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Validated forward integration scheme for
parabolic PDEs via Chebyshev series

Jacek Cyranka * Jean-Philippe Lessard!

Abstract

In this paper we introduce a new approach to compute rigorously solutions of Cauchy problems for a
class of semi-linear parabolic partial differential equations. Expanding solutions with Chebyshev series
in time and Fourier series in space, we introduce a zero finding problem F'(a) = 0 on a Banach algebra
X of Fourier-Chebyshev sequences, whose solution solves the Cauchy problem. The challenge lies in the
fact that the linear part £ % DF(0) has an infinite block diagonal structure with blocks becoming less
and less diagonal dominant at infinity. We introduce analytic estimates to show that £ is an invertible
linear operator on X, and we obtain explicit, rigorous and computable bounds for the operator norm
£~ | 5(x)- These bounds are then used to verify the hypotheses of a Newton-Kantorovich type argument
which shows that the (Newton-like) operator 7 (a) % a— £~ F(a) is a contraction on a small ball centered
at a numerical approximation of the Cauchy problem. The contraction mapping theorem yields a fixed
point which corresponds to a classical (strong) solution of the Cauchy problem. The approach is simple
to implement, numerically stable and is applicable to a class of PDE models, which include for instance

Fisher’s equation and the Swift-Hohenberg equation. We apply our approach to each of these models.
Keywords: forward integration, parabolic PDE, Chebyshev series, Newton-Kantorovich, rigorous numeric
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1 Introduction

In this paper, we introduce a new, fully spectral, validated forward integration scheme for a class of parabolic
partial differential equations (PDEs) based on Chebyshev expansion in time. The class of PDE problems we
consider is Cauchy problems associated with dissipative semi-linear equations of the form

up = Lu+Q(u), u(0,z) = uo(x) (1)

where u = u(t,r) € R, ug(z) is a given initial condition, x € [0,27], t > 0, I = %, L= Z?:o Y2002
(v2¢ € R) is a linear differential operator of even order 2d and Q(u) = E?:z gju’ is a polynomial of degree
p in u containing no constant term and no linear term. We supplement model (1) with even boundary
conditions, that is u(t, —z) = u(t, x).

It is worth mentioning that the development of rigorous computational methods to study the flow of
dissipative PDEs has received its fair share of attention in the last fifteen years. Let us mention the topological
method based on covering relations and self-consistent bounds [1, 2, 3, 4, 5, 6, 7], the C! rigorous integrator

of [8], the semi-group approach of [9, 10, 11, 12], and the finite element discretization based approach of
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[13, 14, 15]. This interest is perhaps not surprising as dissipative PDEs naturally lead to the notion of
infinite-dimensional dynamical systems in the form of semi-flows, and understanding the asymptotic and
bounded dynamics of these models is strongly facilitated by a rigorous investigation of the flow. While
rigorous computations of periodic orbits may avoid the necessity of computing portions of the flow (they
can indeed be obtained with Fourier expansions in time [16, 17, 18, 19]), computing solutions to boundary
values problems or connecting orbits often require a time integration.

Our approach goes as follows. Expand the solution u(t,z) as a Fourier series in « with time-dependent
Fourier coefficients. Obtain an infinite system of nonlinear ordinary differential equations (ODEs) to be
solved on a time interval [0, h]. Using the Fourier coefficients of the initial condition ug(x), reformulate the
ODEs as rescaled Picard integral equations over the time interval [—1,1]. Expand the solution of the integral
equations with a Chebyshev series expansion in time. Derive an equivalent zero finding problem of the form
F(a) = 0 (where a = (ax,;)r,; is an infinite two-index sequence of Fourier-Chebyshev coefficients) whose
solution correspond to the solution of the Cauchy problem (1). The operator F is defined on a weighed ¢!
Banach space X of Fourier-Chebyshev coefficients

X ={a=(ar;)r; : llallx = larlwr; < oo},
kg

The weights wy ; in the definition of the norm || - || x are chosen so that (a) they have geometric growth
in k (ensuring analyticity of the solutions in space, see Section 2.3); and (b) X is a Banach algebra under
discrete convolutions. Next, let £ < DF(0) be the Fréchet derivative of F at 0 € X and prove that £ is an
invertible operator on X (see Section 3). Then prove that the operator 7(a) = a — £ 'F(a) is a contraction
on a closed ball B, (@) of radius r > 0 centered at a numerical approximation @ € X. To obtain a proof that
the operator T : B, (a) — B, (a) is a contraction for some explicit » > 0, use a Newton-Kantorovich type
theorem (Theorem 2.1) (combining functional analytic estimates and interval arithmetic computations) and
the fact that the step size h > 0 can be taken small if necessary. An application of the contraction mapping
theorem yields a unique solution @ € B, (a) of F' = 0, which represents the solution of the Cauchy problem
on the time interval [0,h]. The explicit radius r > 0 yields a rigorous CY error bound between the true
solution of the Cauchy problem (1) and its numerical approximation (see Section 2.3).

The main challenge of this approach is theoretical: show that the operator L is invertible on the Banach
space X and obtain explicit and computable bounds for the operator norm [|[£7!| (x). As described in
Section 2, the operator £ = (L) is a block diagonal operator, where each block £ acts on the sequence
of Chebyshev coefficients of the Fourier mode ay(t), and consists of the sum of an infinite-dimensional
tridiagonal operator and a rank one operator. To show that £ is an invertible operator, we show that each
block £}, is invertible on the ¢! Banach space of Chebyshev sequences. For a finite number of blocks L,
with k small, we use that £; is diagonal dominant starting from a moderately low Chebyshev dimension
N = N(k) to construct (with computer-assistance) an explicit approximate inverse Ay, for £j (see Figure 1)
which is then used in a Neumann series argument to get a rigorous bound on ||£;1||B(el) (see Lemma 3.2).
As the Fourier dimension, k grows, the Chebyshev projection number N = N(k) from which the operator
Ly, is diagonal dominant goes to infinity, and therefore the approach for small k£ is not readily applicable.
Hence, we derive an alternative and analytic approach to obtain a uniform bound ||£,;1|| B for large k
(see Section 3), which is based on the explicit inverse tri-diagonal operator analytic formulas introduced in
[20]. Combining the computer-assisted technique for small k and the one for large k, we obtain a rigorous
bound for [[£7!]|p(x,,). We remark that forfeiting the diagonal dominance of £j, for large k has been the
main obstacle in deriving a forward integration scheme for parabolic PDE via the Chebyshev series. To
the best of our knowledge, we present a first successful purely spectral approach for forward integration
of parabolic PDEs via Chebyshev series (this is in contrast with the approach [11, 12, ?] which also uses
Chebyshev series expansions in time but handles the contraction mapping theorem via the semi-group flow
action). Moreover, we believe that our technique of constructing explicit norm bounds of £ operator for
large k is of independent interest.




The novelty of our approach is threefold. First, it introduces a computational framework to handle
infinite-dimensional problems with operators having the property that the two off-diagonal entries of L are
unbounded as k grows (in contrast, the approach of [21] handles problems with tridiagonal operators having
unbounded off-diagonal entries, but the operators are still diagonal dominant). Second, once the bound on
1£72 B(X,.,) is obtained, the approach is rather straightforward to implement, computationally inexpensive
and readily applicable to different models of the form (1). We stress that simple and efficient implementation
is highly desired from the perspective of verifying code correctness of computer-assisted proofs in dynamics,
namely clean and verifiable implementation is more likely to be widely accepted by the community. Third,
contrary to time-stepping schemes, like the forward integration method based on the Taylor expansion and
the Lohner algorithm from [2, 3], extended in [4], our approach is not burdened with the stiffness issue
coming from the appearance of large positive and negative eigenvalues of the linear operator spectrum. The
approximation quality of the Chebyshev series allows stable and high accuracy numerics (see the applications
in Section 5, where the considered examples have many - sometimes large - unstable eigenvalues).

We must nevertheless confess that our approach has some limitations. The most important one is that
the class (1) is restrictive since it does not contain models having derivatives in the nonlinearity. We believe
(based on numerical experimentation) that there are models (e.g. the Kuramoto-Sivashinsky equation and
the phase-field crystal (PFC) equation, where the order of the derivative in the nonlinearity is small compared
to the order 2d of the linear part L) for which our approach could be generalized and applied to. However, we
do not foresee for the moment how to adapt our method to models like Burgers’ equation, the Cahn-Hilliard
equation, or the Ohta-Kawasaki model. There are two less worrisome limitations: (a) in the current setting,
large step sizes h are only possible when the norm of the solution is small (see Remark 4.4); and (b) there is
a rapid propagation of wrapping effect from one step to the next, which prevents our approach to be applied
iteratively for a large number of steps (see Remark 4.1). We believe that the step size restriction and the
wrapping effect limitation can be overcome by extending our method even further (see Section 6). This is
the subject of future investigation, and we are convinced that further research will lead to the successful
elimination of the mentioned limitations. The goal of the present paper is to propose an alternative technique
for forward integration of parabolic PDEs, which has not yet been explored and is based on novel principles.
A simple implementation of the presented technique already demonstrated interesting experimental results
and should lead to a new line of research in computer-assisted proofs in dynamics.

The paper is organized as follows. In Section 2, we derive the zero finding problem F(a) = 0 whose
solution corresponds to the solution of the Cauchy problem and we introduce a Newton-Kantorovich type
argument to compute rigorously solutions to F' = 0. We demonstrate that the space-time regularity of
the solution follows from the proof and that the solution so-obtained is classical (strong). In Section 3, we
introduce a technique to show that L is invertible on X and we obtain explicit and computable bounds for
the operator norm ||£_1||B(X). The computer-assisted method to obtain a rigorous bound on ||£,;1||B(p)
for small k is presented in Section 3.1, while in Section 3.2, we introduce the analytic approach to obtain
a uniform bound ||£; | B(ev) for large k. In Section 4, we present the construction of the necessary bounds
to apply the Newton-Kantorovich type argument. In Section 5, we apply our approach to Fisher’s equation
and the Swift-Hohenberg equation. We conclude the paper by discussing future directions.

