently illustrates
resulting firing patterns by using only one variable per population.

One of the most historically significant and best understood meanfield models, the Wilson-Cowan model
[6] is perhaps the most popular. The model, derived in 1972, describes the localized interactions in a pair
of excitatory and inhibitory neuronal populations. At each time instant t, the proportions of excitatory
and inhibitory cells firing per unit of time are captured by the two state variables E(t) and I(t). The
original model considers the effect that an external input P has on the E/I system, based not only on
the coupling strengths between the two units, but also on the history of firing in each. More specifically,
E(t+τ1) and I(t+τ2) represent the proportion of cells which are sensitive (i.e. not refractory) and which
also receive at least threshold excitation at the moment of time t. This leads to the following system of
integral equations:

E(t+ τ1) =

(
1−

∫ t

t−r
E(s)ds

)
· Se

[∫ t

−∞
h(t− s) (c1E(s)− c2I(s) + Pe(s)) ds

]
I(t+ τ2) =

(
1−

∫ t

t−r′
I(s)ds

)
· Si

[∫ t

−∞
h(t− s) (c3E(s)− c4I(s) + Pi(s)) ds

] (1)

Here, the first factor on each right hand side represents the proportion of sensitive excitatory / inhibitory
cells, where r and r′ are the absolute refractory periods (msc). The functions Se, Si are sigmoid
threshold functions, their arguments denoting the mean field level of excitation / inhibition generated
in an excitatory /inhibitory cell at time t. The summation coefficients ci > 0 are connectivity weights
representing the average number of excitatory / inhibitory synapses per cell and Pe, Pi denote external
inputs. It is additionally assumed that a cell’s weighted summation of inputs is modulated longitudinally
by a decreasing kernel h(t). The original paper [6] suggests the use of a weak Gamma kernel h(t), before
proceeding with further mathematical simplifications, for convenience of the analysis.

Indeed, with the additional simplifying assumption of negligible refractory periods (r = r′ = 0) and with
a degree one Taylor approximation of the left-hand terms for small τ1 and τ2, the Equations (1) can be
easily rewritten as the following system of intergo-differential equations:

Ė(t) = −τ1E(t) + Se
[∫ t

−∞
h(t− s) (c1E(s)− c2I(s) + Pe(s)) ds

]
İ(t) = −τ2I(t) + Si

[∫ t

−∞
h(t− s) (c3E(s)− c4I(s) + Pi(s)) ds

] (2)

For simplicity, the equations are often considered to have the same time scale τ1 = τ2 = 1. The model
historically used as the Wilson-Cowan model [6] was then obtained from (2) by applying further time-
coarse graining. This final form, consisting of a system of non-delayed ordinary differential equations,
is very convenient and was extensively analyzed and used in the modeling literature [7]. However,
this final course-graining step obscures potentially vital information on the the shape of the temporal
integration of synaptic inputs in both populations (by assuming, for example, that h(t) is close to one
for t < r, r′ respectively, and that is decays rapidly to zero for t > r, r′). This information may be crucial
to the neural function that the model is aiming to address, hence a few generalizations of the standard
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model found it useful to further explore the original equations (prior to coarse graining), imposing loser
conditions on temporal integration, such as discrete time-delays, and often considering null refractory
periods r, r′ [8, 9, 10, 11].

However, constant delays do not constitute the most biologically realistic possibility. Since h(t − s)
represents the effect of presynaptic input at time s on the membrane potential at time t, it can be
thought to include two aspects: the synaptic transmission delay, and the time-course of the post-synaptic
potential (PSP). In this context, constant delays imply not only equal transmission delays between the
neurons, but also instantaneous PSPs. While often delays due to PSP are ignored, and a constant kernel
is chosen on the basis on experimentally observed synaptic transmission delays [12], such choices are
rather made in the interest of simplicity, and do not incorporate the full picture, and other types of
distributed delays may deliver a more realistic model of synaptic transmission delays.

In this paper, we consider and analyze the Wilson-Cowan model in its original integro-differential form,
for a general delay distribution and with the only simplifying assumption (retained for simplicity) being
that of zero refractory periods r = r′ = 0. We then compare the results for several types of delay kernels.
We analyze the long-term behavior in each case, then we discuss the main differences between these
behaviors, and potential advantages of using delay equations versus the simpler and more main-stream
course grain approximation.

We emphasize, that our main theorems have already been briefly presented (without proofs) in [13],
accompanied by several numerical simulations, mostly in the case of a discrete time-delay. Thus, in
this paper we illustrate rigorous mathematical proofs of our previously presented statements [13] and
of our additional lemmas and propositions added here. Choosing different parameters similar numerical
simulations are presented, as in [13, 8]. Finally a Parkinson’s Disease (PD) model of the basal ganglia is
adapted after [12], followed by a series of simulations, treating both the case of healthy basal ganglia and a
diseased/parkinsonian one, using different delay distributions. We then present detailed neuro-biological
interpretations and argumentations of our simulations of the PD model.

1.2 Our model

To address the integral terms from the original equations (2) we analyze in this paper the general model
with distributed delays defined by

u̇(t) = −u(t) + f1

θu +

t∫
−∞

h(t− s) (au(s) + bv(s)) ds


v̇(t) = −v(t) + f2

θv +

t∫
−∞

h(t− s) (cu(s) + dv(s)) ds

 (3)

where u(t) and v(t) represent the firing activity in the two neuronal populations, a, b, c, d are the
connection weights and θu, θv are background drives. The activation functions f1 and f2 are smooth
and increasing on the real line. The original model (2) can be recovered for equal time scales τ1 = τ2, if
the activation functions are particularly set to sigmoidals f1 = Se and f2 = Si, with background drives

θu =

∫ t

−∞
h(t− s)Pe(s)ds and θv =

∫ t

−∞
h(t− s)Pi(s)ds, respectively.

The delay kernel h : [0,∞) → [0,∞) in system (3) is suggested to have an exponential form (weak
Gamma kernel) in the original Wilson-Cowan reference [6]. We will consider the extensive case of a
general probability density function, representing the probability that a particular time delay occurs.
The delay kernel is considered to be bounded and piecewise continuous, satisfying

∞∫
0

h(s)ds = 1, with the average time delay τ =

∞∫
0

sh(s)ds <∞. (4)
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Our analysis of the system (3) will focus around understanding the changes in its long term behavior
that are triggered by changes in spatial and temporal summation of inputs (as reflected in the synaptic
weights and in the integration kernel).

In recent years, significant work has been dedicated to understanding the effects of spatial integration of
inputs [14, 15]. An entire direction in computational neuroscience is centered around investigating the
effects of connectivity and synaptic weights on dynamics in coupled neural populations [16]. Seminal
empirical work has shown that the synaptic weight profile in a network changes with location [17], with
task-related circumstances (e.g., when learning and memory formation are involved [18]), but also with
general circumstances (e.g., sleep and circadian rhythms [19, 20]). such modeling work is shedding
increasingly more light on the mechanisms by which different synaptic landscapes modulate different
outcomes in networks of neuronal populations.

Comparatively, less is known about temporal profiles in the integration of inputs. While physiological
evidence supports that exponential decay may represent an appropriate model for certain type of neural
contexts [21], other modulation patterns have been explored [22, 23]. It is generally agreed that effects of
stimulation decay with the time course, but it is quite possible that the timeline and profile of this decay
(the shape of the post-synaptic integration) depend on the properties of the neurons involved (receptor
types, voltage-dependent currents in the soma and dendrites) [24].

The Wilson-Cowan type system (3) simplifies the behavior of a self-interacting E/I network into a mean-
field, two-dimensional model without the geometric, spatial structure described in other, more detailed
models. The distribution of synaptic weights contributing to spatial summation of inputs is then entirely
encapsulated in the set of mean field coefficients a, b, c, d. The temporal summation of inputs is described
by the kernel h. In this paper, we study, for different types of kernels, the types of asymptotic regimes
accessible to the system. For each kernel type, we further study the conditions on the synaptic coefficients
and distributed delay that produce transitions between these regimes.

The specific case of discrete time delays (Dirac kernels) has been previously analyzed in [8, 25]. However,
as previously mentioned, the discrete time integration model does not have a strong physiological
backup; other important types of delay kernels are frequently used in the literature, such as uniform
distribution kernels [26, 27, 28] or Gamma kernels (recall that the original Wilson-Cowan model itself
proposed a weak Gamma (exponential) kernel h(t) = τ−1 exp(−t/τ)) [6]. Analyzing and comparing
mathematical models which incorporate different types of delay kernels (e.g. weak Gamma kernel or
strong Gamma kernel h(t) = 4τ−2t exp(−2t/τ)) may shed a light on the difference between using different
distributed delays, as well as on the differences between using continuous versus discrete delays on the
system’s dynamics. Furthermore, when modeling natural systems, one usually does not have access
to the exact delay distribution, and approaches using general kernels may prove to be more revealing
[29, 28, 26, 30, 31, 27, 32, 33, 34].

The results in Section 2 are delivered within this general context, keeping additional conditions on the
kernels to a minimum. In Sections 3.1 and 3.2, we further illustrate the behaviors for specific theoretical
and biologically driven examples, using particular kernels (the weak and strong Gamma kernels and the
Dirac kernel). In Section 4, we draw comparisons between the behaviors reported for different types of
distributed delays, and discuss potential contributions of the delay scheme to dynamic control mechanisms
in coupled neuronal populations.

2 Stability and bifurcation results

The initial conditions that are associated to system (3) are:

u(s) = ψ1(s), v(s) = ψ2(s), ∀ s ∈ (−∞, 0],
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Figure 1: Weak and Strong Gamma kernels for different values of τ .

where ψ1 and ψ2 belong to the Banach space C0,µ(R−,R) (where µ > 0) of continuous real valued
functions defined on (−∞, 0] such that lim

t→−∞
eµtψ(t) = 0, endowed with the norm:

‖ψ‖∞,µ = sup
t∈(−∞,0]

eµt|ψ(t)|.

