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We present an analysis of an extended Rayleigh-Plesset (RP) equation for a three dimensional cell
of microorganisms such as bacteria or viruses in some liquid, where the cell membrane in bacteria
or the envelope (capsid) in viruses possess elastic properties. To account for rapid changes in the
shape configuration of such microorganisms, the bubble membrane/envelope must be rigid to resist
large pressures while being flexible to adapt to growth or decay. Such properties are embedded in
the RP equation by including a pressure bending term that is proportional to the square of the
curvature of the elastic wall. Analytical solutions to this extended equation are obtained in terms
of elliptic functions.
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I. INTRODUCTION

It is well established that the size evolution of unstable, spherical cavitation bubbles in 3-dimensions with surface
tension is governed by the well-known RP equation [1–3]

ρw

(
RRTT +

3

2
RT

2
)

= ∆P − 2σ

R
, (1)

where ρw is the density of the water, R(T ) is the radius of the bubble, ∆P = p − P∞ is the pressure drop between
the uniform pressure inside the bubble and the external pressure in the liquid at infinity (hydrostatic and sound
field for example), and σ is the surface tension of the bubble. For our analysis, we will assume an internal pressure
proportional to the external pressure, i.e., p = (k + 1)P∞, which gives ∆P = kP∞ according to [4]. In the simpler
form with only the pressure difference in the right hand side, Eq. (1) was first derived by Rayleigh [1], but it was
only in 1949 that Plesset developed the form (1) of the equation and applied it to the problem of traveling cavitation
bubbles [2].

On the other hand, we can extend the RP equation to study the evolution of the cell wall of microorganisms such
as bacteria and viruses, by the inclusion of an additional term that accounts for the bending pressure of the thin
outer shell. However, the effects of mechanical properties of the outer shell in controlling and maintaining the sizes of
microorganisms are not well known. Because the elastic energy per unit area of bending a thin shell is proportional to
the square of the curvature [5], the extended RP equation (ERP) can be modified to include this additional bending
pressure term pb = Y h2/R2 of the thin outer shell of elastic modulus Y , and thickness h coating the cell to read

ρw

(
RRTT +

3

2
RT

2
)

= ∆P − 2σ

R
+
Y h2

R2
. (2)

Typical fixed values that we will use are ρw = 103 kg/m3, R0 = 10−6 m, P∞ = 101325 Pa, h = 3× 10−9 m, while k
varies in the interval [−1, 0), noting that the case k = −1 corresponds to zero internal pressure, while the case k = 0
corresponds to a zero pressure drop between the interior and exterior of cell walls. The values for Young’s modulus
and surface tension σ are allowed to vary in the ranges Y ∈ [2× 108, 5× 108] Pa and σ ∈ [1× 10−4, 2× 10−2] N/m.
In choosing these values, we have been guided by data mentioned in the literature. In the decade-old short review
“Physical Virology” by Roos et al. [4] it is mentioned that “viral shells have effective Young’s moduli ranging from
that of polyethylene to that of plexiglas”, i.e., from 200 to 300 MPa up to ∼ 3 GPa, although here we will not consider
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shells stiffer than 500 MPa in bending modulus. On the other hand, a statistical analysis for more than one hundred
species of small viruses performed by Lošdorfer Božič et al. [6] provides a mean thickness of viral capsids of ∼ 3 nm.
A surface tension on the surface of the capsids is mentioned in [4] as generated by the osmotic pressure of the genome
material inside the capsids.

In this paper, we find analytical solutions of the “bubbles with shell” model as expressed by Eq. (2).