2 General set-up and a Newton-Kantorovich type argument

This section begins in Section 2.1, where the derivation of the zero finding problem F'(a) = 0 is presented.
Some properties of the Banach space on which we solve F' = 0 are introduced, and an equivalent fixed point
formulation of the problem is presented. In Section 2.2 we present a Newton-Kantorovich type argument
(see Theorem 2.1) which we use to solve F' = 0. We end in Section 2.3 by showing that the solution obtained
from the fixed point argument is classical (strong), and by showing how to get a rigorous C° error bound
between the exact solution and the numerical approximation of the Cauchy problem.



2.1 The problem formulation and the Banach space

Consider the general PDE (1), which we supplement with even boundary conditions (i.e. u(t, —x) = u(t, z)),
in which case we expand solutions using a cosine Fourier series

ut,w) = ao(t) + 2 ar(t)cos(kz) =Y ar(t)e™, with a_(t) = ax(t) € R. (2)
k>1 keZ

After plugging the Fourier series (2) in (1) the model reduces to the infinite system of ordinary differential
equations
dak ~\ def
E:fk( a) = Agag + Qr(a), forall k >0, (3)
where the eigenvalues A\, = 221:0 Yor(—1)E? € R, and Qp(a) = 25?:2 q;(@?) g, with (@), = (axax---*a)y
denoting the discrete convolution of order j (see (22) for the definition of the discrete convolution). Finally,
by assumption, the semi-linear PDE model (1) is dissipative, and therefore limg_, o, A\ = —o0.
In this paper, we propose to compute solutions of the Cauchy problem associated to (1) on a given time
interval [0, h], where h > 0. This naturally leads to study the initial value problem

d

%ak( ) = fr(@(t)), fort e [0,h] and ar(0) = by for all k > 0, (4)
where the vector b = (by)y, corresponds to the Fourier coefficients of the initial condition ug(x) = (0, z).
We rescale time by the factor A > 0 to map the interval [0, h] to [—1,1] (letting 7 = 2t/h — 1 and ay(7) =
ar(t) = ar(2(r +1))) so that
d h
d—ak( T) = §fk(a(7)), for 7 € [-1,1] and ai(—1) = by, for all £ > 0. (5)
-
Rewriting the system (5) as an integral equation results in
h T
T)=br+ B fr(a(s)) ds, k>0, 7el-1,1]. (6)
—1

For each k, we expand ay(7) using a Chebyshev series, that is

—ak(]+22akj —ako+2zakg005 jb) = Zakﬁ Zak,jTj(T)» (7)

j>1 i>1 JEZ JEL

def

where ay _; = ay;, 7 = cos(f) and T_;(7) = T;(7). The cosine Fourier expansion (2) becomes

10 MT
= Y ange* ap = ap; and a_y; = ar,;. (8)
k,jEZ

For each k > 0, we expand fi(a(7)) using a Chebyshev series, that is

fela()) = dro(a) + 2 drj(a)cos(j0) = drj(a)e?’ =Yy (a)Tj(r), (9)

7j>1 JEZ JEZ

where

br,j(a) = Aeay,j + Q. j(a).
Letting Q(a) of (Qk,j(a))j>0, Pr(a) = B (¢r,i(a))j>0 and noting that (Agar); = A\gak,;, we get that

or(a) = Apag + Qr(a). (10)



Combining (6), (7) and (9) leads to

Zak,j )=ar(T) =bp+ = /fk ds =bi + - /Z¢k,j

JEL JEZ

and this results (e.g. see in [22]) in solving F' = 0, where F' = (Fj;), ; is given component-wise by

aro+2> (1) ape — b, j=0,k>0
Fyj(a) = -
2jag,; + §(¢k,j+1(a) = ¢r,j-1(a)), j>0,k=>0.
Hence, for j > 0 and k£ > 0, we aim at solving

. h h
Fy j(a) = 2jag ; + 5/\k(ak,j+1 —agj-1)+ §(Qk,j+1(a) — Qk,j-1(a)) = 0.

Finally, the problem that we solve is ' = 0, where F' = (F} ;), y is given component-wise by

“’““LQZ ) an,e j=0,k>0
Fk:] (a) d:ef (11)
h/\k h/\k h )
— g kg1 2jakg + ke + 5 (Qrgri(a) = Qry-1(a)), 7> 0,k 20.
Define the linear operator £ by
ot | Qk,0 +2 (—l)éak’g, j=0,k>0
Liyla) = ;::1 (12)
Pklr,j—1 + 2jak; — prakj1, J >0, k>0,
where
ar B
Pk = =5 k- (13)

Note that limg_,o ptx = 00, and that up > 0 except perhaps for a finite number of indices k. For a fixed
Fourier component k > 0, the operator L, acts on ay = (ay;);>0 and can be visualized as

1 -2 2 —2 2
HE 2 —pg 0
ot 0 Mk 4 — Uk 0
Ly . (14)

Define the nonlinear operator Q by

o) wer | TR j =0, k>0
a(e) 3 (Qrj+1(a) = Qrj—1(a)), 7>0, k>0. (15)



Setting

I
Or—l
=)
—
O =
=)
o

we may write more densely the nonlinear part Qy as

Qufa) = ~bi + 5AQu(),  Qula) 2 (Qus(@)sz0:
Given a fixed Fourier mode k > 0, the formulation for F' in (11) may be more densely written as
Fi(a) = Lrak + Qx(a)
= Lyay — by + gAQk(a)7

where Fj,(a) = (F}, ;(a));>0. Finding a such that Fj(a) = 0 is equivalent (provided that the operator Ly, is
invertible) to find a solution (fixed point) of

Ti(a) = £ (bk - ZAQk(a)) =ay, forallk>0.

Let us introduce the two block diagonal operators

Ly 0 ... 0 A 0 O
o . 0 ... 0
L= , and A= (17)
! ﬁk A
o ... 0 - ... 0 O
Given k > 0, denote ay = (ax,;j);>0. Denoting a = (ag, ..., ax,...), we obtain
Loag Aag
La = Lran and Aa = Aay,
We can finally write the map F' as
h
F(a)=La—-b+ §AQ(Q), (18)

where it is understood that by, = (bg ;) >0 with by ; = 0 for all j > 0.

The strategy we employ to prove existence of zeros of F', namely the Newton-Kantorovich type theorem
presented in Section 2.2, assumes that the map F' is Fréchet differentiable. This hypothesis is verified since
the nonlinear term @Q in (1) is assumed to be a polynomial in u.

The Banach space X = X, ; in which we look for the zeros of F' is given by

def

Xl/,l =

a=(ar;)rjzo ¢ lallx,, = D lagjlwr; <oop, (19)
k>0



where v > 1 and
1, k=j=0
der | 2, k=0,7>0
“RIT Youk k>0,5=0
40k, k5> 0.

(20)

The choice of the weights (20) is to ensure that X, ; is a Banach algebra under discrete convolution, that is

laxdllx,, < lalx,.[blx.., (21)

for all a,b € X, 1, where the discrete convolution of a and b is given by

(@*b)j =D Gy s Dkailjal> (22)
kq+ko=k
j1t+iz2=j
ki, j; €L
using the symmetries a_j ; = ag,j, b_i ; = bi,; coming from the cosine Fourier expansion in space.
If the linear operator L is invertible on X, ; (see Section 3), we may define the fixed point operator as

€ h
T(a) = a— L F(a) =L (b — 2AQ(a)) . (23)
Denote by ¢! the Banach space
=Sy = (yi)i0  lylle =yl +2 lyl <oop (24)
jz1
We can re-write
def

lallx,, = llaolle +2 lakllenr®,  ax = (ak;);z0-

k>1

Having presented the problem formulations and the Banach space, we are ready to introduce a Newton-
Kantorovich type theorem (sometimes called the radii polynomial approach) to prove the existence of fixed
points of 7 in X, ;.

2.2 A Newton-Kantorovich type theorem

Recall the map F' given by (18), assume that £ : X, 1 — X, 1 is invertible (see Section 3) and recall the
fixed point operator 7 given in (23). Since Q(u) in (1) is polynomial, the map F is Fréchet differentiable
and therefore the map 7 : X, 1 — X, 1 is Fréchet differentiable. Denote by D,7 (¢) the Fréchet derivative
of T at a point ¢ € X, ;. Assume that a numerical approximation a such that ||F(a)|x,, < 1 has been
computed. Denote by

B, (@)= {a €Xy1 : la—alx,, < 1"}
the closed ball of radius > 0 centered in @ in X, ;. Denote by B(X),, 1) the space of bounded linear operators

on X, ; and || - [|p(x, ) the induced operator norm.

Theorem 2.1. Let Y and Z = Z(r) be bounds satisfying

I7(@) —alx,, <Y (25)

I

sup [|DaT(c)lB(x,.) < Z(r). (26)
c€B,(a)



Define the radii polynomial
p(r) Zr(Z(r) —1)+Y. (27)

If there exists rg > 0 such that

then there exists a unique a € By, (a) satisfying F'(a) = 0.