For existence and uniqueness results regarding the solution of the initial value problem associated to
system (3) we cite [35, 36]. An important tool in the stability analysis of system (3) is the principle of
linearized stability (see for example [37]), characterizing the local stability properties of an equilibrium
state of (3) in terms of the stability of the null solution of the linearized system at that particular
equilibrium. For the principle of linearized stability in the context of systems of differential equations
with infinite time delay, we refer to [30].

The equilibrium states of system (3) are found by solving the following algebraic system:{
u = f1(θu + au+ bv)
v = f2(θv + cu+ dv)

(5)

Linearizing at an equilibrium state (u?, v?) leads to
u̇ = −u+ φ1

t∫
−∞

h(t− s) (au(s) + bv(s)) ds

v̇ = −v + φ2

t∫
−∞

h(t− s) (cu(s) + dv(s)) ds

(6)

where φ1 = φ1(u?, v?) = f ′1(θu + au? + bv?) > 0 and φ2 = φ2(u?, v?) = f ′2(θv + cu? + dv?) > 0.

Either looking for solutions of the form (u(t), v(t)) = ezt(u(0), v(0)) or directly employing the Laplace
transform technique to the linearized system (6), we obtain:{

zU(z)− u(0) = −U(z) + φ1H(z) (aU(z) + bV (z))
zV (z)− v(0) = −V (z) + φ2H(z) (cU(z) + dV (z))

(7)

where U(z), V (z) and H(z) denote the Laplace transforms of state variables u and v, and of the delay
kernel h, respectively.

System (7) is equivalently written as:(
z + 1− aφ1H(z) −bφ1H(z)
−cφ2H(z) z + 1− dφ2H(z)

)(
U(z)
V (z)

)
=

(
u(0)
v(0)

)
(8)

which leads to the following characteristic equation (associated to the equilibrium (u?, v?)):

∆(z) = (z + 1)2 − αH(z)(z + 1) + βH2(z) = 0 (9)
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where

α = aφ1(u?, v?) + dφ2(u?, v?) = af ′1(θu + au? + bv?) + df ′2(θv + cu? + dv?);

β = (ad− bc)φ1(u?, v?)φ2(u?, v?) = (ad− bc)f ′1(θu + au? + bv?)f ′2(θv + cu? + dv?).

2.1 Delay-independent stability and instability results

We first discuss several delay-independent stability and instability properties of system (3), emphasizing
that these results are particularly useful when the exact delay distributions are unknown.

Theorem 2.1. Assume that the delay kernel h(t) in system (3) satisfies the properties (4).

1. In the non-delayed case (i.e. h(t) = δ(t)), the equilibrium (u?, v?) of system (3) is locally
asymptotically stable if and only if the following inequality holds:

α < min{2, β + 1} (10)

2. If the following inequality holds:
|α|+ |β| < 1 (11)

then the equilibrium (u?, v?) of system (3) is locally asymptotically stable, regardless of the choice
of the delay kernel h(t).

3. If the following inequality holds:
β < α− 1 (12)

then the equilibrium state (u?, v?) of system (3) is unstable for any delay kernel h(t).

Proof. 1. In the non-delayed case (H(z) = 1, for any z ∈ C), the characteristic equation (9) becomes:

∆(z) = z2 + (2− α)z + β − α+ 1 = 0

The necessary and sufficient condition (10) for the asymptotic stability of the equilibrium state (u?, v?)
of system (3) follows from the Routh-Hurwitz stability test.

2. Using basic inequality techniques, we have:

|H(z)| =

∣∣∣∣∣∣
∞∫
0

e−zth(t)dt

∣∣∣∣∣∣ ≤
∞∫
0

|e−zt|h(t)dt =

∞∫
0

e−<(z)th(t)dt.

Now, if we assume that the characteristic equation (9) has a root z in the right half-plane (<(z) ≥ 0), it
follows that e−<(z)t ≤ 1, for any t ≥ 0 and hence:

|H(z)| ≤
∞∫
0

h(t)dt = 1.

From (9) we deduce:

|z + 1|2 = |αH(z)(z + 1)− βH2(z)|
≤ |α||z + 1|+ |β|

Considering the polynomial P (x) = x2 − |α|x − |β|, from inequality (11) it follows that P (1) > 0 and
P ′(1) > 0, and hence P (x) > 0 for any x ≥ 1. From the above inequality, we have P (|z + 1|) ≤ 0, and
hence, we deduce |z + 1| < 1, which is absurd, since |z + 1|2 = |z|2 + 2<(z) + 1 ≥ 1.
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Therefore, all the roots of the characteristic equation (9) are in the left half-plane and the equilibrium
state (u?, v?) of system (3) is asymptotically stable, regardless of the delay kernel h(t).

3. Using the delay kernel properties (4) and the Laplace transform definition, we have

H(0) =

∞∫
0

h(t)dt = 1, for any t ≥ 0.

Based on (9), it follows that

∆(0) = 1− αH(0) + βH2(0) = 1− α+ β. (13)

Thus, condition (12), i.e. β < α − 1 is equivalent to ∆(0) < 0. Given that the characteristic function
∆(z) is continuous on [0,∞) and ∆(z) → ∞ as z → ∞, the characteristic equation (9) has at least one
positive real root. Hence, the equilibrium state (u?, v?) of system (3) is unstable, regardless of the delay
kernel h(t).

2.2 Saddle-node bifurcation

Theorem 2.2 (Saddle-node bifurcation). A saddle-node bifurcation takes place at the equilibrium state
(u?, v?) of system (3), regardless of the delay kernel h(t), if and only if α 6= 2 and

β = α− 1 (14)

Proof. Via relationship (13), one can see that, condition (14) is equivalent to ∆(0) = 0 (i.e. the
characteristic equation has a zero root). Moreover, z = 0 is a simple root of the characteristic equation
if and only if α 6= 2.

Let us denote by z(β) the root of the characteristic equation (9) which satisfies z(α− 1) = 0. Taking the
derivative with respect to β in equation (9), we obtain:

2(z + 1)
dz

dβ
− αH ′(z)(z + 1)

dz

dβ
− αH(z)

dz

dβ
+ 2βH ′(z)H(z)

dz

dβ
+H2(z) = 0,

and hence:
dz

dβ
= − H2(z)

2(z + 1)− αH ′(z)(z + 1)− αH(z) + 2βH ′(z)H(z)
.

As H(0) = 1 and H ′(0) = −τ , it follows that:

dz

dβ

∣∣∣∣
β=α−1

=
1

(α− 2)(τ + 1)
6= 0.

This completes the proof of transversality. While we have not verified the conditions for nondegeneracy
(which are rather difficult to check analytically), one would expect the nonlinearity (hence the saddle-node
bifurcation) to be generic.

2.3 Hopf bifurcation

In the following, we will show that the average time delay τ of the delay kernel h(t) plays an important
role in the Hopf bifurcation analysis.

Let ĥ(t) = τh(τt), for any t ≥ 0. The function ĥ is a probability density function with the mean value:

∞∫
0

tĥ(t)dt =

∞∫
0

tτh(τt)dt = τ−1
∞∫
0

uh(u)du = τ−1τ = 1.
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The Laplace transform Ĥ(z) of ĥ(t) is

Ĥ(z) =

∞∫
0

e−ztĥ(t)dt =

∞∫
0

e−ztτh(τt)dt =

∞∫
0

e−z
u
τ h(u)du = H

( z
τ

)
We assume from now on that Ĥ(z) is independent of the average time delay τ . In fact, we note that this
is true for several classes of delay kernels, such as:

• for the Dirac kernel (discrete time delay): Ĥ(z) = e−z;

• for the p-Gamma kernel: Ĥ(z) =

(
p

p+ z

)p
.

Based on [38], we write Ĥ in the polar form as:

Ĥ(iω) = ρ(ω)e−iθ(ω)

with ρ(0) = 1, θ(0) = 0. We further assume that:

(A1) : ρ and θ are of class C1 on R;

(A2) : ρ(ω) > 0, for any ω > 0;

(A3) : ρ′(ω) ≤ 0, for any ω > 0;

(A4) : θ′(ω) > 0, for any ω > 0.

It is easy to verify that for the above mentioned probability densities, these assumptions are satisfied.
It is also important to note that ω 7→ Ĥ(−iω) is in fact the characteristic function of a random variable
with the mean equal to 1.

With the change of variable z 7→ z

τ
, the characteristic equation (9) becomes

∆̂(z) = τ2∆
( z
τ

)
= (z + τ)2 − ατĤ(z)(z + τ) + βτ2Ĥ2(z) = 0 (15)

Denoting Qτ (z) =
z + τ

τĤ(z)
, it follows that the characteristic equation is equivalent to

Q2
τ (z)− αQτ (z) + β = 0 (16)

The characteristic equation (9) has a pair of complex conjugate roots on the imaginary axis if and only
if there exists ω > 0 such that Q(iω) is a root of the polynomial P (λ) = λ2 − αλ+ β.

Case 1: α2 − 4β < 0.

In this case, the polynomial P (λ) has complex conjugate roots Qτ (iω) and Qτ (iω), and hence, Hopf
bifurcation may only take place at the equilibrium state (u?, v?) of system (3) along the curve (γτ ) from
the (α, β)-plane, defined by the following parametric equations:

(γτ ) :


α = ατ (ω) = 2<(Qτ (iω)) =

2

ρ(ω)

[
cos θ(ω)− ω

τ
sin θ(ω)

]
β = βτ (ω) = |Qτ (iω)|2 =

1

ρ(ω)2

(
1 +

ω2

τ2

) , ω > 0. (17)

Indeed, we prove the following:

Lemma 2.3. If α2 − 4β < 0 then the characteristic equation (9) has a pair of complex conjugate roots
on the imaginary axis if and only if (α, β) belong to the curve (γτ ) defined by (17).
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Proof. Since α2 − 4β < 0, the characteristic equation (9) has a pair of complex conjugate roots on the
imaginary axis if and only if there exists ω > 0 such that the polynomial P (λ) has complex conjugate
roots Qτ (iω) and Qτ (iω). As

Qτ (iω) =
iω + τ

τĤ(iω)
=

iω + τ

τρ(ω)e−iθ(ω)
=

(iω + τ)(cos θ(ω) + i sin θ(ω))

τρ(ω)
=

=
τ cos θ(ω)− ω sin θ(ω) + i(ω cos θ(ω) + τ sin θ(ω))

τρ(ω)

from Vieta’s formulas, we obtain:

α = Qτ (iω) +Qτ (iω) = 2<(Qτ (iω)) = 2 · τ cos θ(ω)− ω sin θ(ω)

τρ(ω)
=

2

ρ(ω)

[
cos θ(ω)− ω

τ
sin θ(ω)

]
;

β = Qτ (iω)Qτ (iω) = |Qτ (iω)|2 =

∣∣∣∣ iω + τ

τρ(ω)e−iθ(ω)

∣∣∣∣2 =
ω2 + τ2

τ2ρ(ω)2
=

1

ρ(ω)2

(
1 +

ω2

τ2

)
.

