
CO
RR

EC
TE

D
PR

OO
F

Communications in Nonlinear Science and Numerical Simulation xxx (xxxx) 106100

Contents lists available at ScienceDirect

Communications in Nonlinear Science and
Numerical Simulation
journal homepage: www.elsevier.com

Journal logo

Research paper

Study of a general growth model
G. Albano a, ⁎, V. Giorno b, P. Román-Román c, d, F. Torres-Ruiz c, d

a Dipartimento di Studi Politici e Sociali, Università degli Studi di Salerno, Via Giovanni Paolo II n. 132, I-84084 Fisciano (SA), Italy
b Dipartimento di Informatica, Università degli Studi di Salerno, Via Giovanni Paolo II n. 132, I-84084 Fisciano (SA), Italy
c Department of Statistics and Operations Research, Faculty of Sciences, University of Granada, 18071 Granada, Spain
d Institute of Mathematics of the University of Granada (IMAG), Calle Ventanilla, 11, 18001, Granada, Spain

A R T I C L E  I N F O

Keywords:
Ordinary differential equation
Growth curve
Carrying capacity

A B S T R A C T

We discuss a general growth curve including several parameters, whose choice leads to a variety
of models including the classical cases of Malthusian, Richards, Gompertz, Logistic and some
their generalizations. The advantage is to obtain a single mathematically tractable equation
from which the main characteristics of the considered curves can be deduced. We focus on the
effects of the involved parameters through both analytical results and computational evalua-
tions.

1. Introduction

The need to describe and explain the evolution of many phenomena associated with growth curves has led to multiple efforts to
study these types of functions. This need is more accentuated if we take into account the application of these curves in a wide variety
of fields of application in branches of the physical, biological and social sciences, as well as in various areas of agriculture, business,
education, engineering, medicine and public health (see, for example, [1] where much of the traditional growth curves are presented
together with real examples of application).

Within the family of growth curves, those of the sigmoidal type deserve a special section. The first to appear in the literature is the
logistic curve, introduced by Verhulst in the context of Demography and the study of population dynamics, although it took until the
second decade of the 20th century for it to be retaken. Today it is one of the most widely used models in areas such as innovation dif-
fusion modeling (Giovannis and Skiadas [2]) or the exploitation of energy resources (Giovannis and Skiadas [3]). Together with the
logistic curve, the Gompertz one is perhaps the most widely discussed in the literature on modeling growth phenomena. Introduced
by Benjamin Gompertz to model the law of human mortality, currently the study of it has become very important, due to its useful-
ness in the description of tumor growths (see, for example, [4]), which had led to the development of several studies on this curve.

However, these curves cannot always adequately represent various real sigmoidal behavior patterns, mainly due to their stiffness
in some of their characteristics such as the inflection points. This led to the appearance of new curves, among which we highlight the
one introduced by Von Bertalanffy or the later extension due to Richards (see [5,6], and references therein). Later generalizations
gave rise to more general expressions such as the Hyperlogistic and Blumberg curves.

The search for greater flexibility in the curves that allows dealing with complex real situations has led many authors to develop a
generalization methodology starting from a simple equation to understand the growth mechanism of a specific phenomenon. Then,
and with the aim of generating more flexible forms, and thereby increasing the applications to a wider range of research areas, more
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Fig. 1. Scheme summarizing the results of Remark 2.1.