II. INTEGRATING FACTOR AND INTEGRATION VIA WEIERSTRASS EQUATION

To solve (2) we will use the initial conditions R(0) = R0, and RT (0) = 0. We further introduce nondimensional
variables given by R = R0u, and T = Tct. Consequently, (2) becomes

uutt +
3

2
ut

2 =
Tc

2

R0
2ρw

(
kP∞ −

2σ

R0u
+

Y h2

R0
2u2

)
, (3)

subject to new initial conditions given by u(0) = 1 and ut(0) = 0. The collapse (Rayleigh) time Tc, used for the
non-dimensional analysis, of the vacuous bubble (k = −1) of 1 µm in radius, was given by Mancas and Rosu [7]

Tc =
Γ( 5

6 )

Γ( 4
3 )

√
π

6
R0

√
ρw
P∞

= 0.914681 R0

√
ρw
P∞

= 0.914681× 9.934401× 10−8 sec. = 9.08681× 10−8 sec . (4)

Furthermore, we let Tc
2P∞

R0
2ρw

= ξ2, where ξ = 0.914681 is an universal constant known as the three-dimensional Rayleigh

factor [8], and using the notation ξ2

P∞
2σ
R0

= γ, and ξ2

P∞
Y h2

R0
2 = α (also noticing that the quotients γ/ξ2 = pσ/P∞, and

α/ξ2 = pα/P∞ are pressure quotients of the initial size with surface pressure pσ = 2σ/R0, and bending pressure
pα = Y h2/R0

2), we write (3) in the form

uutt +
3

2
ut

2 = kξ2 − γ

u
+

α

u2
. (5)

For the values of ranges of parameters described above, we obtain γ ∈ [0.0016514, 0.330281], α ∈
[0.0082893, 0.0371566], surface pressure pσ ∈ [2×102, 4×104] Pa, and bending pressure pα ∈ [1.8×103, 4.5×103] Pa.

By multiplying (5) by the integrating factor 2u2ut, we have the conservation form

d

dt

[
u3ut

2 − 2kξ2

3
u3 + γu2 − 2αu

]
= 0 , (6)

so that

ut
2 =

2kξ2

3
− γ

u
+

2α

u2
+
c1
u3
, (7)

where c1 is an integration constant that varies linearly with respect to the surface tension σ and Young’s modulus Y .
Using the two initial conditions, this constant is

c1(α, γ) = −2α+ γ − 2kξ2

3
. (8)

For the empty cavity (k = −1) without surface tension or bending pressure, γ = 0 and α = 0, we have c1 = 2ξ2

3 ,
which reduces (7) to

ut
2 =

2ξ2

3

(
1

u3
− 1

)
. (9)

The solution of this equation is found by inversion of the integral

t(u) =
1

ξ

√
3

2

∫ 1

u

w3/2dw√
1− w3

, (10)
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which in parametric form becomes

t(u) =
2

5ξ

√
3

2

[√
πΓ
(

11
6

)
Γ
(

4
3

) − u5/2
2F1

(
1

2
,

5

6
;

11

6
;u3

)]
. (11)
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Hypergeometric solution

FIG. 1: The phase portrait of (9) and the corresponding parametric hypergeometric solution for the case γ = 0 and α = 0,
i.e., (Y0, σ0) = (0, 0), from (11).

Notice that the collapse time is obtained from (10) by setting u = 0 which give the Rayleigh factor ξ =
Γ( 5

6 )

Γ( 4
3 )

√
π

6
.

The phase portrait of (9) and the parametric hypergeometric solution for the case γ = 0 and α = 0 from (11) are
displayed in Fig. 1.