Therefore, we obtain the equivalence from the statement.

Case 2: α2 − 4β ≥ 0.

In this case, the following preliminary lemma will be needed to establish further results:

Lemma 2.4. Let θ̃ = lim
ω→∞

θ(ω) and K = dθ̃/πe (if θ̃ =∞ then K =∞). The function

qτ (ω) = ω cos θ(ω) + τ sin θ(ω) (18)

has exactly N roots 0 = ω0(τ) < ω1(τ) < ... < ωN−1(τ), such that θ(ωn(τ)) ∈
(
nπ − π

2
, nπ

)
, for

n ∈ {1, 2, ..., N − 1}, where:

N =


K, if K ∈ N and (−1)Kqτ (θ−1(θ̃)) ≤ 0;

K + 1, if K ∈ N and (−1)Kqτ (θ−1(θ̃)) > 0;

∞, if K =∞.

Proof. From θ(0) = 0 it follows that ω0(τ) = 0 is a root of the function qτ (ω). As θ is increasing, for any
n ∈ {1, 2, ...,K} it is easy to see that

(−1)nqτ (ω) < 0 for any ω > 0 such that θ(ω) ∈
(

(n− 1)π, nπ − π

2

)
(−1)nq′τ (ω) > 0 for any ω > 0 such that θ(ω) ∈

(
nπ − π

2
, nπ

)
Therefore, for each n ∈ {1, 2, ...,K − 1}, there exists a unique root ωn(τ) of the function qτ (ω) which

satisfies θ(ωn(τ)) ∈
(
nπ − π

2
, nπ

)
. The (K + 1)-th root exists if and only if (−1)Kqτ (θ−1(θ̃)) > 0.

The following result holds:

Lemma 2.5. If α2 − 4β ≥ 0 then the characteristic equation (9) has a pair of complex conjugate roots
±iωτ−1 on the imaginary axis if and only if ω is a positive root of (18) and (α, β) belong to the line

(l) : β =
α

ρ(ω) cos θ(ω)
− 1

(ρ(ω) cos θ(ω))2
, (19)

Proof. Since α2 − 4β ≥ 0, the characteristic equation (9) has a pair of complex conjugate roots on the
imaginary axis if and only if there exists ω > 0 such that Qτ (iω) is a real root of the polynomial P (λ).
Therefore, =(Q(iω)) = 0 and hence, it follows that ω is a root of the equation

ω cos θ(ω) + τ sin θ(ω) = 0.
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Assuming that such a root exists, let us denote it by ω∗. Hence:

Qτ (iω∗) = <(Qτ (iω∗)) =
τ cos θ(ω∗)− ω∗ sin θ(ω∗)

τρ(ω∗)
=
τ cos θ(ω∗) + (ω∗)2

τ cos θ(ω∗)

τρ(ω∗)

=
cos θ(ω∗)

ρ(ω∗)

(
1 +

(ω∗)2

τ2

)
=

cos θ(ω∗)

ρ(ω∗)

(
1 +

sin2 θ(ω∗)

cos2 θ(ω∗)

)
=

1

ρ(ω∗) cos θ(ω∗)
.

As Qτ (iω?) is a root of P (λ), we obtain:

β = αQτ (iω?)−Q2
τ (iω?) =

α

ρ(ω∗) cos θ(ω∗)
− 1

(ρ(ω∗) cos θ(ω∗))2
.

Therefore, the proof is complete.

Lemma 2.6. The characteristic equation (9) has a double pure imaginary root if and only if α2 = 4β.

Proof. Assume that there exists ω > 0 such that z = iωτ−1 is a double root of (9), i.e.{
∆(z) = (z + 1)2 − αH(z)(z + 1) + βH2(z) = 0
∆′(z) = 2(z + 1)− αH(z)− α(z + 1)H ′(z) + 2βH(z)H ′(z) = 0

(20)

Assumption (A2) guarantees that H(z) 6= 0. Eliminating β from system (20) we obtain the equality:(
2
z + 1

H(z)
− α

)(
1−H ′(z)z + 1

H(z)

)
= 0.

On one hand, if the first term in the above equation is zero, replacing into the first equation of system
(20), it follows that α2 = 4β. On the other hand, if the second term of the above equation is zero, as

z = iωτ−1 and H(iωτ−1) = ρ(ω)e−iθ(ω), we obtain:

(ω − iτ) [ρ′(ω)− iρ(ω)θ′(ω)] = ρ(ω)

Taking the imaginary part in the previous equality, leads to τρ′(ω) = −ωρ(ω)θ′(ω). Next, taking the real
part, we get

ρ(ω) =
ω2 + τ2

ω
ρ′(ω).

From assumption (A2), we have ρ(ω) > 0 and from (A3), we have ρ′(ω) ≤ 0. Therefore, the above
equality is a contradiction. In conclusion, the characteristic equation (9) has a double pure imaginary
root if and only if α2 = 4β.

Remark 2.1. From Lemma 2.6 it follows that the characteristic equation (9) has a double pure imaginary
root if and only if (α, β) are at the intersection points of the curve (γτ ) with the lines provided by Lemma
2.5 (if any, depending on the existence of the roots of equation (18)). These intersection points lie on the
parabola α2 = 4β (as in Proposition 2.7).

2.4 Main results

Combining the previous four lemmas, we deduce that the lines defined for n ∈ {0, 1, ..., N − 1} by

(ln) : β = µ(ωn(τ)) [α− µ(ωn(τ)] where µ(ωn(τ)) =
1

ρ(ωn(τ)) cos θ(ωn(τ))
, (21)

as well as the curve (γτ ) defined parametrically by (17) play an important role in the bifurcation analysis.
Hence, some remarkable properties of these lines and curve are proved in the following:
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Proposition 2.7. For the lines (ln) defined by (21) and the curve (γτ ) defined by (17) the following
properties hold:

i. |µ(ωn(τ))| is increasing with respect to n, with sign(µ(ωn(τ))) = (−1)n and |µ(ωn(τ))| > 1;

ii. the line (ln) is included in the region α2 − 4β ≥ 0 and is tangent to the parabola α2 = 4β at the
point Pn

(
2µ(ωn(τ)), µ(ωn(τ))2

)
;

iii. the intersection of the line (ln) with the vertical axis α = 0 is the point of β-coordinate −µ(ωn(τ))2.

iv. the curve (γτ ) is a simple curve included in the region α2 − 4β ≤ 0;

v. the line (ln), the curve (γτ ) and the parabola α2 = 4β intersect at the point Pn
(
2µ(ωn(τ)), µ(ωn(τ))2

)
.

Proof. For the proof of (i.) From equation (18) it easily follows that

cos2(ωn(τ)) =
τ2

ωn(τ)2 + τ2
,

and hence:

|µ(ωn(τ))| =
√
ωn(τ)2 + τ2

τρ(ωn(τ))
.

Therefore, as ω 7→ ρ(ω) is decreasing, we deduce that the function n 7→ |µ(ωn(τ))| is increasing.

Moreover, from Lemma 2.4 it follows that θ(ωn(τ)) ∈
(
nπ − π

2
, nπ

)
and hence sign(µ(ωn(τ))) =

sign(cos(θ(ωn(τ)))) = (−1)n.

Moreover, assumption (A3) implies the function βτ (ω) is strictly increasing, hence, the curve (γτ ) does
not cross itself, hence statement (iv.) follows.

The rest of the statements can be easily proved by elementary reasoning.

We are now ready to prove the main theoretical results, which are based on the previously described root
locus technique.

Theorem 2.8. If N ≥ 2, denoting

ωτ = ω1(τ) = min{ω > 0 : τ sin θ(ω) + ω cos θ(ω) = 0} and µτ = µ(ω1(τ)) = (ρ(ωτ ) cos θ(ωτ ))
−1
,

the stability region Sτ (α, β) of the equilibrium (u?, v?) of system (3) is bounded by the line segments and
curve given below:

(l0) : β = α− 1 , α ∈ [1 + µτ , 2] ;

(lτ ) : β = µτ (α− µτ ) , α ∈ [2µτ , 1 + µτ ] ;

(γτ ) :


α =

2

ρ(ω)

[
cos θ(ω)− ω

τ
sin θ(ω)

]
β =

1

ρ(ω)2

(
1 +

ω2

τ2

) , ω ∈ (0, ωτ ).

At the boundary of the stability region Sτ (α, β), the following bifurcation phenomena take place in a
neighborhood of the equilibrium (u?, v?) of system (3):

a. Saddle-node bifurcations take place along the open line segment (l0);

b. Hopf bifurcations take place along the open line segment (lτ ) and curve (γτ );

c. Bogdanov-Takens bifurcation at (α, β) = (2, 1);
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d. Double-Hopf bifurcation at (α, β) =
(
2µτ , µ

2
τ

)
;

e. Zero-Hopf bifurcation (α, β) = (1 + µτ , µτ ).

