
Graphical Abstract
Deep learning methods for the computation of vibrational wavefunctions
L Domingo,F Borondo
A deep neural network with a custom loss function is trained to efficiently generate ground and excited wavefunctions
for different molecular potentials of interest.
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Highlights
Deep learning methods for the computation of vibrational wavefunctions
L Domingo,F Borondo

• Use of deep neural networks to solve the time independent Schrödinger equation, thus obtaining good approxi-
mations to the corresponding eigenenergies and eigenfunctions.

• Modifications of the neural network to make it suitable for obtaining highly excited eigenfunctions, where no
obvious nodal patterns exist, and quantum numbers are not well defined.

• Application to typical molecular potentials.
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ABSTRACT
In this paper we design and use two Deep Learning models to generate the ground and excited
wavefunctions of different Hamiltonians suitable for the study the vibrations of molecular sys-
tems. The generated neural networks are trained with Hamiltonians that have analytical solu-
tions, and ask the network to generalize these solutions to more complex Hamiltonian functions.
This approach allows to reproduce the excited vibrational wavefunctions of different molecular
potentials. All methodologies used here are data-driven, therefore they do not assume any infor-
mation about the underlying physical model of the system. This makes this approach versatile,
and can be used in the study of multiple systems in quantum chemistry.

1. Introduction
The accurate computation of the eigenstates of a dynamical system is a central problem in physics and computa-

tional chemistry. For example, being able to efficiently solve the Schrödinger equation is crucial to determinemolecular
structural properties and molecular dynamics in any quantum-mechanical scenario [1]. When the size and/or complex-
ity of the system increases, finding such solutions becomes challenging. The usual standard methods [2] are based on
the variational principle, which implies that in order to get an approximation to theN-th eigenstate, theN − 1 lower-
lying ones should also be calculated. This makes the task particularly demanding when one is interested in excited
states. The existence of a large density of states and/or classically chaotic dynamics, as it happens in the molecular
rovibrational case [3], as opposed to the molecular Born-Oppenheimer electronic one [2], also significantly contributes
to the computational burden [4]. For this reason, many methods have have been proposed in the literature to either ap-
proximate the underlying interactions of the system [5, 6] or to numerically approximate the exact Schrödinger equation
[7]. These methods are based on finding an appropriate description of the system dynamics.

Another option is the use data-based approaches, which do not rely on information about the underlying physical
model of the system, but use only data obtained from observations of the system. An increasingly popular family of
these data-based methods is machine learning (ML). Indeed, exciting recent work has been devoted to the use of ML
techniques to study partial differential equations [8, 9, 10], such as the Schrödinger equation [11], which are at the core
of practically all branches of science.

ML is an emerging mathematical and computer science field of study which aims to give computers the ability
to learn from examples and experience, without being explicitly programmed to solve the particular task under study.
ML is nowadays present in many areas of technology, and any user of today’s technology heavily benefits from its
applications, often without even being aware it. Among the most popular and widespread applications of ML facial
recognition technology [9, 12], which allows social media platforms to help users tag and share photos of friends,
effective web search [13], which eases the acquirement of information, or self-driving cars [14], which will soon be
available to customers, are worth mentioning.

One of the most popular and widespread ML method is Artificial Neural Networks (ANN) [15] [or just Neural
Networks (NN)], and in particular Deep Learning (DL) [16, 17]. ANN is a widespread method used for generalization
problems, especially for the nonlinear function approximation [18]. An ANN is an information processing paradigm
inspired by the way that biological nervous systems, particularly the human brain, process information. These NNs are
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Deep learning for vibrational wavefunctions

composed of a large number of interconnected “neurons” or nodes, which work coordinately to solve specific problems.
ANN are considered to be deep (DNN) when formed by a large number of neuron layers. In this way, DL consists of
using deep ANN as the learning algorithm.

In the field of computational chemistry, ML has been extensively used [19] to solve the electronic [20], and, to a
lesser extent, the vibrational Schrödinger equations [21, 22, 23], as well as to compute Born-Oppenheimer potential
energy surfaces [24, 25], to design new materials [26, 27], and to elucidate the form of a Hamiltonian from its eigen-
functions (inverse problem) [28, 29]. In the case of the vibrational Schrödinger equation, DL methods have proven to
give remarkable results in predicting the ground energy of multiple Hamiltonians [30, 31, 32], but there are no rele-
vant applications to the excited case, which is much more interesting since controlled by anharmonicities and mode
couplings, and often give rise to the so-called scarred functions [7].

In this paper, instead of predicting the mean energy of an eigenstate, we will obtain the full wavefunction for such
state, which provides full information about the system state. Moreover, instead of only focusing on the ground state
of the Hamiltonian, we will also obtain high lying states, which correspond to more complex wavefunction topologies.
Two different scenarios will be studied. In the first one, we use polynomial potentials and their associated eigen-
functions to train a neural network. Then, the network is asked to generalize to non-polynomial potentials. In the
second scenario, we start by using molecular potentials with analytical eigenstates to train the network, and then test
the network with more complex perturbed potentials, which have no analytical solution.

The organization of this paper is as follows. In Sect. 2.1 we introduce the neural network model and training details
for random polynomial potentials. Similarly, we present in Sect. 2.2 the neural network model and training details for
the molecular potentials under study. The results for both cases are presented and discussed in Sect. 3. Finally, Sect. 4
ends the paper by summarizing the main conclusions of the present work.

2. Models and Methods
In this section we present and discuss the potentials and method used for the two scenarios studied in this paper,

i.e., random polynomial potentials (Model I) and coupled Morse potentials applied to the H2O molecule (Model II).
2.1. Model I: Random polynomial potentials

The general goal of this work is to train a NN to generate the ground and excited eigenfunctions of different
molecular vibrational Hamiltonians. For this purpose, the NN is trained with Hamiltonians belonging to the same
family of functions. Then, we expect our NN to be able to generalize and reproduce the wave functions of Hamiltonians
described by more general expressions. In this work, we consider both one-dimensional (1D) and a two-dimensional
(2D) potentials. In order to design our model, we need to specify both the training data and the learning algorithm.