The relative contribution of surface tension and bending pressure determines the bending- and the tension-
dominated regimes in which biological cells may be found. Arnoldi et al. [9] distinguished these regimes by the
quotient of the corresponding free energies. However, the same quotient emerges as the ratio of the two constants
α and γ given by the parameter q ≡ 2α/γ = Y h2/R0σ > 0, which in this paper takes the values in the interval
[0.225, 18]. When q < 1 then γ > 2α so we have the tension-dominated regime where σ > Y h2/R0. This is the regime
of high surface tension which is characterized by irreversible deformation of the surface molecular layer. This region
is analogous to the plastic deformation region. On the other hand, when q > 1 then γ < 2α and we have the regime
where σ < Y h2/R0 which is the region when microorganisms recover their shape after the external stress has been
removed. This region is the elastic deformation region. At the boundary between the two regions, q = 1, there is the
critical radius Rc = Y h2/σ which plays an important role in determining the size of the microorganisms, which is the
case that corresponds to the mean ū, special case II in equation (24) below. In each of the plastic and elastic regions
analytical solutions will be found as given in equation (24) by the maximum uM and minimum um, respectively.
For the interested readers, we point out that in the case of filamentous (cylindrical) bacteria, the different regime
parameter ξ = pr/Y h, but still in the form of a quotient of energies, has been introduced by Amir et al. [10].

The approach to integrate (7) is to transform it into an equation in which the right hand side is a cubic or quartic
polynomial in u. Namely, we will use the Sundman transformation dt = u2dτ where τ is the new independent variable
which gives the Weierstrass elliptic equation

uτ
2 =

2kξ2

3
u4 − γu3 + 2αu2 + c1u ≡ Q(u). (12)

It is well known [11–13] that the solutions u(τ) of

uτ
2 = A4u

4 + 4A3u
3 + 6A2u

2 + 4A1u+ A0, (13)
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can be expressed in terms of Weierstrass elliptic functions ℘(τ ; g2, g3), which is a solution to

℘τ
2 = 4℘3 − g2℘− g3 , (14)

via the transformation

u(τ) = û+

√
Q(û)℘τ (τ + τ0; g2, g3) + 1

2Qu(û)
[
℘(τ + τ0; g2, g3)− 1

24Quu(û)
]

+ 1
24Q(û)Q(3)(û)

2
[
℘(τ + τ0; g2, g3)− 1

24Quu(û)
]2
− 1

48Q(û)Q(4)(û)
, (15)

where û can be taken not necessarily as a root of Q(u), and g2, g3 are elliptic invariants of ℘(τ), given by

g2 = A4A0 − 4A3A1 + 3A2
2 =

α2

3
+
c1γ

4
,

g3 = A4A2A0 + 2A3A2A1 −A4A1
2 −A2

3 −A3
2A0 = − 1

216

(
8α3 + 9kc1

2ξ2 + 9c1αγ
)
.

(16)

These invariants are components of the modular discriminant

∆ = g2
3 − 27g3

2 = − c1
2

192

(
−3α2γ2 + 9c1

2k2ξ4 − 3c1γ
3 + 18c1kαγξ

2 + 16kα3ξ2
)

(17)

and together are used to classify the solutions of (12). In particular, choosing û = 0, which is a root of Q(u) = 0, the
general solution (15) takes the much simpler form

u(τ) =
Qu(0)

4℘(τ + τ0; g2, g3)− Quu(0)
6

=
A1

℘(τ + τ0; g2, g3)− A2

2

. =
c1

4℘(τ + τ0; g2, g3)− 2α
3

. (18)

This solution can also be explained by letting u(τ) = 1
v(τ) in (13) which gives the Weierstrass equation

vτ
2 = A4 + 4A3v + 6A2v

2 + 4A1v
3 , (19)

which is

vτ
2 =

2kξ2

3
− γv + 2αv2 +

(
−2α+ γ − 2kξ2

3

)
v3 . (20)

The standard form of (19) given by (14) can be found for A1 6= 0 by the linear transformation

v(τ) =
1

A1

(
℘(τ ; g2, g3)− A2

2

)
=

1

c1

(
4℘(τ + τ0; g2, g3)− 2α

3

)
(21)

yielding (18). Using the initial conditions together with (8), the constant τ0 can be found numerically by root finding
methods from the equation

℘(τ0; g2, g3) =
3γ − 2kξ2 − 4α

12
, (22)

and thus the general solution to (12) in parametric form is

u(τ) =
3α+ kξ2 − 3γ

2

α− 6℘
[
τ + τ0; α

2

3 + γ
4

(
−2α+ γ − 1

32kξ2
)
,− 1

216

(
4α− 3γ + 2kξ2

)(
α(2α− 3γ) + 2k2ξ4 + kξ2(8α− 3γ)

)] ,
t(τ) =

∫ τ

0

u2(ζ)dζ .