Proof. It is easy to see that for α = β = 0, the characteristic equation has negative real roots, and
therefore, the equilibrium state (u?, v?) of system (3) is asymptotically stable. As the roots of the
characteristic function ∆(z) (or ∆̂(z)) continuously depend on the parameters α and β, the number of
roots z such that <(z) > 0 may change if and only if a root z = 0 or a pair of pure imaginary roots
appear, i.e. along the curve (γτ ) or the lines (ln), n ∈ {0, 1, ..., N − 1} in the (α, β)-plane. A simple
geometrical reasoning based on Proposition 2.7 shows that the line segments and curve segment given in
the statement above enclose a connected region of the (α, β)-plane containing the origin, i.e. the stability
region Sτ (α, β) of the equilibrium (u?, v?) of system (3). Moreover, Theorem 2.2 shows that a saddle-node
bifurcation takes place along the line segment (l0), and hence, statement a. holds.

b. We will first show that Hopf bifurcations take place along the curve segment (γτ ), with ω ∈ (0, ωτ ).

Lemma 2.3 provides that the characteristic equation (16) has a pair of pure imaginary roots ±iω if (α, β)
belong to the curve (γτ ). Let us consider an arbitrary ω ∈ (0, ωτ ) and denote by z(α, β) the root of the
characteristic equation (16) satisfying z(α∗, β∗) = iω where (α∗, β∗) = (ατ (ω), βτ (ω)) ∈ (γτ ). Our aim is
to prove the transversality condition:

∇u<(z)(α∗, β∗) > 0,

for any outward pointing vector u from the region Sτ (α, β), i.e. 〈u, n〉 > 0, where n denotes the outward
pointing normal vector to the curve (γτ ).

From (16) it follows that z(α, β) is a solution of the equation

Q2
τ (z)− αQτ (z) + β = 0. (22)

Taking the derivative with respect to α, we obtain:

2Qτ (z)Q′τ (z)
∂z

∂α
−Qτ (z)− αQ′τ (z)

∂z

∂α
= 0,

and we express:
∂z

∂α
=

Qτ (z)

Q′τ (z)[2Qτ (z)− α]
. (23)

Therefore, based on the parametric equations of the curve (γτ ) given by (17), we deduce:

∂z

∂α

∣∣∣∣
(α∗,β∗)

=
Qτ (iω)

Q′τ (iω)[2Qτ (iω)− α∗]
=

Qτ (iω)

Q′τ (iω)[2Qτ (iω)− 2<(Qτ (iω))]
=

Qτ (iω)

2Q′τ (iω) · i · =(Qτ (iω))
.

Applying the real part, we finally obtain:

∂<(z)

∂α

∣∣∣∣
(α∗,β∗)

= <
[
− i

2
· Qτ (iω)

Q′τ (iω)=(Qτ (iω))

]
=

1

2
· =
[

Qτ (iω)

Q′τ (iω)=(Qτ (iω))

]
=

1

2=(Qτ (iω))
· =
[
Qτ (iω)

Q′τ (iω)

]
.

Taking the derivative with respect to β in equation (22), we obtain:

2Qτ (z)Q′τ (z)
∂z

∂β
− αQ′τ (z)

∂z

∂β
+ 1 = 0,

and we express:
∂z

∂β
=

1

Q′τ (z)[α− 2Qτ (z)]
. (24)

Again, using the expressions of the parametric curve (γτ ) given by (17), we deduce:

∂z

∂β

∣∣∣∣
(α∗,β∗)

=
1

2Q′τ (iω)[−i=(Qτ (iω))]
=

i

2Q′τ (iω)=(Qτ (iω))
.
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Once again, applying the real part, we arrive at:

∂<(z)

∂β

∣∣∣∣
(α∗,β∗)

= −1

2
· =
[

1

Q′τ (iω)=(Qτ (iω))

]
= − 1

2=(Qτ (iω))
· =
[

1

Q′τ (iω)

]
and thus, we obtain the gradient vector:

∇<(z)(α∗, β∗) =

(
∂<(z)

∂α
,
∂<(z)

∂β

) ∣∣∣∣
(α∗,β∗)

=
1

2=(Qτ (iω))

(
=
[Qτ (iω)

Q′τ (iω)

]
,−=

[
1

Q′τ (iω)

])
=

=
1

2=(Qτ (iω))|Q′τ (iω)|2
(
=
[
Qτ (iω)Q′τ (iω)

]
,=(Q′τ (iω))

)
.

The tangent vector to the curve (γτ ) at the point (α∗, β∗) is (α′(ω), β′(ω)), where

α′(ω) =
d

dω
(2<(Qτ (iω))) = 2<

[
d

dω
Qτ (iω)

]
= 2<(i ·Q′τ (iω)) = −2=(Q′τ (iω))

β′(ω) =
d

dω
|Qτ (iω)|2 =

d

dω

[
Qτ (iω)Qτ (iω)

]
= i ·Q′τ (iω)Qτ (iω) +Qτ (iω)i ·Q′τ (iω) =

= i ·Q′τ (iω)Qτ (iω)− i ·Qτ (iω)Q′τ (iω) = i · (Q′τ (iω)Qτ (iω)−Qτ (iω)Q′τ (iω)) =

= −2=
[
Q′τ (iω)Qτ (iω)

]
= 2=

[
Qτ (iω)Q′τ (iω)

]
.

Thus, we obtain the following tangent vector to the curve (γτ ):

(α′(ω), β′(ω)) = 2
(
−=(Q′τ (iω)),=

[
Qτ (iω)Q′τ (iω)

])
.

Therefore, fixing the orientation of the curve (γτ ) in the direction of increasing ω, a right-pointing normal
vector to the curve (γτ ) is:

n(ω) =
(
=
[
Qτ (iω)Q′τ (iω)

]
,=(Q′τ (iω))

)
.

Hence, the directional derivative is:

∇u<(z)(α∗, β∗) = 〈∇<(z)(α∗, β∗), u〉 = 〈 n(ω)

2=(Qτ (iω))|Q′τ (iω)|2
, u〉 =

τρ(ω)

2qτ (ω)|Q′τ (iω)|2
〈n(ω), u〉 > 0,

as ρ(ω) > 0, 〈n(ω), u〉 > 0 and qτ (ω) > 0 for any ω ∈ (0, ωτ ), from the proof of Lemma 2.4. Therefore,
the transversality condition holds, and it follows that a Hopf bifurcation takes place along the curve
segment (γτ ) which bounds the stability region Sτ (α, β).

In general, along other segments of the curve (γτ ), it is important to emphasize that if ω ∈
(ωn(τ), ωn+1(τ)), where n ∈ {0, 1, ..., N − 1} and z(α, β) denotes the root of the characteristic equa-
tion (16) satisfying z(α∗, β∗) = iω where (α∗, β∗) = (ατ (ω), βτ (ω)) ∈ (γτ ), by a similar reasoning as
above, we get

∇u<(z)(α∗, β∗) =
τρ(ω)

2qτ (ω)|Q′τ (iω)|2
〈n(ω), u〉,

where the orientation of the curve (γτ ) is fixed in the direction of increasing ω, and n(ω) is a right-pointing
normal vector to the curve (γτ ) (e.g. see Figure 2). From Lemma 2.4, it follows that sign(qτ (ω)) = (−1)n

and we can also notice that sign(〈n(ω), u〉) = (−1)n, for any vector u pointing towards the region above
the curve segment of (γτ ), with ω ∈ (ωn(τ), ωn+1(τ)). Therefore, ∇u<(z)(α∗, β∗) > 0, and hence,
stability cannot be regained when crossing the curve segment from the connected region below the curve
segment to the region above.

In the following, we will show that Hopf bifurcations take place along the line segment (lτ ), with
α ∈ [2µτ , 1 + µτ ]. If (α, β) belong to this line segment, Lemma 2.5 shows that the characteristic
equation (16) has a pair of pure imaginary roots ±iωτ . Let us denote by z(α, β) the root of the
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Figure 2: Bifurcation curves exemplified for the Dirac kernel case with τ = 2: (γτ ) is the blue curve, (l0)
is the red line, (l1), (l2) and (l3) are the purple lines, the parabola α2 = 4β is the gray dotted curve.
The stability region is plotted in green. The black arrows represent right-pointing normal vectors to the
(γτ )-curve, where the orientation of the curve is fixed in the direction of increasing ω. The intersection
points Pn are given by Proposition 2.7.

characteristic equation (16) with the property z(α∗, β∗) = iωτ where α∗ ∈ [2µτ , 1 + µτ ] is arbitrarily
fixed and β∗ = µτ (α− µτ ). We will prove the transversality condition

∇u<(z)(α∗, β∗) > 0,

for any vector u pointing outward from the region Sτ (α, β), i.e. 〈u, n〉 > 0, where n = (µτ ,−1) is an
outward pointing normal vector to the line segment (lτ ).

Similarly as in (23) and (24) we have:

∂z

∂α
=

Qτ (z)

Q′τ (z)[2Qτ (z)− α]
and

∂z

∂β
=

1

Q′τ (z)[α− 2Qτ (z)]
.

Using the fact that, Qτ (z) =
z + τ

τĤ(z)
, we deduce:

Q′τ (z) =
Ĥ(z)− (z + τ)Ĥ ′(z)

τĤ2(z)
=

1

τĤ(z)
− z + τ

τĤ(z)
· Ĥ
′(z)

Ĥ(z)
=

1− τQτ (z)Ĥ ′(z)

τĤ(z)

and therefore, using the fact that Qτ (iωτ ) = µτ (as in the proof of Lemma 2.5), we obtain

Q′τ (iωτ ) =
1− τµτe−iθ(ωτ ) [−iρ′(ωτ )− ρ(ωτ )θ′(ωτ )]

τρ(ωτ )e−iθ(ωτ )
=
eiθ(ωτ ) + τµτ [iρ′(ωτ ) + ρ(ωτ )θ′(ωτ )]

τρ(ωτ )
.

Hence, it is easy to see that:

< [Q′τ (iωτ )] =
cos θ(ωτ ) + τµτρ(ωτ )θ′(ωτ )

τρ(ωτ )
= µτ (τ−1 cos2 θ(ωτ ) + θ′(ωτ )) < 0,
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as µτ < 0. The following gradient vector is obtained:

∇<(z)(α∗, β∗) = <
[(

Qτ (iωτ )

Q′τ (iωτ )[2Qτ (iωτ )− α∗]
,

1

Q′τ (iωτ )[α∗ − 2Qτ (iωτ )]

)]
=

=
1

(2µτ − α∗)
· <
[(

µτ
Q′τ (iωτ )

,− 1

Q′τ (iωτ )

)]
=

=
1

(2µτ − α∗)
· <
(

1

Q′τ (iωτ )

)
· (µτ ,−1) =

=
< (Q′τ (iωτ ))

(2µτ − α∗) |Q′τ (iω)|2
· n.