In the first place (model I), we will consider that the training data is a set of Hamiltonians with random polynomial
potentials of (up to) degree four. That is, for the 1D case

H(x) =
p2

2m
+ V (x), with V (x) =

∑

i≤4
�ix

i, (1)

and for 2D

H(x, y) =
p2x + p

2
y

2m
+ V (x, y), with V (x, y) =

∑

i+j≤4
�ijx

iyj . (2)

EachHamiltonian has an associated set of eigenfunctions, which are the solution of the corresponding time-independent
Schrödinger equation

H(r⃗)  (r⃗) = E  (r⃗), E ∈ ℝ, (3)
which in our case will be obtained with the variational method described below.

Since the kinetic energy operator is the same for all Hamiltonians, we only have to provide the potential function to
the NN. This allows to pass an easy representation of the Hamiltonian to the NN. Therefore, the training data consists
of a set of pairs {Vi,  i}i, where Vi is the i-th training potential and  i the associated computed wave function. Both,
potentials and wave functions, are represented in a grid on a rectangular (or linear) domain, so that Vi is a matrix
Domingo and Borondo: Preprint submitted to Elsevier Page 2 of 23
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Figure 1: Example of a Morse potential with De = 7, a = 0.16 and xe = 0, and the corresponding eigenfunctions for the
energy levels n = 0, 1, 2, 3.

containing the values of Vi(x, y) [or Vi(x) for 1D] with x, y belonging to a rectangular lattice (or a closed interval for
1D). Similarly,  i is a matrix containing the values of  (x, y) in such lattice (or closed interval for 1D).

Once the NN has been trained to reproduce the different wave functions for a polynomial potential for a particular
energy vibrational state (either the ground or excited state), we ask the network to reproduce the wave functions for
another more general, non-polynomial potential. In this work, we chose to test the network against Morse potentials,
which are sufficiently different from the training potentials, and they also adequately represent the potential interaction
of a diatomic molecule. We write the Morse potential as

V (x) = De
[

e−2a(x−xe) − 2e−a(x−xe)
]

, (4)
where x is the distance between atoms, xe is the corresponding equilibrium bond distance,De is the well depth (definedrelative to the dissociated atoms), and a is a parameter controlling the “width” of the potential (the smaller a is, the
deeper the well). This potential approaches zero at x → ∞ and equals −De at its minimum at x = xe. The Morse po-
tential is the combination of a short-range repulsion term (the former) and a long-range attractive term (the latter). The
Hamiltonian associated to the Morse potential has analytical solution for the eigenenergies {En} and eigenfunctions
{�n(x)}, n being the corresponding quantum number, which are given by

En = −
a2ℏ2

2m

(

� − n − 1
2

)2
, n = 0, 1, 2,⋯ ,

[

� − 1
2

]

, (5)
and

�n(z) = Nnz
�−n−1∕2e−1∕2zL(2�−2n−1)n (z), (6)

respectively, where:

� =

√

2mDe

aℏ
, z = 2�e−a(x−xe), and Nn =

(n!(2� − 2n − 1)
Γ(2� − n)

)1∕2
, (7)

and L(�)n is a generalized Laguerre polynomial. Figure 1 shows an example of a Morse potential, together with the
eigenfunctions for the first four lowest energy levels.
2.1.1. Data Generation

As explained in section 2.1, the NN model is trained using polynomial potentials up to degree four. To ensure
that the eigenstates have discrete energies, and thus are physical bound states (as opposed to continuum states), we
Domingo and Borondo: Preprint submitted to Elsevier Page 3 of 23
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�i min max
�0 -4.5 1.5
�1 -0.65 0.65
�2 0.2 1.0
�3 -0.01 0.01
�4 0 0.1

�ij min max �ij min max �ij min max
�00 -3 0.1 �02 0.2 1.0 �04 0 0.2
�10 -0.2 0.1 �21 -0.02 0.02 �13 -0.01 0.01
�01 -0.2 0.1 �12 -0.01 0.01 �22 0 0.04
�11 -0.02 0.02 �03 -0.01 0.01 �31 -0.01 0.01
�20 -0.05 0.05 �30 -0.01 0.01 �40 0 0.02

Table 1
Lower and upper bounds for the coefficients of the polynomial potentials in one dimension of Eq. (1) (left) and in two
dimensions of Eq. (2) (right).

Figure 2: Three examples of random polynomial potentials (left) and their associated eigenfunctions for the ground state
(middle) and the 11-th excited state (right) obtained with the variational method described in the text.

impose some restriction properties on the coefficients. In our case, we will make sure that the even terms (x2 and x4)
dominate over the odd terms (x and x3). Also, we allow the potential to be negative and non-centered by including
negative values for �0 and �1 [see Eq. (1)]. Finally, we use small values of the coefficients so that the potential does
not achieve very high values, which can lead to numerical instability. The values of {�i} (for 1D potentials) and {�ij}(for 2D potentials), chosen according to the previous conditions, are shown in Table 1. Figure 2 shows some examples
of random polynomial potentials and their associated wavefunctions for two values of the vibrational number n = 0
and n = 10.

Apart from the polynomial potentials, the training set also contains the eigenfunctions associated to such Hamil-
tonians. These random Hamiltonians do not usually have an analytical solution, hence a numerical solver needs to
be used. In this work, we use the variational method using harmonic oscillator eigenfunctions �n(x) as a basis set
to generate the eigenfunctions of an arbitrary Hamiltonian H . That is, since {�n(x)} form a complete basis set for
the Hilbert space  we can write any wavefunction  (x) ∈  as a linear combination of the harmonic oscillator
eigenfunctions

 (x) =
∞
∑

n=0
an�n(x), an ∈ ℝ ∀n (8)

Therefore, the problem reduces to find the values of {an} which minimize the expected energy

⟨H⟩ = ⟨ |H| ⟩ = ∫

∞

−∞

[ ∞
∑

n=0
an�n(x)

]

H

[ ∞
∑

m=0
am�m(x)

]

dx, (9)

where it is assumed that the eigenfunction  is normalized in the standard way, i.e., ⟨ | ⟩ = 1. For full details of the
variational method, and its applications to our 2D potentials, see appendices A and B.
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Figure 3: Schematic plots of the two types of neural networks considered in this paper: Fully connected neural network
(FCNN) used for the 1D potentials (upper panel), and convolutional neural network (CNN) used for 2D potentials (bottom
panel). The FCNN is composed by an input layer, four fully-connected layers and an output layer. The input is a 1D
array containing the potential V (x), and the output is its associated wavefunction for a particular quantum number n. The
CNN is composed by the input layer, four convolutional and max-pooling layers, a fully-connected layer and an output
layer. The input is a 2D array containing the potential V (x, y) and the output is its associated wavefunction for a pair of
quantum numbers (nx, ny).