Proof. The idea is to show that 7 is a contraction mapping of B, (a) into itself, in which case the result
follows from the contraction mapping theorem.
Let a € By, (@) and apply the Mean Value Inequality to obtain

[7(a) = alx,, <|T(a) = T(@)lx,,, +7T(a) —alx,,

sup [|DaT (c)Bx,.»lla —alx,, +Y
c€Bry(a

)
7"()Z(T'0) + Y,

IN

IN

where the last inequality follows from (25) and (26). Using that p(r¢) < 0 implies that |7 (a) — al/x, , <o

and therefore that T : B,, (@) = By, (a).
To see that T is a contraction on B,, (@), let ¢1,c2 € By, (G) and see that

IT(c1) = Tlea)llx,n < sup_ [DaT(O)llBx, 0 ller = callx,
c€B(a)

< Z(ro)ller — callx, ;-

Again, from the assumption that p(r¢) < 0 (that is 70 Z(r¢) + Y < rg), it follows that

Y
Z(rg) <1— = <1.
o

Hence T: By, (@) — By, (@) is a contraction with contraction constant Z(rg) < 1. The contraction mapping
theorem yields the existence of a unique @ € B, (a) such that 7(a) = a— L 1F(a) = a. Since L is invertible,
L£71 is invertible and this implies that a is the unique element of B, (a) satisfying F(a) = 0. O

In Section 4, we construct explicitly the bounds necessary to apply the (radii polynomial) approach of
Theorem 2.1.

We conclude this section by introducing two consequences of a successful application of Theorem 2.1.
The first one is that we get enough space and time regularity of the solution so that we obtain a classical
solution to the Cauchy problem. The second one is that the radius ro > 0 such that p(rg) < 0 provides in
fact a rigorous C° error control between the exact solution and a numerical approximation of the Cauchy
problem.

2.3 Regularity of the solutions and rigorous C° error control

Assume that we applied the (radii polynomial) approach of Theorem 2.1 to prove the existence of & € X, 1
such that F'(a) = 0 and ||a—al|x,, < 7o where F is defined in (18), ¥ > 1 and a is a numerical approximation.
This is done by verifying that ro > 0 satisfies p(r9) < 0. Denote by

a(r,z) = Z ar ;€% 0 =cosTH(T), ap,_j = ay,; and a_j; = G ; (28)
k.jez

the corresponding Fourier-Chebyshev expansion.



It v > 1, then for each k > 0, 2arllnv® < aola +2 5,5, laclar® = allx, , < co, and therefore

lallx,
vk’

|kl < for all k > 0,

which has a geometric decay rate. Hence, @ is analytic in space and has enough spatial derivatives to be
evaluated in the PDE model (1). If v = 1, then by continuity of the bounds Y and Z(r) in the decay rate v,
there exists € > 0 such that p(r) < 0 for some 7 = 1+ € > 1, and therefore we are back to the previous case
and space regularity follows (for a similar and more detailed argument, see Proposition 3 in [23]). As for the
time regularity, it follows from the fact that for each k, Gy (7) is continuous in 7 and solves the Picard integral
equation (6). By continuity of fi, fr(a(7)) is continuous and therefore [, fi(a(s)) ds is differentiable and
therefore ay is differentiable in time. This follows that the resulting Fourier-Chebyshev expansion (7, x)
given in (28) is a classical (strong) solution of (1).

Finally, denote by

- def o ij6 ke = 5 5
a(r,x) = E ag,je’e™,  ap_j =ap; and a_g ; = ax,;
k.jEL

the corresponding numerical approximate Fourier-Chebyshev expansion of the Cauchy problem. Then,

o —allco = sup |a(r, z) —u(r, )|

Te[—1
z€[0,2

205>
a— EL”X ) < To- (29)

This shows that the radius 7o > 0 such that p(r¢) < 0 (from the radii polynomial approach) provides in fact
a rigorous C? error control between the exact solution @ and the numerical approximation @ of the Cauchy
problem.

We are now ready to introduce the theory to show that L is invertible, to obtain rigorous estimates on
£ M| ey for all k> 0 and finally to derive an explicit and computable bound for 127 B(x,4)-

3 Analysis of the linear operator L

In this section, we introduce our approach to prove that the operator £ is invertible on X, ; and we obtain
explicit and computable bounds for the operator norm ||[£7*||p(x, ,)- In Section 3.1, we consider small k
and use that £ is diagonal dominant starting from a moderately low Chebyshev dimension N = N (k) to
construct (with computer-assistance) an explicit approximate inverse. The approximate inverse is used in a
Neumann series argument to obtain a rigorous bound on ||/J,:1|| B(¢t)- Then in Section 3.2, we introduce an
approach to obtain a uniform bound ||£,;1|| B(er) for large k. The approach here is also computer-assisted,
utilizing both the numerical and symbolic computation. It is based on the explicit inverse tri-diagonal
operator analytic formulas introduced in [20]. Combining the computer-assisted technique for small k& and
the one for large k, we introduce in Section 3.3 a bound for [|£7!p(x, ,)-



3.1 Bounds for ||£;'||g() for small k

We begin this section by introducing some operators. Fix an even number N, and denote the operators A
and 2 acting on the tail of a Chebyshev sequence as

0 -1 0

1 0 -1 0 --- 2(N +1) 0 0
% def 01 0 -1 def 0 2(N +2) 0 0
A= . . . and Q= 0

0 2AN+3) 0

Using the above tail operators, rewrite the operator L, in (14) as in Figure 1, where E,(CN) € My41(R) is the
matrix consisting of the first (N + 1) x (N + 1) entries of L. Denote the infinite dimensional row vector
v (72 2 -2 2 -2 2 .- ), which is the tail of the first row of the operator £;. Given a matrix
B, denote by B 1) the k" column of B. Similarly, B, ow(k) denotes the k" row of B. Define the operator
A (which acts as an approximate inverse for L) as given in Figure 1.

E}E:N) O (‘C[(CN))_I 7(’621\/)):01“1)“9,1
Li = = A=
0 Q-+ 0 -1

Figure 1: The operator £ and its approximate inverse operator Ay.

Note that the choice of taking N even comes from the fact that we want the first entry of the first row
outside of E,(CN) to start with a —2. In other words, choosing N even allows us to define the vector v with a
—2 as its first entry.

The following lemma provides an upper bound for the operator norm in B(¢').

Lemma 3.1. Recall the definition of the £* norm in (24). Let C = (cin)in>0 € B({') and denote by c,, the
nth column of C, that is ¢, = (¢in)i>o- Then,

1
IC e = masx el sup el |
n>1

Lemma 3.2. Let N € N be even and assume that E,(CN) € My 41(R) is invertible, and consider the operator
Ly as in Figure 1. Let

1
(1) def = (N1 )
P TN (”(ﬁk Jeot(yller +1 v
. Ny 1 N)\— 1
PP E N v + 6 Dl + 73 (31)
2 L :
@as 2 eevyr oo Lo L >
P W+DW+$Wk)mmW+N+1+N+3 ()

10



and il
ef |k
pr = 57 max{ptl), o, p@}, (33)

where (E,(CN))_l(l) € RV denotes the first column of the matriz ([,,(CN))’l. Let

col

e — 1 —
i = o {1 L) e gy (1680 oh e +1) - (34)

If pi, < 1, then Ly is a boundedly invertible operator on ¢' with

_ B
1L ey < . (35)

— Pk
Proof. From the definition of the operators Ay and Ly in Figure 1, on can verify that the linear operator

I — ALy is given in Figure 2, where the operator (E,(CN))goll(NH) is also defined in Figure 2.

L0 Ny N -13
O R ) v + E) e A

i — (N)y—1
I - Akﬁk = /’Lk ) (‘Ck )coll(N+l) = |G eiavy 0

—_~—

Figure 2: The operators I — ApLy and (‘C]E:N));)IZ(NJ,»]_)'
Our first goal is to bound the operator norm ||I — ALyl ). From Figure 2, we see that the first N
columns of I — AL} are zero. Recalling Lemma 3.1, and denoting C' = I — ALy, we get that

1
11— Akﬂk”B(zl) = HCHB(zl) = sup §||CnH£1
n>N+1

The ¢* norm of the (N + 1) column of I — ALy, is given by |lent1ller = [pr]p™), where pV) is defined
in (30). Let us now compute explicitly c;, the j* columns of I — ALy, for j > N + 1. For this, we need to

explicitly obtain the j** column of (£,(CN));%(1)UQ_1[~L Let us first look at the row vector v~ 1A, which is

given by

- —1)J
leA_( 1 1 1 1 1 2(—1) )

N+2’N+1_N+3’_N+2+N+4""’(N+j—1)(N+1+j)""

and therefore for j > N + 1,

1 N)\— :
m(ﬁz(c ))co%(ly j=N+2
(N)\—1 —13 = +
((‘Ck )col(l)vQ A) col(5) o 2(-1)‘] (N)y—1 (36)
(] — 2)] (‘Ck );ol(l)’ Jz N+3

11



Hence, the finite part of the (N +2)*" column of i([ — A Ly) is given by the sum of (a) the first column of

the operator (‘CI(CN))C_O]i(N—‘,-l) (see Figure 2) that is (£<N )col(N+1)? and (b) the first column of the operator
(E,gN))C_Oll(l)UQ_lji, that is (using (36)) N+2 (L(N )(,Ol(l) Moreover, the tail part of the (N + 2)** column of

ﬁ(] — ArLy) is given by (0, —
(N + 2)*" column of T — AjLy is given by |[cytalla = |uxlp'®, where p(?) is deﬁned in (31).
For j > N + 2, using (36), the finite part of the (N + 2)!* column of (I — ALy) is given by

2(—1)7 (N)
W(E )Col(l) 5 2),0, QIJ,O 0...)T. We conclude
from this that for j > N + 3, ||¢;|| ¢, the £! norm of the j** column of I — ALy, is bounded from above by
llen sl = |pe]p®, where p(3) is defined in (32).