(23)
III. THE VACUOUS (k = −1) SHELL SOLUTIONS

We set now k = −1 to present the ideal vacuous solutions of the Rayleigh-Plesset equation with a bending term.
Firstly, we select four sets of values of the parameters that we call minimum, maximum, extreme zero values, and
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average values of Young’s modulus and surface tension as presented in Table I.

TABLE I: The numerical values of the parameters used in the phase portraits depicted in Fig. 2.

values for the parameters Y [Pa] σ [N/m] Rc [m] γ α c1 q u

minimum 2 × 108 1.8 × 10−5 10−5 0.0016514 0.0148626 0.529687 18 um
maximum 5 × 108 2 × 10−2 2.25 × 10−7 0.330281 0.0371566 0.831729 0.225 uM

special I (extreme) 0 0 undefined 0 0 0.557761 undefined u0
special II (mean) 1.005 × 108 1.005 × 10−2 10−6 0.165966 0.0082893 0.557761 1 ū

For those values of the parameters, we obtain the following analytic solutions

um(τ) =
0.132422

℘(τ + 3.30706; 0.000292314, 0.00977999)− 0.0024771
,

uM (τ) =
0.203432

℘(τ + 2.72283; 0.0676499, 0.0226648)− 0.00619276
,

u0(τ) =
πΓ
(

5
6

)2
36Γ

(
4
3

)2
℘

(
τ + 3.25193; 0,

π3Γ( 5
6 )

6

11664Γ( 4
3 )

6

) ,

ū(τ) =
0.13944

℘(τ + 3.15848; 0.0254377, 0.0105037)− 0.0138305
.

(24)

Phase portraits of the elliptic Weierstrass equation (12) for constant c1 and the corresponding solutions of (24) are
displayed in Fig. 2.

0.2 0.4 0.6 0.8 1.0
u

-0.6
-0.4
-0.2

0.2
0.4
0.6

uτ
c1(u,uτ)

c1=0.529687 c1=0.831729

c1=0.557761 c1=0.557761 0.5 1.0 1.5 2.0 2.5 3.0
t(τ)

0.2

0.4

0.6

0.8

1.0
u(τ)

FIG. 2: The phase portrait of (12) which indicates periodic solutions given by (24). c1 = 0.529687 and c1 = 0.831729
correspond to minimum (Ym, σm) and maximum (YM , σM ) values, respectively. The two special cases of c1 = 0.557761
correspond to (Y0, σ0) = (0, 0), and (Ȳ , σ̄). For (Y0, σ0) = (0, 0), the hypergeometric solution can be parameterized in terms of
the ℘ elliptic function given by u0(τ).

A. Cnoidal solutions

This type of periodic solutions is obtained for the lemniscatic case g3 = 0 which gives α = 1
4 (2ξ2 + 3γ), and is

equivalent to q = 3
2 + ξ2

γ . In this case, c1 = − 1
6 (2ξ2 + 3γ), g2 = 1

48 (2ξ2 + γ)(2ξ2 + 3γ), the roots of Q(v) are real, and

(19) can be factored as

vτ
2 = −1

6
(v − 1)

[
−4ξ2 + v(2ξ2 + 3γ)(v − 2)

]
. (25)
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These real roots are

e3 = 1− 2ξ2 + γ√
4ξ4

3 + 8ξ2γ
3 + γ2

, e2 = 1 , e1 = 1 +
2ξ2 + γ√

4ξ4

3 + 8ξ2γ
3 + γ2

,

and although the Weierstrass unbounded function given by (14) has poles aligned on the real axis of the τ−τ0 complex
plane, we can choose τ0 in such a way to shift these poles a half of period above the real axis, so that the ℘ elliptic
function reduces to the Jacobi elliptic function given by