2.1.2. Neural network
In this work, we use NNs as the learning algorithms for both the 1D and 2D problems described above. Here we

describe the architecture and learning process in both cases.
For 1D potentials, we use a fully connected neural network (FCNN). The input is an array of 200 points containing

the values of the potential in the spatial domain x ∈ [−8, 8] for the fundamental state and x ∈ [−20, 20] for the
excited states. Our NN consists of four fully connected layers with 256, 256, 128 and 128 neurons respectively, and
RELU activation functions [33]. Every FC layer is followed by a dropout layer with parameter 0.2. These dropout
layers help prevent overfitting and thus help the network to generalize to unseen potentials. The output layer is a linear
layer with 200 neurons, which predicts the wave function for the given potential. A schematic plot of our FCNN is
displayed in Fig. 3 This network is trained using an Adam optimizer [34] with a learning rate of 0.0005 for 1000
iterations. Moreover, we used early stopping to further prevent overfitting the network. The network was trained with
5000 samples with a batch size of 64.

For 2D potentials, we use a convolutional neural network (CNN). This model is used to extract a lower-dimensional
embedding of the original data which is then used to make the predictions. CNNs are known to be very useful to extract
Domingo and Borondo: Preprint submitted to Elsevier Page 5 of 23
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local patterns from the input data and to extract valuable features for the learning task. The input in this case is a 2D
array of size 100×100 in the spatial domain (x, y) ∈ [−10, 10] × [−10, 10]. In this case, we use four convolutional
layers with 64, 64, 32 and 32 filters respectively. The kernel size is 3 for all four layers, and the stride is (2,2). All
activation functions are also RELU here. After each convolutional layer, we add a max-pooling layer to reduce the
dimensionality of the embedding. We use a pooling size of (2,2) and a stride of (1,1). Moreover, after each max-
pooling layer we add again a dropout layer with parameter 0.2 to avoid overfitting the network. Then, we add 2 fully
connected layers with 128 neurons each. The output layer is a linear layer of the same size as the input. The training
is performed in the same way as in the 1D case. A schematic representation of the CNN is displayed in Figure 3.
2.2. Model II: Morse potentials

The goal of the second part of the work is to study the performance of a NN trained with the solutions of an
analytically solvable HamiltonianH0 in reproducing the wave functions of the corresponding perturbed non-separableHamiltonian H . For this purpose, let H be the Hamiltonian whose eigenfunctions we want to find, and suppose that
it can be written à la Kolmogorov-Arnold-Moser [35] as

H = H0 +H1, (10)
where H0 is a Hamiltonian whose eigenstates are analytically known. If the “perturbation” H1 is small, thenH0 is agood approximation of H , and it can be expected that a NN can generalize the wavefunctions for H0 to those for H .
However, this is not obvious a priori since resonance between modes in the excited states can change significantly the
topology of these wavefunctions.
2.2.1. Coupled Morse potentials

We consider the following kinetically coupled 2D Morse oscillator, which has been extensively studied in the past
as a model for the stretching vibrations of the H2O molecule [36, 37, 38, 39]

H(x1, x2, p1, p2) =
1
2
(G11p21 + G22p

2
2) + G12p1p2 + UM (x1) + UM (x2), (11)

being the G-matrix elements equal to

G11 = G22 =
mH + mO
mHmO

, G12 =
cos �
mO

, (12)

where mH = 1.00784 amu and mO = 15.999 amu are the H and O atomic masses, respectively, and � is the bending
angle which in this model is held frozen at 104.5◦. Functions UM (x1,2) are 1D Morse potentials in the stretching H–O
coordinates, x1 and x2, characterized by parameters a and De, and p1, p2 are the corresponding conjugate momenta.
For the H2O molecule G12 ≈ 0.01559, and thereforeH0 is a good approximation ofH , so that Hamiltonian (11) can
be written in the form (10) by making

H0 =
1
2
(G11p21 + G22p

2
2) + UM (x1) + UM (x2) and H1 = G12p1p2. (13)

As explained in the previous section, the way in which we perform our study consists in providing only the potential
function to the NN, instead of giving the whole Hamiltonian. This fact allows to have an easy representation of the
Hamiltonian as a grid containing the values of the potential energy on a rectangular spatial domain. This representation
was possible in the cases presented before in Sect. 2.1.2 because all the Hamiltonians had the same kinetic energy.
Nonetheless, our coupled Morse Hamiltonian is different since contains a coupling term in the momentum coordinates
and not in the spatial coordinates. Therefore, to be able to provide only the potential energy to the NN, we have to make
a change of coordinates in the Hamiltonian in such a way that the coupling appears only in the spatial part, i.e., the
potential. To this end, we can rewrite the Hamitonian in generalized coordinates so that the coupling appears in the
spatial coordinates instead of in the momentum coordinates.

In order to do so, we apply a canonical transformation to the HamiltonianH(x1, x2, p1, p2) obtaining the Hamilto-
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nianH ′(x′1, x
′
2, p

′
1, p

′
2). We use a generating function of the form F2(x1, x2, p′1, p

′
2) [40], so that

pi =
)F2
)xi

, i = 1, 2

x′i =
)F2
)p′i

, i = 1, 2

H ′ = H +
)F2
)t
.

(14)

In particular, by choosing F2(x1, x2, p′1, p′2) of the form
F2(x1, x2, p′1, p

′
2) = f1(x1, x2) p

′
1 + f2(x1, x2) p

′
2 (15)

then, the generalized coordinates fulfill the following equations

p1 =
)F2
)x1

=
)f1
)x1

p′1 +
)f2
)x1

p′2

p2 =
)F2
)x2

=
)f1
)x2

p′1 +
)f2
)x2

p′2

x′1 =
)F2
)p′1

= f1(x1, x2)

x′2 =
)F2
)p′2

= f2(x1, x2).