As the scalar term appearing in front of n is positive, it follows that the gradient vector is indeed a
normal vector to the line (lτ ) pointing outward from the stability region Sτ (α, β). In conclusion, the
transversality condition is now deduced as in the case of the curve segment (γτ ), and it follows that a
Hopf bifurcation takes place along the line segment (lτ ). We also emphasize that the transversality
condition may be checked in a similar way as before along each line (ln), n ∈ {1, 2, ..., N − 1}.

The points c., d. and e. from the statement of the theorem follow easily taking into consideration the
intersections between the lines (l0), (lτ ) and the curve (γτ ).

Example 2.1. If a Dirac kernel h(t) = δ(t− τ) is considered in (3), we have ρ(ω) = 1 and θ(ω) = ω
and it can be shown that Sτ2(α, β) ⊂ Sτ1(α, β), for any τ1 < τ2. Hence, the intersection of all stability
regions in this case will be:

S∞(α, β) =
{

(α, β) ∈ R2 : |α| − 1 < β < 1
}
,

which is shown in the first panel of Fig. 3 as the shaded triangle.

Example 2.2. If a strong Gamma kernel h(t) = 4τ−2t exp(−2t/τ) is considered in system (3), as
ρ(ω) = 4/(4 + ω2) and θ(ω) = 2 arctan(ω/2), the explicit equation of the curve (γτ ) is:

(γτ ) : β =
[4(τ + 2)− ατ ]

2 [
(τ + 2)2 − 2α

]
4τ(τ + 4)3

, for α < 2. (25)

Moreover, as µτ = −(τ + 2)2/τ , the equation of the line (lτ ) is

(lτ ) : β = − (τ + 2)2

τ

(
α+

(τ + 2)2

τ

)
. (26)

Therefore, the stability region given by Theorem 2.8 is

Sτ (α, β) =

{
(α, β) ∈ R2 : β > − (τ + 2)2

τ

(
α+

(τ + 2)2

τ

)
and α− 1 < β <

[4(τ + 2)− ατ ]
2 [

(τ + 2)2 − 2α
]

4τ(τ + 4)3

}
.

Using basic inequality techniques, it can be shown that S2(α, β) ⊂ Sτ (α, β), for any τ > 0, where:

S2(α, β) =

{
(α, β) ∈ R2 : β > −8 (α+ 8) and α− 1 < β <

(
8− α

6

)3
}
.

In conclusion, in the case of a strong Gamma kernel, S2(α, β) (see third panel of Fig. 3) represents the
intersection of all stability regions Sτ (α, β), for any τ > 0.

The following result follows similarly in the case when equation (18) does not admit any positive roots.
In this case, the stability region Sτ (α, β) will be unbounded.
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Theorem 2.9. If equation (18) does not admit any strictly positive real root (i.e. N = 1), the boundary
of the stability region Sτ (α, β) of the equilibrium state (u?, v?) of system (3) is given by the union of the
half-line and curve given below:

(l0) : β = α− 1 , α ∈ (−∞, 2];

(γτ ) :


α =

2

ρ(ω)

[
cos θ(ω)− ω

τ
sin θ(ω)

]
β =

1

ρ2(ω)

(
1 +

ω2

τ2

) , ω > 0.

At the boundary of the stability region Sτ (α, β), the following bifurcation phenomena take place in a
neighborhood of the equilibrium (u?, v?) of system (3):

a. Saddle-node bifurcations take place along the open half-line (l0);

b. Hopf bifurcations take place along the curve (γτ );

c. Bogdanov-Takens bifurcation at (α, β) = (2, 1).

Example 2.3. If a weak Gamma kernel h(t) = τ−1 exp(−t/τ) is considered in system (3), as
ρ(ω) = (1 + ω2)−1/2 and θ(ω) = arctanω, it can be easily seen that equation (18) does not have any
positive roots. The explicit equation of the curve (γτ ) (which is in fact an arc of a parabola) is:

(γτ ) : β =
(

1− α

2

)2
+

(
τ +

1

τ

)(
1− α

2

)
+ 1, for α < 2. (27)

Therefore, the stability region given by Theorem 2.9 is

Sτ (α, β) =

{
(α, β) ∈ R2 : α < 2 and α− 1 < β <

(
1− α

2

)2
+

(
τ +

1

τ

)(
1− α

2

)
+ 1

}
.

As τ +
1

τ
≥ 2, it follows that S1(α, β) ⊂ Sτ (α, β), for any τ > 0. Hence, in this case, S1(α, β) (shown in

the second panel of Fig. 3) represents the intersection of all stability regions Sτ (α, β), for all τ > 0.
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Figure 3: Stability regions for different types of delay kernels obtained by Theorems 2.8 and 2.9. The green
region represents a delay-kernel-invariant subset of Sτ (α, β) provided by Theorem 2.1. Hopf bifurcations
occur along the blue curves and line segments, while the red line corresponds to saddle-node bifurcations.

Comparable stability characterisations have been obtained for networks of identical neurons in [27],
without specifically focusing on the occurrence of bifurcation phenomena. However, in this previous work,
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the stability region is characterized in terms of the eigenvalues of the network’s connection matrix. While
our results from Theorems 2.8 and 2.9 can be easily translated in similar terms, for our two-dimensional
Wilson-Cowan model it seems to be more convenient to use α and β as characteristic parameters, allowing
us to directly discuss the combined effect of the coupling coefficients and the average time delay on the
stability regime of the considered model, as described below.

While Theorem 2.1 guarantees that there is a kernel-invariant stability region common to a large class of
delay distributions (including all Dirac and Gamma kernels), Figure 3 shows that the size of the whole
stability region varies widely around this region, depending on the kernel type. As an illustration of
Examples 2.1, 2.2 and 2.3, the panels of Figure 3 show respectively the intersection of stability regions
(over all τ > 0) found theoretically for the Dirac kernel (dark triangle S∞(α, β) in left panel), the weak
Gamma kernel (shaded region S1(α, β) in the center panel) and for the strong Gamma kernel (shaded
region S2(α, β) in the right panel). It is then easy to see that the Gamma kernels support a larger subset
of parameters for which the system converges to a stable equilibrium than the Dirac kernel. The weak
Gamma kernel in particular produces an unbounded stability region (according to Theorem 2.9). Since
the subsequent analysis in the original Wilson-Cowan model was done for a weak Gamma kernel [6], one
interesting avenue for future work would be to compare the behaviors between the model with Gamma
kernel as it was adapted in the original paper (with coarse-grain approximation), and in its unaltered
form (without the coarse-grain approximation).

Our results also reveal that, for each kernel type, there are multiple mechanisms (relying on changes to
both the parameters (α, β) and to the delay τ) that may be used by the system to move from a regime
with a unique stable equilibrium (steady firing activity) to a regime of stable oscillations. A transition
based solely on altering the integration parameters (α, β) is more easily accomplished for the Dirac kernel
than for the strong Gamma kernel, since the latter has a significantly larger stability region. For example,
smaller perturbation needed to be applied to (α, β) = (0, 0) (which is in the kernel-invariant stability
region) in order to produce oscillations for the Dirac kernel versus the strong Gamma kernel. Moreover,
notice that in both the case of the Dirac and the strong Gamma kernel, the transition in and out of the
stability region may be promoted by either an increase in β, or by a decrease in α. In contrast, in the
case of the weak Gamma kernel (for which the stability region is unbounded), changing β does not alter
the stability of the equilibrium (i.e., does not transition the system into and oscillatory regime) if α is
negative and sufficiently large in absolute value.

Physiologically, these paths can be tied back to changes in the coupling weights a, b, c, d, since α =
af ′1(θu+au?+bv?)+df ′2(θv+cu?+dv?) and β = (ad−bc)f ′1(θu+au?+bv?)f ′2(θv+cu?+dv?). While the
dependence of (α, β) on (a, b, c, d) is too complex to draw any direct interpretations, increasing the cross-
population coupling coefficients b and c may be way of lowering β values, while self-coupling coefficients
a and d seems to promote increases in both α and β. It can then be speculated that, in the case of Dirac
and strong Gamma kernels, transitions in and out of oscillations can be accomplished by changing either
self-coupling or inter-coupling strength (to cross either one of the Hopf curves delimiting stable state
from oscillatory regimes). More explicit relationships can be worked out between the computational
parameters (α, β) and the connectivity weights (a, b, c, d) under specific modeling assumptions for the
integrating functions f1 and f2, the type of kernel and distributed delay τ . To illustrate this possibility,
we explored numerically a particular theoretical example (in Section 3.1), and a neurophysiology-driven
application to dynamic behavior in the basal ganglia (in Section 3.2).

More generally, our theoretical work suggests that different types of delay distributions may be optimal
for different dynamic behaviors and transitions between them, and supports the relatively unexplored
possibility that the delay kernel may act as a potential specialization mechanism of the cell to perform
circuit-specific and task-specific functions. For example, functions which generally require constant firing
rates may be easily performed by neural populations specialized in weak Gamma integration of inputs.
Functions that require increased flexibility in and out of oscillations may be best accomplished by
strong Gamma integrators. Functions characterized by transitions between different and more complex
oscillatory patterns may require a Dirac cell specialization (as additionally illustrated by our simulations
in the next section). This will be further discussed and contextualized in the Discussion section.
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3 Applications and numerical simulations

In our previous numerical work on the model [13], we showed how periodic behaviors, but also quasi-
periodic and chaotic patterns are also possible in the (u, v)-phase-plane. In this study, we aim to further
illustrate how access to these behaviors, as well as the transitions between them, are governed not only
by the coupling strengths and by the delay τ , but also by the shape of the delay distribution. To this
end, we performed numerical simulations, using our in house codes written in Wolfram Mathematica [39],
and made available on github [40].