parameters, or functions, are incorporated into the model. Turner et al. [7] proposed a general theory of growth based on quite gen-
eral postulates. Subsequent analyzes in this regard have been developed by Tsoularis and Wallace [8] and by Koya and Goshu [9]. Al-
though generalized equations offer greater flexibility, the complexity of the model increases. For this reason, within this line, in re-
cent years the idea of adding new parameters has been combined with that of introducing functions with very flexible behaviors.
Tabatabai et al. [10] construct the so-called hyperbolastic curves that allow the adjustment of data showing different types of sig-
moidal behavior, applying them to the study of tumor evolution and stem cell growth (Tabatabai et al. [11]). These models are the
starting point for the development of others, such as the oscillabolastic one, which aim is to model oscillatory growths (Eby and
Tabatabai [12]) and the T-type model (Tabatabai et al. [13]), able to represent biphasic sigmoidal growths. Following this line, Erto
and Lepore [14] have introduced a new type of sigmoidal curve that can, under certain conditions, present more than one inflection
point. With regard to multisigmoidal curves, recently the works of Di Crescenzo et al. [15] and Román-Román et al. [16] have intro-
duced multisigmoidal logistic and Gompertz models modifying the original ordinary differential equations by means of polynomial
functions in their expression. This is one of the procedures followed by various authors for the generalization of certain growth
curves. For example, the hyperbolastic model H1 arises from the modification of the logistic equation, while the curve H3 appears as
the solution of a modification of the Weibull differential equation. In both cases, the introduced functions are of the hyperbolic type.
Another way of introducing generalizations is from the alteration of stochastic models associated with the curves. Along these lines,
we can highlight the introduction of temporal functions to model the incorporation of therapies in the evolution of tumor growths,
giving rise to modifications of the Gompertz curve (see, for example, [17–20]).

A fundamental aspect to take into account is that all these modifications are due to the need to have the broadest possible knowl-
edge of the curves considered. An example of great relevance today is the study of the evolution of epidemics such as Covid19, where
it is of fundamental interest to determine the instants of contagion peaks, the moments of inflection of the evolution, duration times
and of the appearance of successive infection waves. In this sense, the objective of this article is to analyze in depth a general deter-
ministic model of growth that includes and generalizes the most widely used models. Specifically, we consider the generalized form
of the logistic curve introduced in Tsoularis and Wallace [8]. Such growth form incorporates also growth models different from the
logistic growth and its generalizations, making it able to fit population dynamics in a very wide range of behaviors. This is essentially
the reason why in this paper we investigate the role of some relevant parameters in the equation governing the growth in Tsoularis
and Wallace [8] and we analytically investigate the behavior of the curve in different scenarios.

The plan of the paper is the following. In Section 2, starting from Tsoularis and Wallace [8], a general ordinary differential equa-
tion to describe the evolution of a population size is considered and the solution is determined. We also show that choosing appropri-
ately the parameters one can derive the more used models; specifically we show that the Malthus, Hyper-logistic, logistic, Hyper-
Gompertz, Gompertz, Bertalanffy–Richards models can be obtained from the general curve. In Section 3 an analytical study of the
considered curve is performed and we analyze the various behaviors that the curve can exhibit. In Section 4 we provide a detailed nu-
meric analysis to show the flexibility of the model based on the choice of parameters. Some concluding remarks close the paper.
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Fig. 2. Case 1: for several choices of the parameter with , the general curve (13) is compared with the Richards curve (black line), fixed , ,
and . In the last case the Richards curve becomes the logistic curve.

2. The model

We denote by the population size or the dimension of an organism at time . We assume that is the solution of the fol-
lowing ordinary differential equation (ODE)

(1)

where denotes the population size at the initial time , , and are shape-parameters subject to being positive with
and . As we will see later, this last parameter, usually interpreted as the carrying capacity of the system in the classi-

cal sigmoidal curves, here has different interpretations depending on the other parameters.
Remark 2.1. The most used ODE’s considered as growth equations can be expressed in the form given in (1). In particular, the follow-
ing cases are included in (1).

• Bertalanffy–Richards: For , Eq. (1) reduces to

3
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Fig. 3. Case 1: for (on the left) and (on the right), the general curve (13) is plotted for several choices of with .

(2)

• Logistic: Eq. (2) becomes the classical logistic equation when :

(3)

• Malthus: For , Eq. (2) leads to Malthus equation:

• Hyper-Logistic: When , from (1) we obtain:

that includes the Logistic ODE (3) obtainable when .
• Hyper-Gompertz: From Eq. (1) we derive the Hyper-Gompertz equation for . Indeed, since ,

assuming that , from (1) we obtain

(4)

• Gompertz: Considering the limit , Eq. (4) becomes the simplest Gompertz growth curve:

Discussion of Remark 2.1 is summarized in the scheme in Fig. 1.