(16)

In this way, the kinetic energy can be written in matrix form as

T (p1, p2) =
1
2
(

p1 p2
)

(

G11 G12
G12 G11

)(

p1
p2

)

∶=
(

p1 p2
)

M
(

p1
p2

)

, (17)

so that, diagonalizingM

M = SDST with S = 1
√

2

(

−1 1
1 1

)

, then D = 1∕2
(

G11 − G12 0
0 G11 + G12

)

. (18)

Accordingly, defining new coordinates p⃗′ = ST p⃗, the new kinetic energy only consists of by diagonal terms

T ′(p′1, p
′
2) =

1
2
(

G11 − G12
)

p′21 +
1
2
(

G11 + G12
)

p′22 . (19)

Now, the transformation defined by Eqs. (16) can be used to compute the new set of coordinates (x′1, x′2)

x′1 = f1(x1, x2) =
1
√

2
(−x1 + x2), x′2 = f2(x1, x2) =

1
√

2
(x1 + x2), (20)

to obtain the new Hamiltonian

H ′(x′1, x
′
2, p

′
1, p

′
2) =

1
2
(

G11 − G12
)

p′21 +
1
2
(

G11 + G12
)

p′22 +UM

(

1
√

2

[

x′2 − x
′
1
]

)

+UM

(

1
√

2

[

x′2 + x
′
1
]

)

. (21)

Finally, scaling the coordinates so that both particles have the same mass, we define

x = 1
√

G11 − G12
x′1, y = 1

√

G11 + G12
x′2, px = ẋ, py = ẏ, (22)
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obtaining the Hamiltonian with the coupling in the spatial coordinates as

K(x, y, px, py) =
1
2
(p2x + p

2
y) + UM

(

1
√

2

[

√

G11 + G12y −
√

G11 − G12x
]

)

+

UM

(

1
√

2

[

√

G11 + G12y +
√

G11 − G12x
]

)

. (23)

Let us remark, that this equivalent Hamiltonian has no kinetic coupling in the momenta px and py, but it has beenmoved
to the potential term, between spatial coordinates x and y, which is more adequate for our computational purposes when
using NN, as indicated before.

To further illustrate the effect of the above transformation, we compute the Taylor expansion of the new Hamilto-
nian, thus obtaining

K(x, y, px, py) =
1
2
(p2x + p

2
y) − 2D +Dea

2(G11 − G12)x2 +Dea
2(G11 + G12)y2−

3
√

2
Dea

3(G11 − G12)
√

G11 + G12yx2 −
1
√

2
Da3(G11 + G12)3∕2y3 + (4) (24)

where we see reappearing the two Morse parameters De and a. We observe that the expansion contains a coupling
term yx2, and an anharmonicity in y3, this indicating that up to order 3 this Hamiltonian is identical to that proposed
by Hénon and Heiles to study the stability of some galaxies, at the dawn of nonlinear science [41].

Now that we have defined the coupledMorse potential in generalized coordinates, we have to define the training data
of the NN. In this case we use decoupled Morse potentials to train the network, which act as a first order approximation
of the coupled Morse potential. The training potentials will then be of the form

V0(x, y) = U
D1,a1
M (x) + UD2,a2

M (y), (25)

where UD,a
M represents a Morse potential with well depth D and width a. Notice that the Morse parameters of this

Hamiltonian are different in each spatial coordinate. The Hamiltonian associated to this potential is separable, and the
Schrödinger equation has analytical solution in terms of expressions (5)-(7). Thus, there is no need to use a numerical
solver to train the NN, which makes the method more convenient. In this case the training data are pairs {Vi,  i}, where
Vi is a matrix containing the values of the potential in a rectangular domain, and  i is the associated wavefunction
corresponding to the vibrational quantum numbers nx, ny. We train different models for different quantum numbers in
order to reproduce multiple excited eigenstates of the coupled Morse Hamiltonian. Notice that here the excited states
are identified by their quantum numbers nx, ny instead of their energies E(nx, ny). We made this choice because when
the difference between eigenenergies is small, the nth energy level of two similar potentials can correspond to very
different quantum numbers nx, ny, and consequently completely different wave functions. This fact would “confuse”
the NN since two similar inputs would have very different outputs. In the next section we give further details about
how the training data are generated.
2.2.2. Data Generation

Neural networks are useful methods for extracting features of complex data. However, if the training and test sets
are too different, the network may not be able to produce good results. For this reason, it is important that the training
data resembles as much as possible the test data. In this work we are approximating a coupled Morse Hamiltonian
with a separable Morse Hamiltonian [see Eq. (25)]. Two strategies were then used to generate useful training data:

• Selecting the Morse parameters (D1, a1), (D2, a2): We selected the parameters of the decoupled potential in
two different ways:

– By performing curve fitting and finding the parameters (D1, a1), (D2, a2) which best approximate the cou-
pled Morse potential in Eq. (10).

Domingo and Borondo: Preprint submitted to Elsevier Page 8 of 23
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– By choosing the parameters (D1, a1), (D2, a2) which have the same quadratic order Taylor expansion co-
efficients as the coupled Morse potential. Considering Eq. (24) the choice should be

D1 = D2 = De and a1 =
√

G11 − G12 a2 =
√

G11 + G12a (26)
In order to obtain the training data we first generated samples of the parameters of the coupled Morse potential
a ∈ [0.09, 0.12], De ∈ [1, 10], and then found the decoupled Morse (D1, a1), (D2, a2) parameters, according to
the previous strategies.

• Selecting the x and y ranges: Once the Morse parameters have been chosen, we try to improve the resemblance
with the coupled Morse potential by changing the values of the spatial domains. The input of the NN is a grid
containing the values of the potential in a certain spatial domain, but such domain is not specifically given.
Therefore, if we change the range of this domain the network will not notice the difference, as long as the number
of points remains constant. This fact allows us to stretch the spatial domain so that the decoupled potential is more
similar to the coupled potential. We performed a grid search to find the domain ranges which best approximate
the coupled potential energy. The only constraint is that in a given spatial domain, the associated wave function
fits into that domain. Otherwise, the sample will no be useful for training. Recall that this technique could
only be used because the learning algorithm, i.e., the NN is a data-based approach, instead of a model-based
approach, which means that uses no information about the underlying physical model of the system.