3.1 Simulations in a theoretical context

In this section, a brief numerical experiment aims to simulate the kinetic details in a series of behaviors
that were classified directly by our theoretical results. To facilitate comparison with the original reference,
we considered the same activation functions f1(x) = f2(x) = f(x) = (1 + exp(−δx))−1 and input
drives θu = 0.1, θv = 0.2. The coupling parameters in our current simulation are fixed to new values
a = d = −19, b = c = 10, and δ = 10, corresponding overall to new characteristic parameters
α = −17.8796 and β = 57.7268.

As α2 > 4β and β > α− 1 from the theoretical analysis presented in the previous section, it follows that
a Hopf bifurcation occurs only in the conditions of Theorem 2.8, when (α, β) ∈ (lτ ). To find the critical
value of the time delay τ for a particular delay kernel, we proceed as follows, according to Theorem 2.8:

• find the roots µ of the quadratic equation β = µ(α− µ) in the interval (−∞,−1);

• for each µ computed at the previous step, numerically compute the root ω > 0 of the equation
ρ(ω) cos θ(ω) = µ−1 such that θ(ω) ∈ (π/2, π), and retain the smallest such value ω∗;

• the critical value of the average time delay is τ∗ = −ω∗ cot θ(ω∗).

It is also important to note that the frequency of oscillations at the Hopf bifurcation which occurs at the

critical value τ∗ of the average time delay is computed according to the formula
ω∗

2πτ∗
, based on the fact

that, according to our theoretical results, ±iω∗/τ∗ are the critical roots of the characteristic function
∆(z).

While for these fixed parameter values the system always has a steady state at (u?, v?) = (0.0478985, 0.0511112),
the stability of this equilibrium changes when the time delay τ is increased past a supercritical Hopf bi-
furcation value τ = τ∗, with the creation of a stable limit cycle (that reflects onset of oscillations in the
corresponding cells). The position of τ∗, as well as the geometry, duty cycle and evolution of the oscilla-
tion born through this bifurcation further depend on the type of kernel used (as shown in Figure 4). For
example, based on Theorem 2.8, the critical value is τ?0 = 0.120766 for the Dirac kernel, τ?2 = 0.433992
for the strong Gamma kernel. The frequencies of oscillations occurring due to the Hopf bifurcation
at the critical values of the average time delay are 2.16675 (for the Dirac kernel) and 0.87829 (for the
strong Gamma kernel), respectively (see Fig. 4). As for the values of α and β given above, we have
α2 > 4β and β > α − 1, Theorem 2.9 guarantees that, for the specific case of a weak Gamma kernel, a
Hopf bifurcation never occurs for any τ > 0 (the equilibrium (u?, v?) stays locally asymptotically stable).
Hence, no oscillations are expected to occur in a neighborhood of the equilibrium if a weak Gamma kernel
is considered in the mathematical model.

This reflects the potential importance of using different delay kernel types when modeling coupled
population activity, since different delay distribution profiles may promote different behaviors. For
example, our results suggest that the Dirac and strong Gamma kernels are more conducive of oscillations
in the mean field firing rates, while the weak Gamma kernel promotes steady firing rates. Moreover,
our numerical simulations also revealed cascades of bifurcations between periodic and quasi-periodic
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oscillations in conjunction with a discrete time delay (see Fig. 5), which could not be observed in the
case of strong Gamma kernels with the same system parameters. This suggests that the limiting case of
discretely distributed delays, while likely the most delicate in terms of a physiological implementation,
may also offer the optimal physiological substrate for the complex aperiodic oscillations associated
to task-specific functions in certain brain areas. To further investigate this possibility, we considered a
specific application of this theoretical framework to a simplified model of the basal ganglia circuit involved
in Parkinson’s Disease.

0 5 10 15 20

0.048

0.050

0.052

0.054

0.056

u
(t
),
v(
t)

-25 -20 -15 -10 -5 0

0

50

100

150
Dirac, τ=0.120766

0 5 10 15 20

0.05

0.10

0.15

0.20

0.25

u
(t
),
v(
t)

-25 -20 -15 -10 -5 0

0

50

100

150
Dirac, τ=0.2

0 5 10 15 20

0.1

0.2

0.3

0.4

u
(t
),
v(
t)

-25 -20 -15 -10 -5 0

0

50

100

150
Dirac, τ=0.433992

0 5 10 15 20

0.1

0.2

0.3

0.4

0.5

u
(t
),
v(
t)

-25 -20 -15 -10 -5 0

0

50

100

150
Dirac, τ=0.5

0 5 10 15 20

0.02

0.04

0.06

0.08

u
(t
),
v(
t)

-25 -20 -15 -10 -5 0

0

50

100

150
S. Gamma, τ=0.120766

0 5 10 15 20

0.02

0.04

0.06

0.08

0.10

u
(t
),
v(
t)

-25 -20 -15 -10 -5 0

0

50

100

150
S. Gamma, τ=0.2

0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

u
(t
),
v(
t)

-25 -20 -15 -10 -5 0

0

50

100

150
S. Gamma, τ=0.433992

0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

u
(t
),
v(
t)

-25 -20 -15 -10 -5 0

0

50

100

150
S. Gamma, τ=0.5

Figure 4: Evolution of state variables u(t) and v(t) of system (3) with discrete time-delay (left) and
strong Gamma kernel (right) for values of the average time delay τ ∈ {τ∗0 , 0.2, τ∗2 , 0.47} (top to bottom).
The values of the parameters are fixed: θu = 0.1, θv = 0.2, a = d = −19, b = c = 10 and δ = 10.
In this case, the equilibrium is (u?, v?) = (0.0478985, 0.0511112) and the characteristic parameters are
α = −17.8796 and β = 57.7268. The same initial condition has been chosen in a neighborhood of the
equilibrium. The critical value of τ in the Dirac kernel case is τ∗0 = 0.120766 and in the strong Gamma
kernel case is τ∗2 = 0.433992. The relative position of the point (α, β) with respect to the corresponding
stability region is indicated.

3.2 Applications to the Parkinson’s Disease

We will now use this theoretical layout to contextualize an existing computational model (based upon
anatomical and electrophysiological research). This was developed by Holgado et al. [12] to describe an
application to the subthalamic nucleus (STN) - globus pallidus (GPe) network involved in Parkinson’s
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Figure 5: Periodic, quasi-periodic and chaotic orbits shown in the (u, v)-phase-plane for the Wilson-Cowan
model with discrete time-delay, obtained for different values of τ .

Disease:  τS ˙STN(t) = −STN(t) + FS [−wGSGP (t−∆tGS) + wCSCtx]

τGĠP (t) = −GP (t) + FG [wSGSTN(t−∆tSG)− wGGGP (t−∆tGG)− wXGStr]
(28)

where STN and GP represent the firing rates of the subthalamic nucleus and globus pallidus, respectively;
Ctx, Str are cortex, and striatum constant inputs; τS , τG are time constants associated with the STN ,
GP populations; ∆tMN are trasmission delays from population M to population N and FS(·) and FG(·)
are activation functions for each population. The parameter values used in [12] are given in Table 1. The
synaptic connection weight parameters (wSS , wGS , wSG, wGG) have been estimated both in a healthy
state and a parkinsonian/diseased state, and are also given in Table 1. Moreover, for simplicity, equal
time constants and time delays are considered (i.e. τS = τG = 6 (ms), ∆t = ∆tGS = ∆tSG = ∆tGG
(ms)). In our further investigation of this application, we will also assume equal transmission delays,
although our theoretical setup is otherwise more general (for example, it transcends the need to linearize
the activation functions, which was a building step in the original analysis in the reference).

We consider a time rescaling t 7→ τSt, the rescaled state variables u(t) = STN(τSt), v(t) = GP (τSt),
and the parameters a = wSS , b = −wGS , c = wSG, d = −wGG, θu = wCSCtx, θv = −wXGStr. The
activation functions are as in [12]:

f1(x) = FS(x) =
MSBS

BS + exp(−4x/MS)(MS −BS)
and f2(x) = FG(x) =

MGBG
BG + exp(−4x/MG)(MG −BG)

The state variables u and v verify a system of the type (3) with an average time delay τ = ∆t/τS (taking
into account that in the original model from [12], discrete time delays are considered).

Parameter Healthy state Diseased state Other Parameters Value

wSS 0 0 Ctx 27 spk/s

wSG 19.0 20.0 Str 2 spk/s

wGS 1.12 10.7 MS 300 spk/s

wGG 6.60 12.3 BS 17 spk/s

wCS 2.42 9.2 MG 400 spk/s

wXG 15.1 139.4 BG 75 spk/s

Table 1: Synaptic connection weight parameters and other parameters estimated in [12]

For the healthy state parameters given in Table 1, the characteristic parameter values are (αH , βH) =
(−3.06805, 2.24878). As in this case, α2

H > 4βH , a Hopf bifurcation may occur only in the conditions
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of Theorem 2.8, when (αH , βh) belong to the line segment (lτ ). In the Dirac kernel case, the critical
value of τ = ∆t/τS responsible for the occurrence of a Hopf bifurcation is computed as described in
the previous section: τ∗0,H = 1.367, and the frequency of oscillations occurring in system (28) near the
bifurcation point is ω∗/(2πτSτ

∗) = 41.5133 Hz, which agrees with the numerical simulations presented
in Fig. 6. On the other hand, in the case of a strong Gamma kernel, it may be easily checked that
(αH , βH) belongs to the ”smallest” stability region S2(α, β) indicated in Example 2.2, and therefore the
equilibrium of system (28) is asymptotically stable for any τ (see Fig. 7). Likewise, in the case of a weak
Gamma kernel, (αH , βH) belongs to the ”smallest” stability region S1(α, β) indicated in Example 2.3,
and hence the equilibrium of system (28) is asymptotically stable for any τ , as shown in Fig. 8.