℘(τ ; g2, 0) = e3 + (e2 − e3)sn2[
√
e1 − e3(τ + τ0);m] = −

√
g2

2
cn2

[
4
√
g2(τ + τ0);

1√
2

]
, (26)

with elliptic modulus m =
√

e2−e3
e1−e3 . Thus, the solutions (21) reduce to

v(τ) = 1− 24

ξ2 + 3γ
℘(τ ; g2, 0) . (27)

For the lemniscatic case, this solution is obtained using the transformation (26) to cnoidal waves, and it becomes

v(τ) = 1 +
2ξ2 + γ√

4ξ4

3 + 8ξ2γ
3 + γ2

cn2

[
4
√

(2ξ2 + γ)(2ξ2 + 3γ)

2 4
√

3
(τ + τ0);

1√
2

]
. (28)

To satisfy the initial condition, τ0 is found numerically from

cn

[
4
√

(2ξ2 + γ)(2ξ2 + 3γ)

2 4
√

3
τ0;

1√
2

]
= 0 . (29)

Choosing the mean value of σ = 1.005× 10−2 N/m, one can obtain γ = 0.165966, Y = 7.30417× 109 Pa, q = 6.54104,
c1 = −0.361864, α = 0.542795, and Rc = 6.54104× 10−6 m. The resulting analytic solution is

u(τ) =
1

1 + 1.59416 cn2
[
0.537061(τ + 3.88405); 1√

2

] . (30)

The plot of this solution together with its phase portrait is presented in Fig. 3 showing that in this case the bubble
does not collapse.

0.2 0.4 0.6 0.8 1.0
u

-0.4

-0.2

0.2

0.4

uτ
c1(u,uτ)=-0.361863

0 1 2 3 4 5
t(τ)0.0

0.2

0.4

0.6

0.8

1.0
u(τ)

FIG. 3: The phase portrait from (12) and the corresponding periodic parametric solution in terms of Jacobi’s elliptic function
given by (30).
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B. Degenerate cases

We now study the degenerate cases given by ∆ = 0 for which (19) becomes

vτ
2 =

(
−2α+ γ +

2ξ2

3

)
v3 + 2αv2 − γv − 2ξ2

3
. (31)

In this case the discriminant factors as

∆ =
(6α− 2ξ2 − 3γ)2(α− ξ2 − γ)2

(
16αξ2 − 4ξ4 − 4ξ2γ + 3γ2

)
1728

(32)

and the solutions given by (21) simplify since the Weierstrass ℘ function degenerates into trigonometric or hyperbolic
elementary solutions.

i) Trigonometric solutions

There are three possibilities for which ∆ = 0.

In the first case, α = ξ2 + γ which is equivalent to q = 2
(

1 + ξ2

γ

)
and implies c1 = −

(
4ξ2

3 + γ
)

. Then (31) has a

double root at v = 1, which can be factored as

vτ
2 = −1

3
(v − 1)2[2ξ2 + (4ξ2 + 3γ)v] . (33)

The solution is

v(τ) = 1− 3(2ξ2 + γ)

4ξ2 + 3γ
sec2

[
1

2

√
2ξ2 + γ (τ + τ0)

]
. (34)

However, this case does not satisfy the initial condition v(0) = 1, so it will be disregarded as nonphysical.