2.2.3. Neural network
The architecture of the NN in this case is the same as the one used with the 2D random polynomial potentials in

Sect. 2.1.2. The only difference in the training process is the choice of the loss function [42]. When the energy of
the system increases, the eigenfunctions of the coupled Morse Hamiltonian show significant differences to any of the
eigenfunctions of the decoupled Morse Hamiltonian, due to the effect of the different nonlinear resonances existing
in the system [36, 37]. For example, the number of nodes of the wavefunction may not be well-defined. In this case,
training the neural network with only the decoupled wavefunction does not give optimal results. For this reason, we
add a custom loss function to help training the NN, defined in the following way

Sloss =
‖

‖

‖

H ̃ − Ẽ ̃‖‖
‖

2
+ �norm‖‖ ̃‖‖

2, (27)

where Ẽ is the predicted mean energy, which is calculated using the input potential and the predicted wavefunction  ̃ .
Therefore the total loss function is

 =MSEd + �S̄loss,c =
1
Nd

Nd
∑

i=0

‖

‖

‖

 ̃di −  
d
i
‖

‖

‖

2
+ �

Nc
∑

i=0

(

‖

‖

‖

H ̃ci − Ẽ ̃
c
i
‖

‖

‖

2
+ �norm‖‖ ̃ci ‖‖

)

, (28)

where { di }i are the wavefunctions of the decoupled Hamiltonian and { ci }i are the wavefunctions of the coupled
Hamiltonian, and �, �norm ∈ ℝ. Parameter �norm is chosen so that the two terms of the Schrödinger equation loss have
the same order of magnitude. In this case, we choose �norm = 104 for all the training process. We train the network for
300 iterations. During the first 100 iterations we set � = 0 so that the model learns to reproduce the wavefunctions of
multiple decoupled Hamiltonians. Then, we choose � so that the two loss functions have the same order of magnitude.
In this case, we set � = 105. Notice that since the decoupled Morse potential already gives a fair approximation of the
true wavefunction, we do not need to put any constraints on the energy of the system. The NN converges to the true
solution, which follows the Schrödinger equation.

3. Results
3.1. Model I: Polynomial potentials

As described in the previous section, in the first part of this work we use random polynomial potentials and their as-
sociated eigenfunctions, to train our NN. Afterwards, we test the ability of the network to generalize to non-polynomial
potentials, in particular to the Morse potential.

Two NNs were trained for this purpose, the first one to reproduce the fundamental eigenfunction, and the second
to reproduce excited eigenfunctions, which in this case was chosen as that corresponding to n = 10. Table 2 shows
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Potential Type MSE( ) MSE(E)
Polynomial potentials 6 ⋅ 10−6 6 ⋅ 10−8
Harmonic oscillator 3 ⋅ 10−5 3 ⋅ 10−6
Morse potential s 1 ⋅ 10−5 2 ⋅ 10−6

Potential Type MSE( ) MSE(E)
Polynomial potentials 3 ⋅ 10−5 1 ⋅ 10−6
Harmonic oscillator 2 ⋅ 10−6 2 ⋅ 10−7
Morse potentials 6 ⋅ 10−3 9 ⋅ 10−6

Table 2
Mean square error (MSE) for the wavefunctions and energies for three types of potentials for the fundamental state (left)
and the 10-th excited state (right).

Figure 4: Example of the neural network prediction for three different potentials: random polynomial potential (left),
harmonic oscillator (middle), and Morse potential (right). Each plot displays the potential (blue), the prediction of the
fundamental eigenfunction (green) and the true eigenfunction (orange).

the mean square error (MSE) obtained for the predicted wavefunctions values and also for the mean energies of such
vibrational states. These results are also shown graphically in Figs. 4 and 5 for the fundamental state, and in Figs. 6
and 7 for the excited state.

In the case of the Morse Hamiltonian ground state, the MSE for both energy and wavefunction is similar to those
obtained for the polynomial potentials. This fact means that the NN can effectively generalize to non-polynomial
potentials when trained with polynomial potentials. The MSE of the harmonic oscillator potentials is also similar to
the MSE of the random potentials, which is not an unexpected result since the harmonic oscillator is also a polynomial
potential as well. Finally, it should be remarked that, since the MSE of the wave function is similar for all potentials,
the NN is not producing much overfitting.

Regarding the excited eigenfunctions, the MSE for both the energy and wave function is small for the three types of
potentials. However, we observe that the wave function prediction for the Morse potentials presents higher MSE than
the MSE of the polynomial potentials. In particular, Fig. 6 shows that the tails of the wave function are not correctly
reproduced. This is a consequence of training the NN only with polynomial potentials, whose wave functions have a
significantly different decay. However, we see that this error in the tails of the wave function does not affect much the
value of the mean energy, since the MSE for the energy is similar to the MSE of the polynomial potentials.

A different NN was trained to reproduce the fundamental wave function of several 2D (harmonic, Morse and
random) potentials. Again, the training data consists of random polynomial potentials, while the test data contains
also decoupled Morse potentials, see Eq. (13). The MSE results for the three cases are summarized in Table 3. Figures
8, 9 and 10 show examples of the potential, the real eigenfunction and the predicted eigenfunction for the three types
of potentials, and Fig. 11 shows the corresponding the mean energy for the three types of potentials. We observe that
the network is also able to reproduce the fundamental wave functions for 2D Morse potentials, as the MSE for both
the energy and the wave functions is similar to the MSE of the random potentials.
3.2. Model II: Morse potentials

In the second part of this work our goal is to design a NN model which is able to obtain the excited states of more
realistic, yet complex, molecular potentials. In particular, we train a NN using a separable Hamiltonian containing
Morse potentials in both spatial directions. These Hamiltonians have analytical solutions for the Schrödinger equation,
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Figure 5: Predicted fundamental mean energies for three types of potentials: random polynomial potential (left), harmonic
oscillator (middle), and Morse potential (right). Some 500 samples are shown for each type of potential.

Figure 6: Example of the neural network prediction for three different potentials: random polynomial potenital (left),
harmonic oscillator (middle) and Morse potential (right). Each plot displays the potential (blue), the prediction of the
10-th excited eigenfunction (green) and the true eigenfunction (orange).

Potential Type MSE( ) MSE(E)
Polynomial potentials 2 ⋅ 10−7 5 ⋅ 10−5
Harmonic oscillator 9 ⋅ 10−6 2 ⋅ 10−4
Morse potentials 9 ⋅ 10−6 3 ⋅ 10−4

Table 3
Mean square error for the eigen function and energies for three types of 2D potentials for the fundamental state.

and thus no numerical solver is needed. Afterwards, the NN is asked to generate some excited eigenfunctions for a
coupled version of the previous Morse potentials. The results are shown in Figs. 12-18.