Lemma 1. The solution of Eq. (1) is

(5)

4
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Fig. 4. Case 2: general curve in the case compared with the Logistic curve (black line), for several choices of ( on the left and on the right).

where depends on the shape parameter and on the ratio between the carrying capacity and the initial population size .

Proof. Integrating both the members in (1) we obtain:

(6)

where is a constant of integration. We consider the integral on the left hand size of (6). Carrying out the change of the variable
of integration in

so that

we obtain the solution of the integral in (6):

(7)

From (7), by making use of the inverse transformation, it follows:

(8)

The constant in Eq. (6) can be obtained by using the initial condition resulting in

(9)

Therefore, making use of (8) and (9) in (6), we obtain

or, equivalently,

5
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Fig. 5. Case 3a: general curve for several choices of and for and (from left to right and from top to bottom).

from which (5) follows. □

On the line with Remark 2.1, in the following remark we show that the solution in (5) includes the most used growth curves.
Remark 2.2. The Eq. (5) includes the most used equations in literature. In particular, the following cases are included.

• Bertalanffy–Richards: When , Eq. (5) reduces to Bertalanffy–Richards curve. Indeed, since

from (5) one has:

(10)

• Logistic: For , Eq. (10) becomes the classical logistic curve:

6
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Fig. 6. Case 3a: general curve for for several choices of the parameter and .

(11)

• Malthus: We point out that, for , Eq. (11) reduces to Malthus curve, i.e.

• Hyper-Logistic: When , from (5) we obtain the hyper-logistic curve:

that for becomes the logistic growth.
• Hyper-Gompertz: From (5) we derive the Hyper-Gompertz equation. Indeed, since

7
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Fig. 7. Case 3b: general curve for several choices of and for and (from left to right and from top to bottom).

so, assuming , we have:

Therefore, we conclude that

8
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Fig. 8. Case 3b: general curve for for several choices of the parameter and .

(12)

corresponding to the Hyper-Gompertz curve.
• Gompertz: Taking the limit for in Eq. (12) we obtain the Gompertz curve. Indeed, since

we conclude

that is the Gompertz curve.

9
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Fig. 9. Case 3c: general curve for several choices of and for and (from left to right and from top to bottom).

In the following section we will study the growth curve in (5), analyzing the domain, the monotonicity and the potential inflection
points and the role of the parameters on such issues. In particular, we consider the parameters and as fixed and we explore the
role of and in (5).

3. Analysis of the growth curve

We rewrite Eq. (5) in the following general form:

(13)

where

(14)

It is interesting to evaluate the time point in which the population size reaches a fixed value . Such value can be a propor-
tion of the carrying capacity or a multiplier of the initial size . In particular, from (13) and (14), it is easy to see that

10
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Fig. 10. Case 3c: general curve for for several choices of the parameter and .

To analyze the monotonicity of the function , we evaluate the first derivative of Eq. (13):

(15)

where

(16)

In order to determine the potential inflection points of , we consider the second derivative:

11
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Table 1
Values of , , and for and several choices of .

Case 1:

1.1 14.334 – 155.746 0.389 11.200 – 164.844 0.412 9.618 – 172.863 0.432 8.614 – 180 0.45
1.2 12.695 – 140.026 0.350 9.183 – 147.683 0.369 7.369 – 154.283 0.385 6.202 – 160 0.4
1.3 11.159 – 125.298 0.313 7.468 – 131.285 0.328 5.601 – 136.140 0.340 4.431 – 140 0.35
1.4 9.721 – 111.541 0.278 6.005 – 115.668 0.289 4.197 – 118.469 0.296 3.107 – 120 0.3
1.5 8.382 – 98.733 0.246 4.759 – 100.853 0.252 3.078 – 101.311 0.253 2.109 – 100 0.25
1.6 7.143 – 86.850 0.217 3.702 – 86.861 0.217 2.190 – 84.717 0.211 1.359 – 80 0.2
1.7 6.007 – 75.870 0.189 2.815 – 73.718 0.184 1.495 – 68.752 0.171 0.805 – 60 0.15
1.8 4.978 – 65.767 0.164 2.081 – 61.451 0.153 0.962 – 53.499 0.133 0.410 – 40 0.1
1.9 4.059 – 56.518 0.141 1.487 – 50.094 0.125 0.568 – 39.076 0.097 0.146 – 20 0.05
Case 2:

1 16.087 – 172.480 0.431 13.592 – 182.751 0.456 12.52 – 191.853 0.479 11.977 – 200 0.5
Case 3a: , even

27.517 35.682 272.077 0.680 36.469 42.874 282.986 0.707 52.027 57.372 292.165 0.730 77.590 82.209 299.997 0.75
21.099 50.005 218.887 0.547 21.98 43.071 230.687 0.576 24.666 41.484 240.960 0.602 28.713 42.795 249.999 0.625
19.310 68.736 202.680 0.506 18.705 53.779 214.214 0.535 19.568 47.029 224.345 0.560 21.213 43.905 233.333 0.583
18.463 88.198 194.855 0.487 17.268 66.031 206.161 0.515 17.472 55.274 216.127 0.540 18.320 49.330 224.999 0.562

Case 3b: , even

23.040 32.301 235.849 0.589 25.904 2.8383 247.644 0.619 31.339 36.960 257.808 0.644 39.409 44.171 266.66 0.666
20.009 39.610 209.073 0.522 19.946 34.0155 220.744 0.551 21.449 32.547 230.962 0.577 23.906 33.128 240 0.6
18.822 48.622 198.186 0.495 17.869 38.8403 209.597 0.524 18.338 34.665 219.641 0.549 19.501 32.937 228.57 0.571
18.188 58.110 192.288 0.480 16.814 44.5911 203.504 0.508 16.829 38.289 213.402 0.533 17.457 35.016 222.22 0.555

Case 3c: ,

29.477 – 354.068 0.885 47.491 – 359.207 0.898 83.111 – 363.312 0.908 153.539 – 366.666 0.916
27.047 – 345.282 0.863 40.701 – 351.260 0.878 66.688 – 356.060 0.890 115.409 – 360 0.9
24.075 – 332.352 0.830 32.876 – 339.474 0.848 49.050 – 345.238 0.863 77.356 – 350 0.875
20.539 – 311.455 0.778 24.188 – 320.189 0.800 31.298 – 327.352 0.818 42.858 – 333.333 0.833

(17)

From (16), we have

so that

12
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(18)

In our analysis, we focus also on the proportion of the population in the point in which the growth velocity is maximum and its
carrying capacity. Such proportion mathematically is the ratio , where represents the inflection point of the curve .
We will see that depends only on the parameters and .

In the following we distinguish three cases:

1. ;
2. ;
3. .

3.1. Analysis of the curve in the case 1:

Since in such case for all , the function is defined in . Further, being , the denomina-
tor of Eq. (13) tends to , so .

To study the monotonicity of the function , we analyze the first derivative in (15). In particular, from (16), due to the sign of
the function , we have that is monotonically increasing.

The inflection points are obtained by setting in (17). Since , we have , hence from (18), an inflec-
tion point exists if and only if

from which, recalling (14), we obtain the following inflection point:

(19)

We note that, since , the inflection point is visible, i.e. , if and only if

i.e.

Moreover, from (1) and (19), we obtain:

We note that the proportion between and the carrying capacity is

3.2. Analysis of the curve in the case 2:

Since

13
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taking the limit of for in the Eq. (5), we obtain the well known Richards equation:

In such case is defined in ; the carrying capacity is . The function is strictly monotonically increasing,
as it is evident from (15) and (16). Further, from (17) and (18),

from which we derive that an inflection point exists if and only if , i.e.

(20)

From (20) it is clear that if and only if , i.e.

In such case, from (1) and (20), we obtain:

The proportion between and the carrying capacity is

3.3. Analysis of the curve in the case 3:

When we distinguish three different cases:

a. , with even.

b. , with odd.

c. .