Secondly, α = 1
16

(
− 3γ2

ξ2 + 4ξ2 + 4γ
)

which is equivalent to q = 1
2 + ξ2

2γ −
3γ
8ξ2 , and gives c1 = (2ξ2+3γ)2

24ξ2 . Then (31)

has a simple root for v = 1, which can be factored as

vτ
2 =

1

24ξ2
(v − 1)[4ξ2 + (2ξ2 + 3γ)v]2 (35)

with solution

v(τ) = − 4ξ2

2ξ2 + 3γ
+

3(2ξ2 + γ)

2ξ2 + 3γ
sec2

(√
2ξ2 + γ

√
2ξ2 + 3γ

4
√

2ξ
τ

)
, (36)

which satisfies the initial condition v(0) = 1. The general solution to (12) in parametric form is

u(τ) =
1

1 +A tan2(θτ)

t(τ) = − 1

2θ(A− 1)

[
A tan(θτ)

1 +A tan2(θτ)
+

2θ

A− 1
τ +

(A− 3)
√
A

A− 1
tan−1

(√
A tan(θτ)

)]
,

(37)

where A = 1 + 4ξ2

2ξ2+3γ , and θ =

√
2ξ2+γ

√
2ξ2+3γ

4
√

2ξ
. Choosing the mean value of σ = 1.005× 10−2 N/m, one can obtain

γ = 0.165966, Y = 3.28985× 109 Pa, q = 2.94613, c1 = 0.234769, α = 0.244479, and Rc = 2.94613× 10−6 m.
Using these values, one finds A = 2.54136 and θ = 0.38621. The corresponding periodic trigonometric solution (37)

and its phase portrait are presented in Fig. 4.

ii) Hyperbolic solutions

This case is found when α = 1
6 (2ξ2 + 3γ), which is equivalent to q = 1 + 2ξ2

3γ , and gives c1 = 0. Then (31) is factored
as

vτ
2 =

1

3
(v − 1)

[
2ξ2 + (2ξ2 + 3γ)v

]
, (38)
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with solution

v(τ) =
3γ

2(2ξ2 + 3γ)
+

4ξ2 + 3γ

2(2ξ2 + 3γ)
cosh

(√
2ξ2 + 3γ

3
τ

)
, (39)

which satisfies the initial condition v(0) = 1. The general solution to (12) in parametric form is

u(τ) =
1

1 + 2B sinh2
(
θ̃τ
2

) ,

t(τ) =
1

θ̃(2B − 1)

[
B sinh(θ̃τ)

1 + 2B sinh2
(
θ̃τ
2

) +
2B − 2√
2B − 1

tan−1

(
√

2B − 1 tanh

(
θ̃τ

2

))]
,

(40)

where B = 1
2 + ξ2

2ξ2+3γ , and θ̃ =
√

2ξ2+3γ
3 . Choosing the mean value of σ = 1.005 × 10−2 N/m, one can obtain

γ = 0.165966, Y = 4.86994× 109 Pa, q = 4.3607, c1 = 0, α = 0.361864, and Rc = 4.3607× 10−6 m.
Using these values, then B = 0.885339, and θ̃ = 0.850722. For these values, the plot of the hyperbolic solution (40)

and its phase portrait are presented in Fig. 4.

0.2 0.4 0.6 0.8 1.0
u

-0.4

-0.2

0.2

0.4

uτ
c1(u,uτ)

c1=0.234769 c1=0 0.2 0.4 0.6 0.8 1.0 1.2
t(τ)

0.2

0.4

0.6

0.8

1.0
u(τ)

FIG. 4: The phase portraits from (12) and the corresponding periodic trigonometric solution (37) and hyperbolic solution
(40).

IV. SOLUTIONS OF THE RAYLEIGH-PLESSET WITH SHELLS EQUATION FOR k 6= −1

For k 6= −1, the solutions can be considered more realistic because this case implies a non zero internal pressure.
In the range k ∈ (−1, 0), the solutions are still bound, and unless for a shift with respect to the origin they are not
really different from the vacuous solutions as shown by the plots presented in Fig. 5 for the case k = −0.1 of rational
Weierstrass solutions.

On the other hand, for strictly positive values of k, there are only unbounded solutions since the internal pressure
is bigger than the outside one. Plots of the k = 0.1 case are presented in Fig. 6. We surmise that these unbounded
solutions correspond to the fundamental phenomenon of pressure-driven DNA ejection associated to the majority of
the bacterial viruses and to some of the eukaryotic viruses [14, 15].