For the pathological state parameters given in Table 1, the characteristic parameter values are (αP , βP ) =
(−2.53928, 11.2213). This time, as α2

P < 4βP , a Hopf bifurcation occurs only when (αP , βP ) ∈ (γτ ). To
find the critical value of τ for a particular delay kernel, we numerically solve for smallest positive ω and
τ the system which provides the parametric equations of the curve (γτ ), as in Theorem 2.8 or Theorem
2.9, and we obtain the following values for the considered kernels:

• Dirac: τ∗0,P = 0.216411 and corresponding frequency of oscillations in (28): 84.8049 Hz;

• weak Gamma: τ∗1,P = 0.619418 and corresponding frequency of oscillations in (28): 50.7756 Hz;

• strong Gamma: τ∗2,P = 0.283222 and corresponding frequency of oscillations in (28): 72.5652 Hz;

Again, the frequencies have been computed according to the formula ω∗/(2πτSτ
∗), due to the time

rescaling which has been used. The theoretically predicted frequencies correspond to the numerically
computed values, as seen in Figs. 6, 7 and 8.

We simulated the behaviour of the system (28), with the above chosen parameters and activation
functions. The behaviors found illustrate in a clinical context our theoretical results obtained in this
paper (e.g. Theorems 2.8 and 2.9) and expand on the modeling results in the reference [12].

As a first step, Figures 6, 7 and 8 illustrate the behavior of each of the two state variables u and v
for different delay kernels: for discrete delays (Figure 6) for strong Gamma delays (Figure 7) and for
weak Gamma delays (Figure 8). In each figure, the left panels represent the behavior of the system with
coupling parameters within a healthy functioning regime, while the right panels illustrate the behavior
for coupling parameters within the PD range (as shown in Table 1). The different rows of the figures
illustrate different values of the delay ∆t/τS ∈ [0, 2], interval compatible with the physiological range (as
per the table in the reference [12]). Notice that, in the PD case (right panels), sustained oscillations in
the Beta range can be readily triggered by delay values within this range (∆t/τS ∼ 0.21 in the case of
the discrete kernel, ∆t/τS ∼ 0.28 in the case of the strong Gamma kernel, ∆t/τS ∼ 0.61 in the case of
the weak Gamma kernel). Interestingly, while the oscillation amplitudes increase with the delay (top to
bottom panels), the frequency is higher for shorter delays.

In contrast, note that much higher delay values are required in order to trigger stable oscillations in the
healthy regime (they appear at a critical value of ∆t/τS ∼ 1.36 for the discrete kernel, and they never
occur in the case of weak or strong Gamma kernel). This is in agreement with the idea that periodic
oscillations in the Beta range are greatly enhanced in PD, as proposed in the original reference [12].
Empirical studies support the link between increased Beta oscillatory activity and PD symptoms (such
as bradykinesia and rigidity) [41], as discussed in more detail in the last section.

The differential propensity of the system for oscillations in the PD versus the healthy regime is further
illustrated in Figures 9, 10, 11, 12 and 13. These deliver a more comprehensive description of the subtle
interplay (between coupling strengths, delay kernel and delay value) that orchestrates the triggering and
maintenance of oscillatory behavior.

Figure 9 illustrates differences between the onset of oscillations in the PD system versus the healthy
system, in the case of discrete delays. For each panel, the coupling parameters wSS , wGG, wCS and wXG
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Figure 6: Evolution of state variables STN(t) and GP (t) of system (28) with discrete time-delay with
healthy state parameters (left) and diseased (parkinsonian) state parameters (right) as given in Table 1
for the values of τ = ∆t/τS ∈ {τ∗0,P , 0.3, τ∗0,H , 1.4} (top to bottom). The critical values of τ = ∆t/τS
are: τ∗0,H = 1.367 in the healthy state and τ∗0,P = 0.216411 in the diseased state. The position of the
points (αH , βH) = (−3.06805, 2.24878) and (αP , βP ) = (−2.53928, 11.2213) is indicated with respect to
the corresponding stability region.
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Figure 7: Evolution of state variables STN(t) and GP (t) of system (28) with strong Gamma delay kernels
with healthy state parameters (left) and diseased (parkinsonian) state parameters (right) as given in Table
1 for the values of τ = ∆t/τS ∈ {0.2, τ∗2,P , 2} (top to bottom). In the healthy case, the equilibrium is
always asymptotically stable, while in the diseased case, the critical value of τ = ∆t/τS is τ∗2,P = 0.283222.
The position of the points (αH , βH) = (−3.06805, 2.24878) and (αP , βP ) = (−2.53928, 11.2213) is
indicated with respect to the corresponding stability region.
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Figure 8: Evolution of state variables u(t) and v(t) of system (3) with weak Gamma delay kernels with
healthy state parameters (left) and diseased (parkinsonian) state parameters (right) as given in Table 1
for the values of τ = ∆t/τS ∈ {0.5, τ∗1,P , 1} (top to bottom). In the healthy case, the equilibrium is always
asymptotically stable, while in the diseased case, the critical value of τ = ∆t/τS is τ∗1,P = 0.619418. The
position of the points (αH , βH) = (−3.06805, 2.24878) and (αP , βP ) = (−2.53928, 11.2213) is indicated
with respect to the corresponding stability region.

23



were fixed (not shown): to the healthy state values in Table 1 (in the left panel) and to the PD values (in
the right panel). Then, for each pair of cross-connectivity parameters wSG and wGS in the appropriate
range, the critical value (i.e., the value corresponding to onset of oscillations) of ∆t/τS was computed.
The corresponding value was then plotted at each parameter point (wSG, wGS) as an associated color in
a blue to red color map (color bar shown on the right of each parameter plot).
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Figure 9: Discrete time-delay. Critical values of the ∆t/τS ratio which mark the onset of oscillatory
behavior for the two cases: healthy (left) and parkinsonian (right). All parameter values have been fixed
to those given in Table 1, apart from wSG and wGS .

An immediate comparison between the two figure panels reiterates (in this broader parameter frame) the
idea that, for Dirac distributed delays, sustained oscillations are accessible in the PD coupling range at
significantly shorter delay times (consistent with the physiological values) than in the healthy coupling
range. A more in depth analysis of the color patterns may suggest candidate mechanisms, based on
synaptic remodeling, for onset and cessation of oscillatory behavior in each case. For example, in
healthy systems, a weaker GP to STN coupling is more likely to result in sustained oscillations (since it
lowers the critical delay to values within the physiological range). In PD systems, operating with short
delay times (∆t/τS = 0.2− 0.3), strengthening of the STN to GP synaptic coupling may readily trigger
sustained oscillations in PD patients, while weakening it can lead to ceasing the oscillatory behavior.
This suggests the importance of having access to information not only on the synaptic coupling profile,
but also on knowledge of the type of delay range and distribution involved in the neural integration, in
the circuit in question.

Continuing along with this thought, the rest of this section revisits, in the context of this application,
the importance of the subtle, but crucial differences in dynamics induced by different profiles in the delay
distribution. Figures 10 and 11 illustrate and compare the same exact coupling ranges as in Figure 9
(for the healthy state on the left, and for the PD state on the right), for the case of the strong Gamma
kernel. Notice that, in the pathological case, the critical values of ∆t/τS are sightly higher throughout
the parameter plane than the similar values in the case of the Dirac kernel. However, the candidate
mechanisms proposed for the trigger and stop of oscillations in the case of the Dirac kernel may equally
apply.

On the other hand, by contrast with the Dirac case, oscillations are no longer possible in the healthy
range of coupling parameters in the case of the strong Gamma kernel. Theoretically, this is because the
healthy coupling range (as shown in the left hand panel of Figure 9 and re-expressed as the red subset
in the (α, β) domain, in Figure 10) is fully contained in this case in the stability region of the system
(shown as a grey shaded area in the (α, β) domain in Figure 10), as computed in Theorem 2.7. Thus,
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previously shown in Figure 6a, any tendency towards oscillations is quickly suppressed, and the system
converges to a steady firing regime.

In line with our previous analysis, stable oscillations are gated by even longer delay values when using
weak Gamma distributed delays. Indeed, Figures 8, 12 and 13 illustrate the behavior of the system using
a weak Gamma kernel, with the same fixed parameters as for the Dirac and strong Gamma kernels. The
healthy coupling range remains a subset of the stability domain (as shown in Figure 12), hence stable
oscillations are not possible as a long-term outcome in this scenario (Figure 8a). For the pathological
coupling range, oscillations are possible for values of ∆t/τS larger than ∼ 0.5, but only if both the STN-
GP and GP-STN synaptic pathways are strong enough (Figure 13 shows that oscillations are possible in
this case only in the upper right corner of the (wSG, wGS) parameter region).
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Figure 10: Strong Gamma delay kernel. Asymp-
totic stability for any τ > 0, for any values of the
parameters wGS ∈ (0, 20), wSG ∈ (0, 30), when the
other parameters and fixed at the healthy values
given in Table 1.
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Figure 11: Strong Gamma delay kernel. Critical
values of the ∆t/τS ratio which mark the onset
of oscillatory behavior for the parkinsonian case
(with parameter values given by Table 1.)

A further comparison between oscillations in the case of Dirac, weak and strong Gamma distributed
delays is shown in Figure 14. For the PD coupling range, each row of panels captures the emergence of
oscillations when increasing the delay ∆t/τS past the critical value: for the Dirac kernel (top row), for
the weak Gamma kernel (middle row), and for the strong Gamma kernel (bottom row). As previously
discussed, the critical delay for the Dirac distribution (∆t/τS ∼ 0.21) is slightly lower than that for the
strong Gamma distribution (∆t/τS ∼ 0.28). In addition, the figure confirms that the critical value for the
weak Gamma distribution is significantly larger than both (∆t/τS ∼ 0.61), as one would have expected
from the theoretical results illustrated in Figure 3. The significance of these differences will be further
discussed in the next section.