Therefore, we get that

SN +2),0 0,...)T. We conclude from this analysis that the ¢! norm of the

while the tail part is given by (0,0,...,0, —

1T = AkLy|l By = pr = |”2’“| max{p®, p@ p®} < 1,
by assumption. By a Neumann series argument, ALy is invertible with

(ARLy)™h = (I - ALy) .

Jj=0

By construction, Ay is invertible and ||Ag|| gy = Br. Hence, Ly is invertible with

L =D (I - ALy | A (37)

Jj=0
Using (34), we conclude the proof realizing that

_ j 1 Bk
L5 ey <D (I = ALl sen)” 1Akl < T 1Akl By = 1=

>0 Pk

We combined interval arithmetic with the result of Lemma 3.2 to obtain the following result, which
when combined with the explicit tail bound of Corollary 3.27, will be used to obtain a general bound for

127 Bex)-
Corollary 3.3. For all i, € [0,1000],
1L ey < 1.45. (38)

def

Proof. Consider a mesh 0 =y < 71 < -+ < Ym—1 < Ym = 1000 of [0,1000]. Fix j € T = {0,. -1},
define the interval pp = pr(j) = [vj,7;+1), and consider the (N+1)x (N+1) interval matrix ,C,(GN) = EéN)(j)
with N = N(j), the finite part of L, whose tridiagonal entries are the intervals +upg. With interval
arithmetic, compute the interval valued matrix (L',,(CN))_1 and apply Lemma 3.2. O

3.2 Uniform bound for ||£;'| g for large k

In this section, we derive a uniform bound for ||£; || By for large k, first by obtaining a uniform bound for

H(E,(CN))_1||B(@1) for large k and N (see Corollary 3.27), and then by using the result of Lemma 3.2.

12



Notation. For a square matrix A by A.q ;) we denote the i-th column vector of A, by A, ;) we denote
the j-th row vector of A, by A.y;.j) we denote the matrix composed out of the ..., j-th columns of A, by
Ay ow(izj) we denote the matrix composed out of the i,. .., j-th columns of A.

As before, we denote the N + 1 dimensional truncated linear operator Ly by £,(€N). E,(CN) acts on vectors

of the Chebyshev coefficients corresponding to Tp, ..., Tx. We decompose E,(CN) as the sum of the tridiagonal
operator and the single non-zero row operator, i.e.,

10 -0 0 -2 2
L£(N) e acr | HE
k - kTt U= 0 Tk + 0 ) (39)
where
2 — Uk 0 :

e 4 —pe O
Tk: d:d . . . . ) (40)

0 123 2N

T}, diagonal elements are denoted by
def

dr = 2k for k > 1.
We derive a uniform bound for H(E;CN))*HB(@) for large N and k. For the purpose of this section, we
fix the approximation dimension N and the index k.
Within this section, by |||, we denote the analogue of (24) for finite vectors, and the B(¢!) norm for a
finite matrix A takes the form

N
lolle = o1+ 3 21, (41)
=2
N 1 N
Al g = max { |a| + 22 lajl, su;i §|a17n| + Z lajnl ¢ - (42)
j=2 n> =2

To distinguish the vector ! norm from the standard matrix norm, by ||-||, we denote the sum of absolute
values norm, i.e. for a vector / matrix v, A we have v, = Z;\le v, |A]l; = max; Zjvzl | Asjl.

First, we are concerned with bounding the norm of the inverse of the tri-diagonal part of E,(CN), excluding
the first row and column (i.e., the operator T). Second, using the Sherman-Morrison formula, we eventually

N)\_ . _
bound [[(LS™) 71| g1y by simply 2[|T; 1.
3.2.1 Finite inverse tridiagonal operator HTk_lH norm uniform with respect to N
1

Notation. Let N > 0 be an even integer defining the projection size (fixed), k¥ > 1. Given sequence
{z; }é\[:l by

T —k 0
e T2 — Uk 0
Ti(z1,...,on) = ) (43)
0 He  TN-1 —Hk
0 i TN

13



we denote the NV x N tridiagonal matrix with the sequence on the diagonal, and £, under and over-diagonal
respectively.

We assume that k denoting the Fourier coefficient is fixed, and denote T' = Tj,. By default T without
parentheses denotes the matrix with the sequence dj, & 2k as its diagonal for k£ > 1. We also use the notation
T~ (xq,...,2N) to denote the inverse of T'(z1, ..., zy). Observe that any matrix having the tridiagonal form
like (43) is invertible when pp # 0 due to an easy determinant computation (demonstrated in [20]). If not
specified otherwise, we assume that pg > 0.

Remark 3.4. We base our large tridiagonal matrices analysis on a kind of divide and conquer paradigm;
that is, in order to invert a large tridiagonal matriz, we decompose it recursively into smaller and smaller
blocks. The blocks appearing in the inverse have a simple and explicit form. In Lemma 3.6 we formalize this
observation, to which we are going to refer often in the forthcoming analysis. The formulas that we used
are a special case of a formula known in the literature as Banachiewicz inversion formula based on Schur
complement [24]. The same formula in the context of the validated numerical method was used in [25].

The presented analysis was used already in [20], where it is shown that ||T}, ||, is bounded independently
of u.

Theorem 3.5 (Theorem 4.11 in [20], setting m = 1). For any px € R. There exists a constant that bounds
T 1 independently of ux for all k and N.

However, in the present paper, we make the results stronger by not only showing that ||}, ||, is bounded
uniformly in k£ and N but also derive an explicit upper bound for it. We provide a new theoretical framework
building upon the auxiliary lemmas from [20] and eventually prove the main theorem.

Notation Let p; denote the n x (N — n) matrix having single non-zero element in the lower left corner

0 0

we=| , then pypj = | e My (R). (44)
0 0 * 0 0
e 0 ... 0 0 ... 0 1

Lemma 3.6. Let 0 < n < N be even. Let T € RN*N be q tridiagonal matriz of the form (43) with an
arbitrary sequence on the diagonal. T is decomposed in the following way

F Hk]
T = :
[% R
where F' € M, (R), and R € My_,(R). Then it holds that

-1
T71 — |:F _Hk} —_

. (F+ wenf R F 'y, (R+ uwfwFn) ™
W R

R (F+wnfRy) T (R+ufmFh)™

This formula is a special case of a formula known in the literature as Banachiewicz inversion formula
based on Schur complement [24].

Proof. We want to compute

T_l_ IHV11 IDV12
- IIIV21 IIlV22

where Invy1,Invys, Inver, Inves are the blocks composing 71 of appropriate dimensions.

14



Directly from the condition for the inverse matrix it follows that

FInvyy — pglnve; = I, plInvy; + Rlnvey = 0,
FlInvyg — pilnves = 0, uzlnvlg + Rlnvey = 1.

The presented formula for Inv;; can be obtained by noting.
we R = b (R, we F e = (L)),

and decoupling the solutions to the equations for Invyq, Invys, Invey, Inves. O

Definition 3.7. Let {d; }§V:1 be the sequence of T}, diagonal elements given by d; = 27, and let us define
the following recursive sequences

2
= aj(a; 1) dn—2j+2 + aj-1p;
aj = aj(aj_1) =

dn—2j41dN—2j4+2 + aj—1dN—2j+1Mi + ,ui

a; = a;(aj_1) % il
g — Yi\%j-1) — 2 2
dn_2j+1dN—2j4+2 + aj_1dN—_2j4115 + p7,

. daj_1 +bj_1yi}
b, = b b'_ d:f . . 5
j i(bj—1) dajdaj_1 + bj,ldgju%. + ,ui

fOI‘j: 1,2,3,...,%,With CLQ,&Q,bOZO.

N N N
Lemma 3.8. Let {a;}7,, {a;} 7, {b;} 7, be the recursive sequences defined in Definition 3.7. It holds
that
aj(aj-1), bj(bj-1)

. . . . . . N

i.e. a; as a function of a;_1 and b; as a function of bj_1 are increasing for j =2,..., 5. And
aj(a;-1)

. ~ . . . . N

i.e. a; as a function of a;_y is decreasing for j =2,...,5.

Proof. We treat a;_1, bj_1 as (continuous) variables in the formulas given in Definition 3.7, and compute

da. 4
4 _ Hi 3 >0,
daj—1  (dn_gjp1dN—aj2 + aj1dN 25110} + 1})
db; p
I = at: — 3 >0,
dbj1 (dajdaj—1 + bj—rdajpif + 17)
das
Y <o O
daj_l

N N N

Lemma 3.9. Let {a;}2,, {a;} 7, {bj} 7, be the sequences defined in Definition 3.7. It holds that
2 1 1
0<aj<£, 0<a; <—, 0<b; < —
Hi K HE

o N
forallj=1,..., 5.
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dn < e
dn_1dN+p3 M’
which is satisfied for « > 1, as 0 < adny_1dn + aui —dnpk. We find o > 1, such that assuming a;_1 < u%’

we show a; < ﬁ Using the monotonicity property from Lemma 3.8 we plug in a;_; = p%c in the formula

Proof. The bound a; > 0 is obvious. We proceed by induction. First, we show that a; =

for a;(aj—1) (Def. 3.7) and find minimal « satisfying the inequality

« dN_9it9 + « «
aj<aj<><d — - dukA 5 < —,
Pk N—2j+10N—-2j+2 + QAN _—2j 110k + [}, Mk

which is satisfied when 0 < ady_2j41dN—2j+2 + pr(a*dN_2j+1 — dN—2j4+2), and hence
0 < a?dy_oj11 —dn_2j12 = a®2(N —2j +1) —2(N — 2j +2). (45)

By analyzing the worst case (j = %) (45) holds for a > v/2. The minimal value of a such that a; < = is

o= \@
. . . A M Mk
In order to show the second inequality, first notice that a; = dn—1dn+pZ — dn_1dn+pZ
By induction we show that 0 < a; < u%c Due to the monotonicity property from Lemma 3.8, we plug in
aj—1 = 0 in the formula for G; and obtain