We further notice that periodic solutions of cnoidal type are possible for the special value of k given by

k ≡ kcn =
α
[
8α2 + 9c1γ

]
(3c1ξ)2

(41)

and directly degenerate trigonometric solutions are possible if

k ≡ kd =
−α(8α2 + 9c1γ)±

√
α2(8α2 + 9c1γ)2 − 27c12γ2(α2 + c1γ)

(3c1ξ)2
(42)
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when the combination of the parameters is such that kd ∈ (−1, 0).

0.2 0.4 0.6 0.8 1.0
u

-0.4

-0.2

0.2

0.4

uτ
c1(u,uτ) for k=-0.1

c1=0.027702 c1=0.311744

c1=0.055776 c1=0.055776 2 4 6 8 10
t(τ)

0.2

0.4

0.6

0.8

1.0
u(τ)

FIG. 5: The phase portrait and the corresponding periodic rational Weierstrass solutions in the case k = −0.1. c1 = 0.027702
and c1 = 0.311744 correspond to minimum and maximum values, (Ym, σm) and (YM , σM ), respectively. The two special cases
of c1 = 0.055776 correspond to (Y0, σ0) = (0, 0) and (Ȳ , σ̄), hypergeometric and mean cases, respectively.

-2.0 -1.5 -1.0 -0.5 0.5 1.0
u

-0.6
-0.4
-0.2

0.2
0.4
0.6

uτ
c1(u,uτ) for k=0.1

c1=-0.083849

20 40 60 80 100
τ

-100

-50

50

100

u(τ)

FIG. 6: The unbound case for k = 0.1 for which c1 = −0.083849.

V. CONCLUSION

In this paper, parametric solutions of the Rayleigh-Plesset equation extended with a term that takes into account
the bending pressure due to the elasticity of a shell or capsule surrounding a liquid- or vapor-like substance have
been obtained. The general method of Weierstrass elliptic equation using as evolution parameter the Sundman time
has been employed. Particular cases that can be important in applications, such as cnoidal and modular-degenerate
solutions, are also presented. The simpler, but more particular method using the Abel equation has been briefly
described in the appendix. The quotients of the surface and bending pressures and the pressure of the background
medium together with the Rayleigh collapse time are the other parameters that characterize the solutions displayed
in this work.
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APPENDIX A: INTEGRATION VIA ABEL’S EQUATION

Proceeding as in Mancas and Rosu [16], the solutions to a general second order ODE of type

utt + f2(u)ut + f3(u) + f1(u)ut
2 + f0(u)ut

3 = 0 (A1)

can be obtained via the solutions to Abel’s equation of the first kind (and vice-versa)

dy

du
= f0(u) + f1(u)y + f2(u)y2 + f3(u)y3 (A2)

using the substitution

ut = η(u(t)) , (A3)

which turns (A1) into the Abel equation of the second kind in canonical form

ηηu + f3(u) + f2(u)η + f1(u)η2 + f0(u)η3 = 0 . (A4)

Using the inverse transformation η(u(t)) = 1/y(u(t)) of the dependent variable, (A4) becomes (A2) and viceversa.

In our case, by comparing (A1) with (5), we identify the nonlinear coefficients to be f0(u) = 0, f1(u) = 3/(2u),
f2(u) = 0, and f3(u) = −kξ2/u+ γ/u2 − α/u3. Therefore Abel’s equation (A2) simplifies to the Bernoulli equation

dy

du
= f1(u)y + f3(u)y3 . (A5)

By one quadrature, this equation has the solution

y(u) = ± u3/2√
c1 + 2αu− γu2 + 2kξ2

3 u3

, (A6)

and using the inverse transformation 1/y(u(t)) = ut together with (A3), one can obtain (7).
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