As can be seen, for low energies, the eigenfunctions of the coupled Morse potential exhibit a well-defined nodal
pattern which leads to an unambiguous quantum numbers assignment; see, for example, Figs. 12, 13, 14, which cor-
respond to states (nx, ny) = (1, 2), (0, 4), and (1, 1), respectively. These wave functions are very similar in topology
to the eigenfunctions of the decoupled Morse potential, which is used to train the NN. Therefore, the NN can easily
generate the eigenfunctions for the coupled Morse potential. In this case, the strategies used to generate the training
data are enough to make the NN able to generate the eigenfunctions for coupled Morse potentials. However, for higher
energy levels; see Figs. 15 and 16, the eigenfunctions present sizeable distortions with respect to the uncoupled ones,
and the quantum numbers can not be defined so easily. In these cases, it is necessary to add the loss function described
in section 2.2.3 to make the NN able of predicting this kind of wavefunctions. In order to increase the distortion of
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Figure 7: Predicted mean energies of the 10th excited eigen state for three types of potentials: random polynomial
potenital (left), harmonic oscillator (middle), and Morse potential (right). Some 500 samples are shown for each type of
potential.

Figure 8: Example of potential (left), true eigen function (middle) and predicted eigen function (right) for a harmonic
oscillator Hamiltonian.

Figure 9: Example of potential (left), true eigenfunction (middle) and predicted eigenfunction (right) for a Morse potential.

the eigenfunctions for the coupled Morse potential and make them more challenging for being found by our NN, we
artificially increase the coupling factorG12 toG12 = 0.35. With this new value of the coupling parameter, high energy
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Figure 10: Example of potential (left), true eigenfunction (middle) and predicted eigenfunction (right) for a random
polynomial potential.

Figure 11: Predicted mean energies of the fundamental eigen state for three types of potentials: random polynomial
potenital (left), harmonic oscillator (middle) and Morse potential (right). Some 500 samples are shown for each type of
potential.

Figure 12: Example of potential (left), true eigen function (middle) and predicted eigen function (right) for the excited
eigenfunction with quantum numbers nx = 1, ny = 2. The Morse parameters are De = 2.5, a = 0.095.

states with a high distortion were also reproduced; two representatives examples are shown in Figs. 17 and 18. Fig-
ure 18 contains an additional plot, showing a wave function with similar energy and similar quantum numbers. When
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Figure 13: Example of potential (left), true eigen function (middle) and predicted eigen function (right) for the excited
eigenfunction with quantum numbers nx = 0, ny = 5. The Morse parameters are De = 2.1, a = 0.095.

Figure 14: Example of potential (left), true eigen function (middle) and predicted eigen function (right) for the excited
eigenfunction with quantum numbers nx = 1, ny = 1. The Morse parameters are De = 2.4, a = 0.097.

Figure 15: Example of potential (left), true eigen function (middle) and predicted eigen function (right) for the excited
eigenfunction with quantum numbers nx = 1, ny = 2. The Morse parameters are De = 1.6, a = 0.098.

the energy levels increase, there may be more than one wavefunction with a very close energy and similar quantum
numbers. In these cases, using the eigenfunctions of decoupled Morse potentials to train the network only allows to

Domingo and Borondo: Preprint submitted to Elsevier Page 14 of 23



Deep learning for vibrational wavefunctions

Figure 16: Example of potential (left), true eigen function (middle) and predicted eigen function (right) for the excited
eigenfunction with quantum numbers nx = 2, ny = 3. The Morse parameters are De = 1.1, a = 0.093.

Figure 17: Example of potential (left), true eigen function (middle) and predicted eigen function (right) for a high-energy
eigenfunction. The Morse parameters are De = 7.8, a = 0.098, G12 = 0.35.

Figure 18: Example of potential (first), true eigen function (second) and predicted eigen function (third) for the excited
eigenfunction with quantum numbers nx = 17, ny = 1. The fourth plot displays a similiar eigenfunction to the predicted
one. The Morse parameters are De = 7.1, a = 0.096, G12 = 0.35.

reproduce one of the wave functions, i.e., that which is more similar to the decoupled wave function. If we wanted
to distinguish between these eigenstates, we would have to provide a finer approximation to the target wave function.
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One option is to gradually increase the coupling factor G12 to approach the final desired Hamiltonian, using at each
step in the approximation the coupled Morse potential with for the previous (smaller) coupling factor to approximate
the wavefunctions corresponding to higher-coupled potentials. This technique will be explored in a future work.

All in all, our results demonstrate that the method that we propose allows to reproduce a great variety of wave
functions, at least for systems similar to that of the coupled Morse potentials, using only the wavefunctions of the
decoupled, yet separable, models, which in the case of the Morse potential have an analytical solution.

4. Summary and conclusions
DNNs have proven to be very useful for multiple technological applications of everyday life [13, 14, 43, 12].

In particular, CNNs are capable of extracting features from spatial data that are useful for the learning task [44].
In this project, we use the paradigm of DNNs to produce the fundamental and excited eigenfunctions of molecular
Hamiltonians.

In the first part of the paper, we train a FCNN (1D) and aCNN (2D) using randomly-generated polynomial potentials
and their associated eigenfunctions. Then, the network is asked to generalized to unseen, non-polynomial potentials,
in particular, we used the well known Morse potentials for the test set. The obtained results show that even though
the network was only trained to generate polynomial potentials, it was able to correctly reproduce the fundamental
and excited eigenfunctions for different Morse potentials. However, the tails of the wave function were not always
reproduced totally correct. This is a consequence of training the network only with polynomial potentials, which have
a significant different asymptotic decay. In any case, this is not a terrible result, since the importance of these tails
in the computation of molecular properties is usually very limited. For example, these errors do not affect much the
value of the mean energy of the system. Moreover, our results show the advantages of using ML instead of a model-
based approach. Even though the data generation process was very different for the polynomial (training) and Morse
potentials (prediction), the model was able to reproduce the Morse potential wave functions.