4 Discussion

We have accomplished a local stability and bifurcation analysis of a generalized version of the Wilson-
Cowan model of excitatory and inhibitory interactions in localized neuronal populations, incorporating
general distributed delays. Essential differences have been pointed out for different scenarios involving
diverse delay kernels, (ranging from simple periodic to quasi-periodic and aperiodic behaviors). This
emphasizes the potentially crucial importance of the kernel choice to the dynamic behavior of the system.
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Figure 12: Weak Gamma delay kernel. Asymp-
totic stability for any τ > 0, for any values of the
parameters wGS ∈ (0, 20), wSG ∈ (0, 30), when the
other parameters and fixed at the healthy values
given in Table 1.
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Figure 13: Weak Gamma delay kernel. Critical
values of the ∆t/τS ratio which mark the onset
of oscillatory behavior for the parkinsonian case
(with parameter values given by Table 1.)

Differentiating between specific behaviors is very important, since they represent different physiological
rhythms observed empirically in neuronal E/I circuits.

Recall that the system variables u(t) and v(t) represent meanfield firing activities in the excitatory
and respectively inhibitory Wilson Cowan coupled populations. Then a stable equilibrium corresponds
to convergence of the two populations’ firing to almost constant rates, while a stable cycle represents
meanfield oscillations between higher and lower firing rates in the two populations.

Oscillatory behavior is ubiquitous in the brain, as a way for neurons to efficiently assemble in a
synchronized fashion, optimal for receiving and sending information [42]. Oscillations are typically viewed
as a result of balancing excitation and inhibition, with either gaining ground at different times within an
oscillation cycle.

Brain rhythms cover frequency bands from lower than 1Hz to 600 Hz, with different rhythms associated
with different brain areas, functions and states. Moreover, this correspondence is not one-to-one, in the
sense that two different brain circuits may generate oscillations in the same frequency band (likely by
using different underlying mechanisms). In turn, the function of a particular oscillatory pattern largely
depends on the underlying brain structure. For example, Beta rhythms (13-30 Hz) in the motor system
are associated with the absence of movement.

Rhythms alterations in a brain circuit outside of its healthy range have been found by empirical studies
to be associated with mental or neurological disorders (for example, exacerbated synchronization is the
mark of epilepsy, Gamma oscillations have been found to be diminished in schizophrenia, and Parkinson’s
Disease has been tied to enhanced Beta oscillations in motor areas).

However, the relationship between pathology and oscillations is rather complex, going beyond simply
locating increased amplitude oscillations within a specific frequency band. Transition paths between
healthy and pathological rhythms are still under investigation for most disorders, and recent research
has been striving to define and understand them. Along these lines, our bifurcation analyses may reveal
potential mechanisms that govern transitions between oscillatory behaviors in PD.

With this in mind, our results show that a weak Gamma kernel may be a preferable mode of input
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Figure 14: Phase plane trajectories for system (28) with diseased state parameters, considering a Dirac
kernel (first row, τ∗0,P = 0.216411), a weak Gamma kernel (second row, τ∗1,P = 0.619418) and a strong
Gamma kernel (third row, τ∗2,P = 0.283222), obtained for different values of τ = ∆t/τS around the Hopf
bifurcation values.
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integration in populations whose function is based primarily on sustaining an approximately constant
rate of firing. A strong Gamma kernel may be used as an input integration profile when the basic
function of the circuit requires transitions into simple, regular oscillations. Finally, the Dirac kernel
(which can mathematically be viewed as a subtler, limit-like profile for distributed delays) may be the
signature of finer oscillators, whose function is modulated by transitions between more complex firing
patterns. For each type of kernel, our results suggest that more specific behaviors, and transitions between
dynamic regimes can be further controlled by the connectivity strengths, and by the delay τ .

The importance of the type and length of delay to functional brain rhythms, supported by our theoretical
results and numerical simulations, was further illustrated in an application to a Wislon-Cowan type model
with distributed delays of the basal ganglia, inspired by the work of Holgado et. al.[12], investigating
control mechanisms of Beta rhythms in Parkinson’s Disease.

In the context of normal executive control, Beta oscillations have been associated with promoting existing
movement, at the cost of initiating a new motor set [41]. In this context, it does not seem surprising that
oscillations in the basal ganglia are significantly more pronounced in PD. Deep brain stimulation studies
suggest in fact a nontrivial relationship, in which beta oscillatory behavior contributes both quantitatively
(higher amplitudes) but also causally to the motor impairment in PD. Hence understanding the timing
and conditions that favor onset of Beta activity is crucial, since understanding this causal relationship
may hold potential for therapeutic interventions.

The Holgado model places these questions in the framework of a dynamical system formed of two coupled
state variables, representing activation of the STN and GP, as they respond to outside stimulation, and
to modulations from other brain areas (the cortex and the striatum). Based on empirical evidence, the
authors defined in the reference different ranges of pairwise synaptic coupling strengths between these
brain areas, one characteristic to healthy brain functioning, the other corresponding to the dynamic
patterns found in Parkinson’s Disease. They found a prevalence for stable oscillations in the PD regime
of the model, corresponding to physiological rhythms in the Beta-range in the corresponding brain areas
of PD patients. We advanced the analysis of this model by investigating the importance of the coupling
range to the system’s behavior, in conjunction with the size and the distribution of the delays. We found
that, for all kernels, stable oscillations are accessible to the system in the PD coupling range at shorter
delays than to the system in the healthy range (exactly how short, depends on the type of kernel used).

Since the shorter delays are compatible with physiological values, lower critical delays can be seen as
a gate to promoting the Beta-range oscillations in PD patients. Comparably short delay values are
significantly more likely to place a system with healthy synaptic coupling within the stability domain (as
shown in Figure 15a). This corresponds to what is known about healthy basal ganglia function, which
promotes desynchronization of Beta oscillations during executive responses. In contrast, in a system
within the PD functioning range, Beta oscillations persist even as the execution is being carried out.
This may contribute to the motor abnormalities found in PD (such as bradykinesia and rigidity, which
have been empirically associated with enhanced Beta rhythms). Altogether, our analysis of Holgado’s
model of basal ganglia suggests that it may be important to investigate neural mechanisms that have
the potential to reshape a cell’s memory profile when processing inputs, as a possible means to mitigate
executive function abnormalities in PD patients.

We additionally observed particular patterns for the critical delay (onset of oscillations) as well as for
entering the Beta range activity, in the case of each kernel (Fingure 15b). We considered a system within
the PD coupling regime, and with a distribution of delays within the physiological range, this combination
placing it on a dynamic path of perpetual oscillations, even in absence of any additional stimulation. We
explored the possibility that cessation of oscillations may be obtained by enhancing a target synaptic
pathway. We noticed that, depending on the context, the perturbation may not necessarily have to be
as large as to place the system in the healthy coupling regime. The adjustment would need to be just
significant enough to move the system to a coupling profile where a shorter time delay is required in order
to maintain oscillatory behavior; hence, with the current time delay, oscillations will be suppressed.
Our future work aims to further study the potential physiological implementation of such mathematical
solutions, and their potential towards development of clinical treatments.
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Figure 15: Oscillation frequencies observed over an interval of values for ∆t/τS , in system (28). On
each curve, the entry and exit form the oscillatory regime are marked with a dot. The Beta range is
shown as a green shaded area. Left. Comparison of oscillation frequencies between the system with a
parameter set within the healthy range, versus one from the pathological range, when a Dirac kernel is
considered. The diseased system enters the Beta range at a much lower ∆t/τS ∼ 0.74 than the healthy
system. Right. Comparison of oscillation frequencies for the system with a parameter set within the
pathological range, when different kernels are considered. The system with the Dirac kernel enters Beta
oscillations at a lower value ∆t/τS than the one with the strong Gamma kernel. The system with the
weak Gamma kernel never exhibits Beta range frequencies within its window of oscillatory activity.

A significant limitation of the application in its current form is that brought by using the original, two-
dimensional Wilson-Cowan coupling scheme. A two-dimensional system is a great place to start, since
it is substantially easier to analyze and understand than higher dimensional, more complex systems.
However, the neuronal circuit that governs executive function (and that has traditionally been studied in
conjunction with conditions associated with executive disturbances, like Parkinson’s Disease, or Obsessive
Compulsive Disorder) crucially encompasses additional brain areas and connections, not represented in
the Holgado model. For example, PD has been linked in both experimental and computational literature
to modifications in the striatal-GP pathway [43, 44], suggesting that the striatum should be included and
studied as an additional state variable in the coupled system.

This underlines the general importance of extending the analysis of the Wilson-Cowan model with
distributed delays to higher dimensional networks. We expect theoretical approaches to become more
difficult, being affected by the fact that dynamic complexity increases vastly past dimension two, by
the increased size of the coupling parameter space, and by the additional contributions of the network
architecture to the dynamics). However, the study of a more complete version of the importance of delays
in the circuit controlling executive function could complement in novel and crucial ways existing work on
modeling this circuit in absence of delays.
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[3] Petra E Vértes, Aaron F Alexander-Bloch, Nitin Gogtay, Jay N Giedd, Judith L Rapoport, and
Edward T Bullmore. Simple models of human brain functional networks. Proceedings of the National
Academy of Sciences, 109(15):5868–5873, 2012.

29



[4] David Golomb and John Rinzel. Clustering in globally coupled inhibitory neurons. Physica D:
Nonlinear Phenomena, 72(3):259–282, 1994.

[5] Bick Christian, Goodfellow Marc, R. Laing Carlo, and A. Martens Erik. Understanding the dynamics
of biological and neural oscillator networks through exact mean-field reductions: a review. The
Journal of Mathematical Neuroscience, 10:1–43, 2020.

[6] Hugh R. Wilson and Jack D. Cowan. Excitatory and inhibitory interactions in localized populations
of model neurons. Biophysical Journal, 12(1):1, 1972.

[7] Alain Destexhe and Terrence J. Sejnowski. The Wilson–Cowan model, 36 years later. Biological
Cybernetics, 101(1):1–2, 2009.

[8] Stephen Coombes and Carlo Laing. Delays in activity-based neural networks. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
367(1891):1117–1129, 2009.

[9] Sid Visser, Hil G.E. Meijer, Michel J.A.M. van Putten, and Stephan A. van Gils. Analysis of
stability and bifurcations of fixed points and periodic solutions of a lumped model of neocortex with
two delays. The Journal of Mathematical Neuroscience, 2(1):1–24, 2012.
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