Case 3a: , with even.
In such case the function is defined in , being for all . Further, since the denominator of Eq. (13) di-

verges as goes to , one has , hence the population is doomed to extinction. The sign of the first derivative (15) de-
pends on Eq. (16), that we rewrite as

Being odd, the sign of is the same of the function ; hence recalling Eq. (14), one has that the if and only if

(21)

Therefore, in such case a maximum point presents coordinates .
Concerning the convexity, Eq. (18) becomes

14
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(22)

so, the second derivative (17) vanishes if and only if either or

Recalling (14) and that vanishes in the maximum point of the function , we have that if and only if
. This last one admits two solutions being even. The two inflection points, and are:

We note that , whereas the value of in such inflection points is the same, concretely

We also note that when

(23)

both the inflection points are in , otherwise .
Finally, the proportion between and the carrying capacity is

(24)

Case 3b: , with odd.
In such case the denominator of (13) is equal to zero for

(25)

so the function is defined in and a vertical asymptote is present in . In particular , hence the popula-
tion explodes at the finite time . Further, looking at (16), being odd, . Still, the denominator of (13) is positive in
the interval . Hence the function is monotonically increasing in .

Finally, from Eq. (22) we conclude that admits two solutions; the first one obtained by setting
and the second one is the solution of , i.e.

(26)

We note that if and only if (23) holds.
Further,

(27)

and is given in (24).
Case 3c: .

15
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In this case the function is defined in , with

(28)

Further, , hence the population reaches its carrying capacity at the finite time . From (15) and (16) we observe
that is monotonically increasing since in . Finally, since Eq. (18) vanishes in as in (26), we find an inflec-
tion point in

while is given in (24).

4. Numerical analysis

In this section we perform a numerical analysis of the curve (13), by considering the cases identified in Section 3. For each case,
we analyze the behavior of the curve as function of the time, for different choices of the parameter by fixing and for several
choices of by fixing . The other parameters are fixed for all the study as: and .

In Fig. 2 the general curve in the case is compared with the Richards curve (black line), fixed and
and for several choices of the parameter ranging from 1.1 to 1.9. We point out that Richards curve is obtained from (13) when
tends to 1. We can see that, by controlling , the carrying capacity is reached in a time interval that is increasing as in-
creases, remarking that the parameter has the role of proliferation rate for the population . Further, by increasing for each curve
the carrying capacity is reached faster. This is also clear in Fig. 3 in which we plot the curve (13) in the Case 1 for several choice of
ranging from 0.4 to 1.2 and for and . From Figs. 2 and 3 it is also clear that the inflection point calculated in (19)
decreases as and increase. In order to give a quantitative evaluation of how the inflection point and change as and
change, in Table 1 such values are shown for and from left to right and for several choices of ranging from 1.1 to
1.9. Clearly, since the curve presents a unique inflection point, we set . The proportion between the value and the
carrying capacity of curve is also listed in order to give a measure of the curve in which the growth velocity is maximum.

Case 2 in which is shown in Fig. 4 where the general curve in (5) is compared with the logistic curve, obtained by set-
ting and as established in Remark 2.2 for several choices of (on the left) and of (on the right). In both the cases,
when increases, the curve reaches its carrying capacity in a smaller time interval, so in the first plot the logic curve presents a
growth velocity that is higher with respect to the others, while in the second plot, it is the curve milder. Further we note that for
the curves seem closer to each ones, showing that the dependence on is not linear and it is more evident in the case . In Table 1
the information related to the inflection point in the Case 2 is listed for and , showing that also in this case

decreases as increases, while the values of and increase.
Let us consider now the Case 3 in which . As pointed out in Section 3, in this case we need to consider three subcases:

a. , with even.

b. , with odd.

c. .