<L for N >1.
1223

1
P < — for N > 1.

0<a; <a;(0)=
/ i) dN—2j+1dN—2j+2 + ,ui Uk

Now let us turn into the third inequality, we again proceed by induction. by = - d‘fir#Q < ;le is easy to verify.
k
We show that 0 < b; < u%c Using the monotonicity property from Lemma 3.8 we plug in by-2;-2 = u%c in
2

the formula for bx-2; and obtain

2

dn_2i+1 + 1
0<brn—2; <bn—z; (> < N-2j41 T 7 <
2 2 Mk dN—2j+1dN—2j+2 + dN_2j12it + [ 103

satisfied when 0 < dy_gj11dNn_2j42 + (dN—2j4+2 — dN—2;+1)p, which is clearly true for all j =1,..., % O

N N
Lemma 3.10. Let {aj}f:l, {a, }j2:1 be the sequences defined in Definition 3.7. Also let N > 2P, and even,
p > 0. It holds that

S g M S g S

for all j such that
N
N —25+12>2Ppy <i.e., for alljSQ—uk+1). (46)

Proof. Using the upper bound of Lemma 3.9, we put a;_1 = 7\/? in the formula a;(a;_1) (which increases in

a;—1), and denote S = dyv—2j41 =2(N —2j +1) =2N — 45 + 2, then dy_9j42 = § + 2. We verify that

al(ﬁ): B+ 2+ V2 < 1
Tkt BBA2) + V2B +pd 2

which reduces to

9(B) = B(B +2) + V2Bux + j, — 207 By, — 20y — 2771V28 > 0. (47)
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The function ¢(3) is increasing for all g > (2” — g) ur — 1, that is for all j such that 2(N —2j + 1) >

2P — g) pr—1, a condition which is ensured by assumption (46). Plugging 8 = 2P+, > (2p — g) e —1

n (47) leads to
0 < pi = g(2 ) < 9(B)

for all B > 2P+1 ., that is for all j such that 2(N — 25 + 1) > 2P+, which follows by (46).
Analogous computation shows the bound b N j1 < ﬁ, using the upper bound of Lemma 3.9, and
putting b%ﬁ» = u% in the formula b%7j+1(b%7j). Regarding the bound for a; we have
b = Hie < Hk
T dn_ojr1dN—2ji2 + aj_1dn_ojripi +pd T BB+2) +pud
HE 1

0 (2P g + 2) + (22942 4 1)y + 20427

Our eventual estimate for 77! relies on computing all of its components explicitly and then bounding the
resulting sum. The explicit formulas for T7~! are build using the recursive formulas presented in Definition 3.7.

Lemma 3.11. Let n < % The N —2n x N — 2n top left corner submatriz of T~ is given explicitly by
Tﬁl(dl, doy...,dN_on + uian),
whereas the 2n x 2n bottom right corner submatriz of T~ is given explicitly by
T dN—-2n+1 + uibwﬂzvfzmz, ooy dy),
where a; and bw are elements of the recursive series from Definition 3.7.

Proof. Follows from Lemma 3.6 with R = T (d1,da,...,dN—2n), and F = T(dn—2n+1,dN-2n+2,---,dN),
and computing the recursion for the elements Ry and F;!. For the detailed proof refer to [20]. O

We have the following corollary from Lemma 3.11. In the proofs in the sequel we will often use the
explicit form of T} ! diagonal blocks given by

Corollary 3.12. The 2 x 2 dimensional diagonal blocks of T~ are given by

-1
T aer dn_ony1 + M%bw 7 _ 1 dN—on+t2 + Hian—1 Hi (48)
" dN—2nt2 + Hian—1 D — dN—2nt+1 + M%bw
form =1,..., %, where ap,—1 and by-2. are elements of the recursive series from Definition 3.7, D =
2

(dN—2nt2 + Hian—1)(dN—2n4+1 + M%bNEQn) + u2 is the determinant of I.
The n-th diagonal block above corresponds to

—1
Trow(N—2n+1:N—2n+2),col(N—2n+1:N—2n+2) .

In particular 1-st block denotes the bottom-right diagonal block of T1.

Theorem 3.13. Let I be the block (48). Consider the 2n x 2n dimensional bottom right corner square
submatriz of T!

T*l dof Tﬁl(dN—2n+1 + /},ibNgzn R dN—2n+27 ey dN)

17



The following recursive explicit formulas hold

T—1
Trow(1:2),col(1:2) = I’

T—1 _ —O0p—1| A7-1
T’row(3:4),col(1:2) = Hk | Gn1 ] Trow(2),col(1:2)’
-1 _ [—an—;] -1
T’r‘ow(2j+1:2j+2),col(l:2) = Hk I &n_jj_ Trow(2j),col(1:2)'
Proof. We decompose into blocks
-1
Tl [T(sznH + piby-2n, dy_2nt2,- .., dN—2) —Hk ] _ Invi)  Inv()
i T(dn-1,dN) vl vy |

We apply Lemma 3.6 with F' = T(dy_2,4+1 + uibwgzn, dN_2n42y---,dN—2), and R =T(dy_1,dn). Tt
follows that

-1
2n, AN—2n42,- .-, dN—2) + Mku{Tﬁl(deth)) =

Tﬁl(dN—27L+1 + MibL;%, dn_2n42,...,dN—2 + Hich)-

Invgll) = (T(dN72n+1 + M%bzvf

2

(observe that py is (IV — 2) x 2 dimensional matrix — set n = N — 2 in (44)). It holds that

_ —a
vy = T~ (dy_1, dy)uf Inviy, (Invéll)>col(1:2) = [k { dll] (Invgll))row(N72),col(1:2)-

In order to compute (Invgll))mw( N—2),col(1:2) We decompose Invgll) into blocks further

InV(l) _ Invﬁ) Invg) _ |:T(dN_2n+1 + /,L%bN—an, AN—2n+2y - -, dN_4) —Ug
el vl uf T(dn_3,dn_2) + p2ay)
It holds that ) )
vy = ~T7 (dy—3,dn—2 + pfar)uf Inv'y.
Hence
_*CL
(Invgll))row(N73:N72),col(1:2) = (Invg21))row(1:2),col(1:2) = Uk &22 (Invg21))row(N74),col(1:2)-
Repeating this procedure, we find
-_a
(Invg21))row(N—5:N—4),col(1:2) = (Invg?i))row(1:2),col(1:2) = Mk d33 (Invgi))row(N—G),col(l:Q)7
and
. . —a; i
(Invgjl))row(N—2j—1:N—2j)7col(1:2) = (Invéjl 1))7"0'11)(1:2),col(1:2) = Uk |: &it1:| (Ianjl 1))row(N—2j—2),col(1:2)7
J
and finally (after several steps of recursion)
n—1 —Qp— n—1
IHVél ) = M |: &n11:| (Invgl )>r0w(2)
Invi" ™ =T =T (dy—_onp1 + pRbs—2n, dnany2 + pRan—1), (49)
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We emphasize that the recursion is being finished here as Inv%l*l) is the 2x 2 upper left corner matrix of 771,

Observe that TT_O}U(N_QJ._LN_%)7601(1:2) = (Invg]l))mw(N,gj,1:N,2j)7col(1;2) for j=1,...,n — 1. Therefore we
obtained the claim. O

Remark 3.14. By repetitive application of Theorem 3.13 we obtain the explicit formulas for all values of
the lower triangle of the full tridiagonal inverse matriz T—' (43). E.g., by setting n = % in Theorem 3.13
we obtain the formulas for the first and the second columns of T~' and so on.

Lemma 3.15. The matriz T~ satisfies the following symmetries

1 _ -1 —1 _ -1

Tii0i5 = Ty jvoo Tivaivny = 1) jroitns
1 _ m—1 —1 _ —1

Ti 25 =Tjj-200 Ticairr; = ~Tjj-2i41-

forall1<j < N andi>0 such that j+2i+1< N, and 1 <j—2i+ 1.

Proof. Without loss of generality, let 1 < 7 < N. It must hold that

T T+ T T+ Ty T =1, T T+ T T+ T Thgy =1

J+1.J J,j—1 J,J+17J )
as it holds that T} ;_1 = —T;_1 ; and T} j41 = —Tj41,; we obtain
-1 _ g1 -1 _ 1
Timh ;=15 and Ty, =155, (50)

From the same argument applied to other column, we get
-1 —1 —1 _ —1 —1 -1 _
T T + T Tivnan T Tipp jTivn g2 =0, T35 T 00 + T 5 T + 1 T2, 541 = 0.

. —1 —1
From (50) and rfj+17j+2 = 1542411t follows that Tj+2,j = Tj,j+2'

Now, it is clearly seen that proceeding further analogously, and we obtain the claim. O

Remark 3.16. By iterative application of Theorem 3.13 we can obtain the explicit formulas for all values of
the lower triangle of the full tridiagonal inverse matriz T—1 (43). Then, the symmetries from Lemma 3.15
provide the explicit formulas for all values of the full tridiagonal inverse matriz T!.

Lemma 3.17. It holds that

T*l
row(N—2n+1:N),col (N —2n+-c)

[col(c) 1’ fOT’ n=1,

1 Icol(c) 1 + Z?;E ,LL;C (an—i + &n—z) H;);ll an—p|120|; fOT’ 1<n < %7

(51)
where ¢ = 1 or 2, I is the diagonal block (48) and wal(cﬂh = |Lie| + |Iz|. In the sum above for the case
i =1 we put H;_:ll p—p = 1.