The second goal of the paper is more challenging. Given a zeroth-order Hamiltonian H0 with known eigenfunc-
tions, we aim to obtain the eigenfunctions ofH , assuming thatH0 is an approximation ofH . We applied this frame-
work, which resembles that of perturbation theory in the Kolmogorov-Arnold-Moser scenario, to find the eigenfunc-
tions of a well known 2D coupled Morse model, which represents well the stretching dynamics of the H2O molecule.
A CNN was trained using the potential and eigenfunction of multiple decoupled Morse Hamiltonians. Such Hamil-
tonians are separable and their eigenfunctions are well-known analytically. Therefore, they are very suitable to use
as a training data set, since no numerical integration is needed to generate the data. The data generation process and
learning algorithm were crucial for guaranteeing the good performance of the algorithm. The former consisted in
choosing the appropriate Morse parameters and the (x, y) domain so that the training data was as similar as possible
to the test data. Regarding the learning algorithm, we introduced an additional loss function which ensured that the
predicted wavefunction was an eigenstate of the coupled Morse Hamiltonian, and thus a solution of our problem. By
using all these techniques we have been able to reproduce high-energy states of coupled Morse potentials. Obtaining
these wavefunctions was challenging since they presented high distortions with respect to the training (zeroth order)
states, and the quantum numbers were not easily defined. Therefore, our results prove that DNNs trained with the ap-
propriate learning algorithm can reproduce high-energy eigenstates of complex Hamiltonians. This can be considered
as a good first step towards the computation of vibrational wavefunctions in high dimensional systems, where the ML
methods bear a clear advantage over the standard computational chemistry approaches.
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A. The Variational method for a harmonic oscillator basis set
Given the 1D Hamiltonian

Ĥ =
p̂2

2m
+ V (x̂), (29)

the mean energy corresponding to the normalized wavefunction  (x) is given by

⟨H⟩ = ⟨ |H| ⟩ = ∫

∞

−∞
 ∗(x)H(x) (x)dx. (30)

For simplicity, we will use from now on m = 1 and ℏ = 1 (which are the values that have been used throughout this
work) and thus, these parameters will be omitted in all expressions and calculations.
Variational principle

The variational principle states that the mean energy under a HamiltonianH for a wave function is always greater
or equal to the exact ground state energy of such Hamiltonian. That is

E0 ≤ ⟨H⟩ = ⟨ |H| ⟩ ∀ | ⟩ ∈ . (31)
This principle can be extended to higher eigenenergies by imposing that the state  is orthogonal to the previous
eigenstates.
The harmonic oscillator basis set

We choose as a basis set for  consisting of the eigenfunctions of the harmonic oscillator (HO) with ! = 1, i.e.,

�n(x) =
1

√

2nn!
√

�
e−x

2∕2Hn(x) , (32)

whereHn(x) is the n-th Hermite polynomial, defined by the recurrence
Hn(x) = 2xHn−1(x) − 2nHn−2(x), and H0(x) = 1, H1(x) = x2. (33)

Since {�n(x)}n form a complete basis for , we can write any wavefunction  (x) as a linear combination of the
eigenfunctions or basis set elements{�n}.

 (x) =
∞
∑

n=0
an�n(x), (34)

and the associated mean energy of  is

⟨H⟩ = ⟨ |H| ⟩ = ∫

∞

−∞

(

∞
∑

n=0
an�n(x)

)

Ĥ
(

∞
∑

m=0
am�m(x)

)

dx =

∞
∑

n=0

∞
∑

m=0
anam ∫

∞

−∞
�n(x)H(x)�m(x)dx =

∞
∑

n=0

∞
∑

m=0
anamCnm, (35)

where the coefficients Cnm are given by

Cnm = ∫

∞

−∞
Ane

−x2∕2Hn(x)
(

− 1
2
)2

)x2
+ V (x)

)

Ame
−x2∕2Hm(x)dx, being An =

1
√

n!2n
√

�
. (36)

Finally, in order to find a good estimation of the ground state, one uses a finite basis of HO eigenstates {�n}Nn=0 andthen find the coefficients {an} which minimize the mean energy ⟨H⟩.
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Finding the coefficients {an}To find the coefficients {an}which minimize the energy ⟨H⟩we use the LagrangeMultipliers theorem, which state
that the local minimum of a function F , under a constraint G is the solution of

∇F = �∇G, � ∈ ℝ. (37)
In this case F is the mean energy F ({an}) = ⟨H⟩, and G is the normalization constraint. Since {�n} is a basis set of
of , then G({an}) = ∑N

n=0 a
2
n = 1.Next, we calculate the partial derivative of F

)F
)ai

= )
)ai

(

N
∑

n=0

N
∑

m=0
anamCnm

)

= )
)ai

(

N
∑

n=0
an
)(

N
∑

m=0
amCnm

)

+ )
)ai

(

N
∑

m=0
am

)(

N
∑

n=0
anCnm

)

=

N
∑

m=0
amCim +

N
∑

n=0
anCni =

N
∑

n=0
an(Cin + Cni), (38)

so that the gradient of F is linear equations system

∇F (a⃗) = Da⃗, a⃗ =
⎛

⎜

⎜

⎝

a1
⋮
aN

⎞

⎟

⎟

⎠

, D ∈N (ℝ), [D]ij = Cij + Cji. (39)

Moreover, the partial derivative of G is

)G
)ai

= )
)ai

(

N
∑

n=0
a2n
)

= 2ai, (40)

and the Lagrange Multiplier equation becomes
∇F (a⃗) = �∇G(a⃗)⟺ Da⃗ = 2�a⃗, (41)

which is an eigenvalue problem.
The solution will then be found by solving the eigenvalue problem (41), and then selecting the vector a⃗0 whichminimizes ⟨H⟩. Since the basis �n(x) is finite (we take up to N functions), the solution will be an approximation of

the true eigenvector. When N → ∞ the solution  (x) will converge to the ground state of H . Moreover, since the
eigenvectors of D are orthonormal, the vector with the nth lowest energy will be an approximation to the n-th excited
state of the Hamiltonian.
Integrals involving Hermite polynomials

In order to generate a basis of the Hilbert space that we will use to approximate the gound state wavefunctions, we
need to perform some integrals involving Hermite polynomials, i.e.,