In the Case 3a the curve presents a maximum and it tends to for . Such case is illustrated in Figs. 5 and 6. In Fig. 5
the general curve is illustrated for and (from the top to the bottom), i.e. , respectively. In each plot several
choices of the parameter are considered ranking from 0.5 to 1. The behavior of the curve is quite unexpected, since in the case
it seems that the role of is to translate ahead the curve as increases. In the other cases, i.e. for , we observe a
“plateau” that is wider as increases. Anyway we point out that the maximum of the curve in (5) is always unique and with coor-
dinates with in (21), contrary to what it seems from the plots. Fig. 6 shows the behavior of the curve for
and (from the top to the bottom). Here it is evident the peculiar behavior of the curve in which , i.e. that is translated
with respect to the other curves, while the main change for the cases is the decrease of the width of the plateau as the para-
meter increases. Clearly, in this case the inflection points are two and the results related to them are illustrated in Table 1, in which

16
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. The inflection point decreases as increases, while increases. A less regular behavior is observed for

and as changes. Further, decreases as increases, while it increases as increases.
In the Case 3b the curve is defined in with given in (25) and , so the population explodes in a finite

time interval. The results of this case are shown in Figs. 7 and 8. In Fig. 7 the curve is plotted for and (from the top to
the bottom) and for and . In all the plots the curves present a growth velocity depending on the parameter , in par-
ticular in the first subinterval in which . Further, presents a plateau near , which width increases as increases. In
this case the value does not correspond to the maximum of the function , since after the plateau the curve increases indefinitely.
Indeed, as pointed in (27), is the value of the function in . Fig. 8, in which is plotted for and (from the
top to the bottom) and for and , confirms the results observed in Fig. 7. In Table 1 the values of and , and

the proportion are shown. Clearly the proportion since . We observe that decreases as

increases and it increases as increases; presents a more irregular behavior. The values of and decrease as increases
and increase for increasing .

In the Case 3c the curve is defined in with given in (28) and , so the population reaches its carrying ca-
pacity at a finite time interval. In Fig. 9 the curve is plotted for and (from the top to the bottom) and for

and . In all the plots it is evident that the population size remains near to 0 for a time interval which amplitude in-
creases as increases depends increases as increases. In Fig. 10, is plotted for and (from the top to the bottom)
and for and ; we note that in this case is near 0 for a time interval that is smaller as increases. Table 1 con-
firms the results of Figs. 9 and 10 showing that the values of and decrease for increasing , while they increase as

increases; the proportion follows the same behavior of .

5. Conclusions and future works

In this work we have considered a growth model described by means of an ODE, able to include the most used growth curves, such
as Gompertzian, Logistic, Bertalanffy–Richards and Malthus. The analytical solution has been provided and a study of this solu-
tion has been made. The considered growth curve is characterized by the presence of several shape parameters and we focused on two
of them, and , with in (1) and in (5). In particular, by considering three cases for the parameter , different behaviors
of the growth curve have been highlight in terms of domain, monotonicity, convexity and asymptotic behavior. The three consid-
ered cases are:

1. ;
2. ;
3. .

In the Cases 1 and 2 the curve is defined in , it is monotonically strictly increasing, showing a sigmoidal behavior and it
tends to its carrying capacity for . Further, there exists a unique inflection point at ; the values of and
decrease as increases, whereas for increasing values of , decreases while increases.

More interesting is the Case 3, in which exhibits different behaviors depending on the value of the parameter . In particular,
we considered three subcases of the Case 3:

3a. , with even;

3b. , with odd;

3c. .

In the Case 3a the curve is defined in and it has a bell shape, so it vanishes for . Near the maximum, correspond-
ing to , a plateau is highlighted whose amplitude increases as increases. In the case it seems that the role of is to translate
ahead the curve as increases. In the Case 3b the curve is defined in a finite time interval and it explodes in a finite time. Further,

presents a plateau near the parameter , which width increases as increases, then presents an exponential behavior. Fi-
nally, in the Case 3c the curve is defined in a finite time interval , whose amplitude increases as increases and decreases
for increasing ; moreover, , so the population reaches its carrying capacity in a finite time interval.
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The study carried out in this paper lays the foundations for a generalization to growth in a stochastic environment, capable of
putting in a single framework even very different behaviors of the growth phenomenon and thus providing for them a single mathe-
matical tool for probabilistic-statistical analysis.
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