Proof. Consider T—! — the bottom right corner sub-matrix of T~ that spans the following diagonal elements
of T: dy—_o2n41,---,dy. By Lemma 3.11 T~ is equal to

’f71 = T71<dN72n+1 + ﬂ%biNz“znv AN—2n42, -, dN)

T—1 embeds in T~ as

T—1 _ p—1
T - Trow(N—2n+1:N),col(N—2n+1:N)’
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it is the 2n x 2n dimensional bottom right corner submatix of 7-!. Knowing that row(1 : 2) and col(1 : 2)

of T=! embeds in row(N —2n+1: N —2n) and col(N —2n+1: N —2n) of T~ respectively, the recurrence
relation shown in Theorem 3.13 takes the form

1 _ QA — -1
Trow(N—2n+2i+1:N—2n+2i+2),col(N—2n+1:N—2n+2) = Hk |: a . :| Trow(N—2n+2i),col(N—2n+1:N—2n+2)’

n—1u

fori=1,...,n— 1. After unveiling the recurrence relation we get for ¢ = 1 or ¢ = 2 (denoting the odd/even
column respectively)

-1
‘ Trow(N—2n+2i+1:N—2n+2i+2),col(N—27z+c) 1

4, (@ni + n—i) [Ty2) Gnpllae|  for 1 <i<m,

M (anfl + &nfl) |I2c| for ¢ = 1, (52)
for i =0,

Icol(c) 1

Summing up all elements in rows N —2n 4+ 1: N we have

where for 1 = 1 we put H;;ll Gn—p = 1 and the first term in the sum (53) is equal to py (@n—1 + @n—1) |T26|
according to (52). O

T 1
row(N—2n+1:N),col (N —2n+-c)

—|—Z,uk (an—i + Gn—;) Han p|-[2c‘ (53)

col(c)

We will often need a formula covering |7}, '|| whole columns, not only the lower triangle as in Lemma 3.17.
Combining Lemma 3.17 with Lemma A.4 proven in the appendix we obtain

Lemma 3.18. The following bound holds

i—1 ﬂ—" i—1
[ JRR T RIS SR ARERIN) | (TR P ) | (4
p=1 =1 p=1
foralln=1,....5 and c=1 or 2, where I is the diagonal block (48) and ||.7col(c)||1 = |Lie| + |T2e|. In case

n =1 we put the first sum is zero, in case n = % the second sum is zero.
We proceed with proving the bound for ||T71||; essential for the ultimate result of this section.

Lemma 3.19. It holds that )

o

for all N > 2puy,, the bound is uniform with respect to (even) approzimation dimension N.

=, < ||

A
row(1:2 i |)

Proof. We start by showing

1
7! < — (54)
row(2 +1: N
], < 2
for any 1 <1 < 2ug, where n is such that N —2n+ 1 =1[if [ is odd, and N —2n 4+ 2 =1 if [ is even.
We use the equality derived in Lemma 3.17, i.e.,
N n—1 i—1 N
‘ Tr_ow(N 2n+1:N),col (N —2n+c) ICOZ(C) 1 + Z :u}c (an—i + dn—i) H &H—Pu?c‘? (55)
i=1 p=1
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where for the case n = 1 the second term in the sum is not present. Recall I is the corresponding diagonal
block of 1 (48) i.e.,

1
~ |:dN2n+1 + N%bif\’—;n Bk

I =
— [k AN—2n+2 + Hian—1

where D = dy_2n+1dN—2n+2 + Hian_1dN_2n41 + dJ\AITZnJrEN%b(N—Qn)/Q + [ an—1b(N—2n)/2 + i} is the de-
terminant. We have the following upper bounds for |I31], |I22| following from Lemma 3.9
dN—2n41 + BEb(N—2n) /2 1

bin— —. 56
D < Ov-znt2)/2 < (56)

Hi
D

~ 1 ~
‘121‘2 <lp < —, ‘122‘2
13
Let us take n such that (it is possible as N is even and N > 2uy,)
N —2n+2=2|u], (57)

then the assumption of Lemma 3.10, i.e. n —i < % — | px | + 1 is satisfied for all i = 1,...,n with p =1 and
hence it holds that

1 1 5 s 1
An_i+ ap_; < % m = m and for i > 1 pl;[ldn_p < W,
we bound all terms appearing in (53) as follows
. ~ 6
wk (@p—1 + an—1) |I2c| < To,m < T (58a)
i—1
e (@i A ) H &n,p|fgc| <k 165/% 17iiﬂ§-€_1 /le < 17?;%’ fori > 1. (58b)

p=1

and the sum in (53) is bounded by

n—1 i—1 . 6 n711 6
; n—u Anfi Anf Ic - T .
S ot an Mol < 2 (S5 ) < o

i=1

Next, to show the bound < ﬁ for I > 2| ui] + 1 we proceed as follows. Let n be

-1
Trow(ZLukJ+1: N)

col(l) 1
such that N —2n+1=1if [ is odd, and N —2n + 2 = [ if [ is even. As assumptions of Lemma 3.10 are

_ dn—2ny2tpian—1 1 T
‘_ nDkn <an<4‘uk7 I22_

satisfied (dy—2n+1, dN—2n+2 = 2ug) with p = 1, we have that ‘fn

1

AN —2n41HHEb(N —20) /2 T
& I | =Lt <
D S Tiug-

I

1
<bv-2n+2)/2 < T

We have that (55) is bounded by (using the bounds (58) and the explicit bounds for

| SR ECEY o TR I Y N
1 dpy 1Tp,  Apg \ &~ 1T up \4 17 32/

i=1
Using Lemma A.4 we similarly bound the terms in the upper triangle (row(2|pi] +1: N —2n)). Hence

|

9

fm’ and ’fQQ‘ above)

T_l
row(N—2n+1:N),col (N —2n+c)

6 S —n—lur]+1 1
< — - | . 59
1 dug ; 17 (59)

-1
Trow(2 lpr ]+1:N—2n),col (N —2n+c)
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Hence, the final bound is

-1
’ Trow(Q lpk]+1:N),col (N —2n+c)

1 R \4 17 32 2y

We have the following trivial component-wise uniform bound for T} 1 (derived analogously as Lemma 4.8
from [20]).

Lemma 3.20. Let N > 2uyg, the following entry-wise bound holds

’_Q

T <
123

O

il

foralll1 <il<N.

Proof. We will use the upper bounds from Lemma 3.9, the explicit formula for diagonal blocks from Corol-
lary 3.12, recursive formulas from Theorem 3.13 and the symmetry from Lemma 3.15. Let I be the diagonal
block corresponding to I-th column of T}, (48), i.e.,

1
~ |:dN2n+1 + M%biN—;w 7

I =
—Hk dN_ony2 + ﬂ%an—l
wherel = N—2n+1 for l odd, and l = N —2n+2 for [ even, and D = dN_2n+1dN_2n+2+u%an_1d1v_2n+1 +
dN_gnJrg,uib(N,gn)/g + uian_lb(]\],gn)/g + 2 is the determinant of I.
The following entry-wise bounds hold for I:

T dn— n 2 n— 2
Tl = N—2n+2 T H130n—1 <a, < £7 (60a)
D ko
|15 Pr . 1
Lo, 21| = —= < Gp < —, 60b
‘ 12 21 D o (60b)
~ dN—2n41 + B2b(N—2n) /2 1
Iy = < bn—_on < —, 60
22 D (N—2n+2)/2 " (60c)
To bound the elements below the diagonal block we use the recursive formulas from Theorem 3.13, i.e.

the first block slot below 1 is given by g {da"_l} fraw(g) where a,_1, G,_1 are upper bounded by %, each
n—1

component of f,,ow@) is upper bounded by /%k (using Lemma 3.9). Applying the recursion from Theorem 3.13
repetitively for all of the diagonal blocks we obtain that the uniform upper bound % is true for the lower

triangle of T} ! (including the diagonal blocks). From the symmetry formula Lemma 3.15 this uniform upper
bound is true for all entries in T} 1 O

Theorem 3.21. [t holds that 1
|77, <2v2+—.
24
for all N > 2y, (the bound is uniform with respect to even approzimation dimension N ).

Proof. Using Lemma 3.19 we have that ||T_1H1 < ‘
from Lemma 3.20 the first term is upper bounded by

] 77! < 2| g V2 o

mwuzzmnHl m

TTZ}U(LQLWCDHl + i Using the element-wise bound
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Using the tighter integral bounds derived in the Appendix, we obtain the following result.

Theorem 3.22. Let pur > 10. Then, for all N > 2uy (the bounds are uniform with respect to even
approximation dimension N ), it holds that

0.806 + 55, if pi > 10,
1T, < 40.736 + 525, if e > 100,
0.727 + 5555, if pe > 10.

Proof of Theorem 3.22. We present the details in Appendix A.

The fundamental idea behind the proof is to apply in practice Theorem 3.13 and Lemma 3.15, which
provide explicit recursive formulas for all T} ! entries. By summing up and unveiling the recursion in the
formulas, an explicit formula for the £* norm of the lower triangle (including the diagonal) of T, ! follows.
By analogous computations, we obtain an explicit formula for the ¢! norm of the upper triangle by reversing
the order of the diagonal elements.