I(n, m, r) = ∫

∞

−∞
xre−x

2
Hn(x)Hm(x)dx (42)

which can be obtained by the recurrence relation

I(n, m, r) = ∫

∞

−∞
xre−x

2
Hn(x)Hm(x)dx = ∫

∞

−∞
xre−x

2 1
2x

(

Hn+1(x) + 2nHn−1(x)
)

Hm(x)dx =

1
2
I(n + 1, m, r − 1) + nI(n − 1, m, r − 1), (43)

and taking into account that
I(n, m, 0) =

√

�2nn!�n,m (44)
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Calculating CnmIn order to compute matrix D in the eigenproblem expression (41), we need to calculate the coefficients Cnm
Cnm = AnAm ∫

∞

−∞
e−x

2∕2Hn(x)(−
1
2
)2

)x2
+ V (x))Hm(x)e−x

2∕2dx, with An =
1

√

n!2n
√

�
. (45)

In order to do so we need to calculate
)2

)x2
(Hm(x)e−x

2∕2) = e−x
2∕2

(

(x2 − 1)Hm(x) − 4mxHm−1(x) + 4m(m − 1)Hm−2(x)
)

∶= e−x
2∕2P (x) (46)

Cnm = AnAm
(

− 1
2 ∫

∞

−∞
Hn(x)P (x)e−x

2
dx + ∫

∞

−∞
e−x

2
Hn(x)Hm(x)V (x)dx

)

=

AnAm
(

− 1
2
I(n, m, 2) + 1∕2I(n, m, 0) + 2mI(n, m − 1, 1) − 2m(m − 1)I(n, m − 2, 0) + IV

)

, (47)
where IV is the integral corresponding to the potential V (x). If this potential is a polynomial

V (x) =
N
∑

i=1
�ix

i, (48)

then

IV =
N
∑

i=1
�iI(n, m, i) (49)

B. Variational method in 2D
The previous variational method can be extended to 2D as described below (we will only focus on the differences

between the 1D and 2D problems).
The harmonic oscillator basis set for 2D

We choose as a basis of  the eigenfunctions of the harmonic oscillator for !x = 1, !y = ! ∈ ℝ − ℚ in 2D, so
that

Ĥ =
p̂2

2m
+ 1
2
m(x2 + !2y2). (50)

Notice that the frequency is different for the two dimensions. Since this Schrödinger equation is separable, the eigen-
functions come as the product of 1D eigenfunctions in both coordinates

�nx,ny (x, y) =
1

√

nx!2nx
√

�

1
√

ny!2
ny
√

�∕!
e−x

2∕2e−y
2!∕2Hnx (x)Hny (

√

!y) = �nx (x)�ny,!(y). (51)

and the corresponding eigenenergies come in terms of nx and ny as
Enx,ny = ℏ(nx + !ny + 1). (52)

Since ! ∈ ℝ−ℚ there is no degeneracy in the energy levels, which can then be ordered in an ascending mode. There-
fore, there exists a unique bijective order in (nx, ny) which sorts the energy levels. Hence we can write �nx,ny (x, y) =
�n(x, y) where n = n(nx, ny). Since {�n(x, y)}n form a complete basis set for , we can write any wavefunction
 (x, y) as the following linear combination

 (x, y) =
∞
∑

n=0
an�n(x, y), (53)
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and the associated mean energy is

⟨H⟩ = ⟨ |H| ⟩ = ∫

∞

−∞ ∫

∞

−∞

(

∞
∑

n=0
an�n(x, y)

)

Ĥ
(

∞
∑

m=0
am�m,!(x, y)

)

dxdy =

∞
∑

n=0

∞
∑

m=0
anam ∫

∞

−∞ ∫

∞

−∞
�n(x, y)H(x, y)�m,!(x, y)dx =

∞
∑

n=0

∞
∑

m=0
anamCnm, (54)

where

Cnm = ∫

∞

−∞ ∫

∞

−∞
Ane

−x2∕2Hnx (x)e
−y2!∕2Hny (

√

!y)
(

− 1
2
)2

)x2
− 1
2
)2

)y2
+ V (x, y)

)

⋅

Ame
−x2∕2e−y

2!∕2Hmx (x)Hmy (
√

!y)dxdy, with An =
1

√

nx!2nx
√

�
, Am =

1
√

ny!2
ny
√

�∕!
(55)

Calculating CnmNow, for any given potential
V (x, y) =

∑

j+j≤k
�ijx

iyj , (56)

and taking into account
)2

)x2
(Hm(x)e−x

2∕2) = e−x
2∕2

(

(x2 − 1)Hm(x) − 4mxHm−1(x) + 4m(m − 1)Hm−2(x)
)

∶= e−x
2∕2Pm(x), (57)

and defining the new variable ỹ =√

!y, the expression for Cnm becomes for 2D

Cnm = ∫

∞

−∞ ∫

∞

−∞
Ane

−x2∕2Hnx (x)e
−ỹ2∕2Hny (ỹ)

(

− 1
2
)2

)x2
− !
2
)2

)ỹ2
+ V (x, ỹ∕

√

!)
)

⋅

Ame
−x2∕2e−ỹ

2∕2Hmx (x)Hmy (ỹ)dxdỹ. (58)
Or alternatively

Cnm = AnAm
(

− 1
2 ∫

∞

−∞
e−ỹ

2
Hny (ỹ)Hmy (ỹ)dỹ∫

∞

−∞
Hnx (x)Pmx (x)e

−x2dx−

!
2 ∫

∞

−∞
e−x

2
Hnx (x)Hmx (x)dx∫

∞

−∞
Hny (ỹ)Pmy (ỹ)e

−ỹ2dỹ +

∫

∞

−∞ ∫

∞

−∞
e−x

2−ỹ2Hnx (x)Hny (ỹ)Hmx (x)Hmy (ỹ)V (x, ỹ∕
√

!)dxdỹ
)

=

AnAm
(

√

�2nyny!�nymyIP (nx, mx) + !
√

�2nxnx!�nxmxIP (ny, my) +
∑

i+j≤k
�ij!

−j∕2I(nx, mx, i)I(ny, my, j)
)

,

(59)
where IP (n, m) is:

IP (n, m) = −
1
2
I(n, m, 2) + 1∕2I(n, m, 0) + 2mI(n, m − 1, 1) − 2m(m − 1)I(n, m − 2, 0), (60)

being

I(n, m, r) = ∫

∞

−∞
xre−x

2
Hn(x)Hm(x)dx. (61)
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