Using the derived explicit formulas, |7} Y1 is bounded by the sequence sum of a;’s and a;’s from
Def. 3.7. The resulting finite sum is in turn bounded by a definite integral that can be computed explicitly

(we performed a symbolic Mathematica computation), and this determines the bound for the first term

Tr;iu(w[#kj) H appearing in Lemma 3.19 (for sufficiently large ux as in the statement of the Theorem), the
: 1

remainder according to Lemma 3.19 is bounded by 1/2puy. O

7 }2;“ ~ IR |
T Uia T
small 2 o — 00 1 1 1 1 1
B small _— A VN VA A 1)
E Ha < Hz il
5 = R VR R}

£ :

2]

Figure 3: Diagram motivating requirement of performing our analysis to compute the stability of the in-
verse tridiagonal operator T~ ! with respect to the approximation dimension. Notation 77,75 mean the
upper left finite dimensional block of T}~ ! having 1, o as the off-diagonal elements, which are denoted by

(T, 1)T011,(1:2#)7 col(1:2p)- Intuitively, all the entries of the inverse matrices outside ﬁ and TQ are small, as
they lie in the regime where the corresponding part of T} is diagonally dominant.

3.2.2 Uniform bounds for ||([,,(6N))_1||B(21) and the ultimate bound for ||L;1||B(£1)

We are going to use the following well-known result in linear algebra about the inverse of the sum of an
invertible matrix A and a rank one perturbation uv? (u,v are vectors), known as the Sherman-Morrison
formaula [27, 28, 29, 30, 31].

Lemma 3.23 ([31]). Suppose A is an invertible real square matrix and u,v are column vectors. Suppose
furthermore that 1 +vT A='u # 0. Then the Sherman-Morrison formula states that

A luwT AL

Ty—1 _ 41 _
(Aduv”) " =A T 0T A Ta

Here, uv™ is the outer product of two vectors u and v.
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Now let us apply Lemma 3.23 for the inverse of the linear operator that we consider. We recall its form
(N) .« 1 . . . . i
below. £, is being decomposed into a sum of a tridiagonal operator and a single non-zero row operator

10 -0 0 —2 2
M
LV =M +U=|" T + 0 : (61)
where
2 — UK 0
pe 4 —pg 0
Ty, = K - - (62)
0 pr 2(N —=1) —pug
.. 0 M 2N

Observe that in our case, we apply the Sherman-Morrison formula for (61), and we put
A+uwT =M A= My, w” =U, u=[1,0,...,0]", o7 =2[0,-1,1,..., (=) ...].

My, is invertible; being a tridiagonal matrix, it can be checked by the recursive determinant computation
that it is bounded away from zero for all k£ and N.

Lemma 3.24. The inverse of My in (39) is given by
- 1-1

1 0O --- 0
M7= | = _ _ . 63
k 0 Tk |: “HE - (Tk? 1)col(l) Tk: ! :| ( )

Proof. Let us denote Inv £ M, ! From solving the linear system of equations

Hlk 0 . IIlVl 1 II’IV12 - 1 0
(:) Tk Inv21 IHV22 - 0 Id ’

we have that

IIIVH = 17 IHV12 = O7
—Hk
—1 0 —1 —1
Invey =T, : = —ug (Tk )col(l) , Invey =T .
0

O

Corollary 3.25. Let My, be the first term in the decomposition of EiN) in (61).

M'UM!

Gl Ve Lo (64)

koo 1+vTMk71u'

Theorem 3.26. Let py > 0. Let Ty be the tridiagonal matriz (62), and EI(CN) be the matriz having the
diagonal block structure as in (61).
For all k such that py, > 0 and for all N > 0 it holds that

||(£1(<N))_1||B(z1) < max {27,

171}7

where 1 above comes from the fact that ||(£,(€N));oll(l)||zl =1.
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Proof. We denote

[mm]fvg =M,

[ 1 0 -+ 0 (65)

~Hk (Tk_l)col(l) T

We analyze the numerator and denominator of the perturbation term in the explicit form for (E;N))’l (64).
Observe that

mi1
ma1
MUUMT = M M =2 | N ) g S () s S ()
MN+1,1
and
N+1
Lo M u =142 (=17 'mj ;.
j=2

We will bound H[(EISN))*I]COl(l)Hel by considering two cases: [ =1, and [ > 2.

Case [ =1 it is easy to see a lot of terms in numerator get canceled

N+1 N+1
(N)y—1 mi 1 EN+1 (=) tmy, mi,1
[(‘Ck ) }col(l) =\{mi1— 2 N+1 1 N+1 . ; (66)
1+2Z ( )ng mji1 1 ].“FZZ ( )J“mjl im1

where m1; =1, and for j > 1: m;1 = —ux (Tk_l)j,m-
Knowing the explicit formulas of elements in (7} 1)605(1) with precise sign information from Lemma 3.15,
we obtain that the alternating sum from the denominator is in fact the norm

N+1

> (-D)m Z\uk Yl = el T et (67)

j=2
Hence it holds that (mi1 = 1)

1 2T el
o T 2l [T Voot s

e,

Case [ > 2

N+1 D+, N+1
muZ ( )+ Jl> . (68)

1 + 2 ZN+1 ( )]+1m]71 i=1

Taking the absolute value of each entry of the vector (68), applying the triangle inequality, and summing up
we obtain the following estimate for all [ > 2

N+1 (

[(EI(CN))_l]col(l) = (mi,l

N+1 N+1
mjal) S

1
et < slmidl + Y gl + T (69)
2 =2 1+2Z + |m],1|
N1 (1425205 myal) S35 sl
1+22N+1 Im;j,1
N+1
<2Z|mu|<22 kDl < 2[5 =
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We have the following straightforward corollary summarizing the results derived in this section.

Corollary 3.27. Let T}, be the tridiagonal matriz, and LéN) be the matriz having the diagonal block structure
as in (61), || - |[pe) is defined in (42). Then, for all N > 2uy. (the bounds are uniform with respect to even
approximation dimension N ),

16124+ 0.1, if uy € (10,100]
1LY ey < Clu) 2 {1,472 4001, if . € (100,1000] (70)
1.454 +0.001, if g, > 1000.

We proceed in bounding the full infinite dimensional inverse linear operator E,;l, our main tool is sum-
marized in the following theorem.

Theorem 3.28. Let pu > 10. Let Ty be the tridiagonal operator, and Ly be the (infinite dimensional)
operator. Let Ay be the approximate inverse (infinite dimensional), where its block dimensions depend on
N, defined as

L) | =1L) Yoy v
0 \ Q-1

def
A =

For any € > 0 and puy > 10 there exists N(g, ux), such that
I — ALy By <€, for all N > N(e, ux) and N even,

consequently

N
125 e < ?(Mz), and Ay — L; " as 5 =%

where C(uy) is the constant from Corollary 3.27 given in (70).

Proof. We apply Lemma 3.2. Our goal is to show that py < 1, then from Lemma 3.2 Ly is a boundedly
invertible operator on ¢! with
Br

1—pp’
where p, = L max{p), p@, p®}, where p1), p?, p(® are given by (30), (31), (32), and 3y, = | (E;N))*l | Beery-

In Theorem 3.26 we show that ||[(,C§€N))’1]Col(1)||g1 is equal to 1 for all N > 0 and py > 0. Hence it holds
that

1L ey <

It reminds us to estimate p(?). We proceed using the triangle inequality.

2

N)y-— 1 N)\—
L) ol + 55 < M) earven e + 57

@) < (|71 ) 1
P <L) Jearn+nller + N2 Ni2>
Let us fix 0 < € < 1. Obviously %p(l), %p@’) are smaller than e for N > N(e, ug). Where N(e, p) =
2Py, + 1 with p sufficiently large to be adjusted later-on.

We now show that %p@) < “—2’“||[(£§CN))_1}COMN+1)||¢1 + 5 <eforall Nst. N> N(e, p) and N even.

From (69) in the proof of Theorem 3.26 it follows that ||[(£ECN))_1]COI(N+1)HZ1 < 2I(Ti Heorvyl1- The
following upper bounds hold for the right-bottom corner diagonal block, corresponding to the last column
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of T, ! (compare (60))

~ d

‘111‘ = fN < ai, (71)
le ) ]’\:21‘:%<&13 (72)

~ dn—1+ puibn_

122‘ = DN T PR N-2)/2 < bny2, (73)

D

where D is the determinant of I. From Lemma 3.10 it follows that for N > N(e,pr) =2Pur+1 and N even
it holds that (setting j = 1)

1

bn/o < ma (74)
1
o < - 75
a1 = (22042 1 1)y, (75)
hence
1 Tcor(yllt = 1Tr2] + |Ti2] < a1 + byjo < 5o (76)

2ry k
The sum of absolute values of T}, ' upper triangle from Lemma A.4 is bounded by (setting n = 1)

N1

H (Tkr_l)row(lzN72),col(N)H Z ’uk al—H + al_H H &1+p|122|

. " 1 -1
We Spht the bound usimng H (Tk: )row(1:N72),col(N) H1 < H (T )row(1:2LukJ ,col(N H +H row(2|_/1kj+1:N72),col(N) Hl
For the first term we have
31 NG
1 2+1
H (T, )row(l:QLukj),col(N) H1 = Z i (a14i + i) H d1p|Ts| < Toptl (77)
i=3— p=1

using the upper bounds from Lemma 3.9, (73), (74). And as for the second term, it holds that (analogously
o (59))
%7“‘“ i—1 %7|_ij

6

—1

H(Tk )7-ow(2\_m€j+1:N—2),col(N)Hl < D (et ) II1 arplls| < 20+,
=1 p=

S 1)l _3
Mk —~ 17 2Py
(78)
Finally summing up (76), (77), and (78)

2 2242 6 1/2 3
(T ! 541 .
1T Deorcany o < T A BT T (uk +V2H14 8/%)

Now it reminds to pick p in N(e, p) = 2Py +1, such that 5y ( 2k —|—\/§+1+&) 7 <eand gy <e. O

We finally obtain the ultimate bound for Hﬁgl | B(ery by passing to the limit with € — 0 in Theorem 3.28.
Corollary 3.29. Let Ly be the linear operator (14) and recall the definition of C(uy) in (70). Then,

1.612+ 0.1, for px > 10
1L By < Clur) = { 1472 +0.01,  for py, > 100
1.454 +0.001,  for jux > 1000.
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3.3 Bound for || L7 p(x...)

Recall from Lemma 3.2 the definitions of p; and Sy given in (33) and (34), respectively. Assume that we
have computed the bounds ||£,;1||B(51) < fkpk for £k = 0,...,k using the computer-assisted approach of
Section 3.1. Here, k is chosen so that ur >0 for all k& > k.

Combining Corollary 3.3 and Corollary 3.29, we obtain that

15 By < 1455, for all > 0.

Hence, denote by 6 = 1.455. Letting

6 < max < max B , 5) , (79)

k=0,...k 1 — pr
we get the following result.

Lemma 3.30.

1£7 Ix,, < (80)
Proof. Letting a € X, 1 such that |lax,, <1, we get that
I£7 allx, , = 1£5 aoller + 2> 1£5 "akllnv”

k>1

<15 e laoller +2 > 1L B lallev*
k>1
< max ( max ||£;1||B(g1) , 5) Ha()Hgl + 22 ||a;€||g1Vk
=0,k E>1

< 6dllhllx,, < 0. O

4 Bounds for the radii polynomial

Recall that the hypothesis of Theorem 2.1 is verified using the radii polynomial p(r) defined in (27). In this
section, we present a constructive way to compute the bounds required to define p(r), namely the bounds YV’
and Z = Z(r) given by (25) and (26), respectively.

Assume that the initial condition is given as

bEBTO {bEfl ||b b”gl <7”0}

given some v > 1 and g the error bound, and where the numerical initial condition b has only finitely many
nonzero terms. Typically the error bound ry will come from the radius of the radii polynomial from the
previous rigorous integration step. In Section 4.3, we show how this bound can be obtained. Here, it is
understood that for b = (bg)r>o0,
6llr = |bo| + 22 by 1"
k>1

In this section, we use the notation F'(a,b) instead of F(a) to emphasize the dependency of the zero finding
problem F = 0 (See (18)) in the initial condition b € £1.

Recall from Lemma 3.2 the definitions of p and i given in (33) and (34), respectively. Assume that
we have computed the bounds || £, || (o < ﬁ b= for k=0,. .k using the computer-assisted approach of

Section 3.1. Denote by 6 = 1.455 the uniform bounds for || £, ! HB(@) for k > k from Section 3.2.
We now present a strategy to compute each bound separately.
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4.1 The bound Y
Recalling from (23) that 7 (a) = a — L7'F(a,b) = L7 (b— £AQ(a)), note that V satisfies
IT@) - allx,, = 1£7F(@b)llx,, <Y

Since the nonlinearity of the PDE is a polynomial and @ has only finitely many nonzero entries, there exists
M > k such that Fy(a,b) =0 for all k > M. Hence,

k M
1L F(@,b)|x,, = I1£5" Fo@, bl + 2> 1L Fr@ b)llav® +2 D 11£5 " Fi(@, b) || o ¥
k=1 k=k+1

k M
< Lo Foa,b)lle +2 1Ly Fr(a.b)|ovk +25 > [|Fu(@,b)llav”.
k=1 k=k+1

To compute a bound for HE,;le (@,b)||pr for k=0,..., k, recall the definition of the approximate inverse Ay,
in Figure 1 and recall (37) in the proof of Lemma 3.2, that is

Lt = Z(I_Ak/-:k)j Ag.

Jj=0

Hence, we get that

||£];1Fk(d, B)Hel = Z(I— Akﬁk)j Aka(fL,B) <

1 _
T Ak Ek(@ b)lle
>0 Pk

YA
Hence, we can compute Y such that

k M
17 F(@,b)llx,. < I1£5" Fo(a,b)le +2 ) 16 Fr(@b)llav* +26 Y [|Fi(a,b)llev*
k=1 k=k+1

||A0F0 a, b Hgl Z ||Aka a, b ||Zl

M
26 Fr(@,b)|| o v*

k=k+1

<Yp.
Moreover, recalling the definition of ¢ in (79), note that
e 0 =Bl < 1€ a0l =Bl = 1€ acx, o llb— Bl < oro.

1/

Finally, letting

def

Y =Yy + drg (81)

leads to the wanted bound as

1T (@) - allx,., = [£7F(a,b)lx,.,
= H,C‘l (La —-b+ ZAQ(a)) ‘

Xu1

+ |17 (b - b)|

XV,I

< Hﬁl (ﬁa —b+ ZAQ(&)) ‘

v,1

< L7 F (@ b)]x,., + dro
< YO + 57“0 =
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Remark 4.1 (Wrapping effect). In the current set-up, the bound (81) inevitably leads to a quick wrapping
effect, as the error from the previous step is multiplied by the factor §, i.e. the upper bound (79) for
1L B(x,.)- To exemplify this, assume that 6 is constant along the integration and that after the first
step, 1o = € (for some small € > 0). In this case, we expect the error bound ro > 6Fc at step k > 1. For
instance, if € = 1074 and if 6 = 1.5, then at step k > 1, the error bound should roughly be 10~141.5%.
Hence, expecting more than k = 80 successful steps in this case if probably too ambitious, as in this case
107141.5% > 1. See Tables 1 and 2 for some explicit data. That being said, we believe that a multi-steps
approach should significantly fiz this problem. This approach is currently part of future research.

4.2 The bound Z(r)
Recall from (26) that the bound Z(r) satisfies

sup [ DaT(e)llB(x,.) < Z(r)-
ceB,(a)

The computation of the bound Z(r) requires bounding the norm of some operators, which we do next.

Lemma 4.2. Recall the definition of the operator A in (16) and the block diagonal operator A in (17). Then
A € B(X,,1) with

)

Al ) <2 (82)

Proof. First, note that [|Allp(x,,) < [[Allpr), as for any a € X,y with [lal|x,, <1,

IAallx,, = [Adolle +2> " [[Aak]lov® < [Allpenllaolle +2 D 1A s llaxov*
k>1 k>1

< [[Allseery | llaollex +QZ lagllov® | < IAllsenllallx,., < [Als@)-
E>1

Now, let b € ¢! such that ||b]|;» < 1. Then, recalling the definition of the tridiagonal operator A in (16), the
proof follows by observing that

1ABllr =2 | = bro + brga| <20l +2)  Ibea] +2D [beral

E>1 E>2 E>1
= | Ibol + 2 [bj | + [ [bol +2D 1651 | < 2[[bllex < 2. O
jz1 j=2

Lemma 4.3. Let v(r) be any finite bound satisfying

sup [|DaQ(0)l|B(x, ) < (7). (83)
ceB,(a)

Then _
Z(r) B hdy(r) (84)

satisfies (26).

Proof. The hypothesis that @ = Q(u) is a polynomial implies that Q(c) consists of discrete convolutions.
Since X, ; is a Banach algebra under discrete convolutions, this implies that for any r > 0,

sup_[|DaQ(c)lB(x, ) < o0
ceEB,.(a)
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Now, letting ¢ € B, (a) and using Lemma 4.2 and Lemma 3.30, we get that

h ,_
DT ()llB(x,1) = I — 55 YADLQ(0) || B(x, 1)

N

h .
< S see, oI5 0 1P Q) 5., )
< hd||DaQ(c) | B(x, 1)
< hoy(r) = Z(r). .

Note that the polynomial bound ~(r) satisfying (4.3) is problem dependent and will be computed explicitly
for each of the PDE models we consider in Section 5.

Remark 4.4 (A priori knowledge about a maximal step size). Denoting
Zy = Z(0) = h67(0) = hd|| DaQ(@)l| 5(x, 1) (85)

a necessary condition for the radii polynomial approach to be successful is that Z1 < 1. This is equivalent to

require that
def 1

h < hmaw = — .
§[1Da (@) 5(x,.)

From this observation, note that the larger ||allp(x, ) is, the larger ||D,Q(a)|B(x, ) is (indeed, Q is a
polynomial), and therefore smaller the step-size h needs to be for the computer-assisted proof to be successful.

(86)

We explain in the section Applications (Section 5) how to make use of the constraint (86) to optimize
our code.

4.3 Getting the bounds for the next initial condition

Assume that at a previous time step, we computed & € B, (a) = {a€e X,1]lla—alx,, <ro} such that
F(a) = 0. The initial condition for the next step is then b = (bg)r>0, where

br = k(1) = dro+2 Y k.
j=1

Lettin
g 7 def _ _
br = aro + QZakm

Jj=1

then

b= blley = [bo — bl +2> _ [br — bi|v*
k>1

G00+2Y do; — oo +2Y Ao\ +2>  |ako+2Y ak;—axo+2Y  ak;|vF

j>1 j>1 k>1 j>1 j>1

< | lao.0 — ool +2)  lao; — oyl | +2 lako —arol v +4 > lan,; — an|v*
j>1 E>1 Ej>1
= Y lany = arglon; = lla—allx,, < ro.

k,j=0
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5 Applications

In this section, we apply our approach to two models: Fisher’s equation (in Section 5.2) and the Swift-
Hohenberg equation (in Section 5.3).

To apply our approach (and Theorem 2.1) to each of the above PDE models, we compute the radii
polynomial p(r) defined in (27). For this we need the bounds Y and Z = Z(r) given by (25) and (26),
respectively. In Section 4.1, we introduced the method to obtain the ¥ bound in full generality in (81). In
Section 4.2, recalling (84), we showed that Z(r) & hévy(r) satisfied (26) with ~(r) satisfying (83). What
remains to be done is to obtain explicitly the polynomial bound ~(r) for each model, which we do next.

Before doing that, we briefly describe the optimization of the step-size we perform before each computer-
assisted proof.

5.1 Procedure for optimizing the step-size before a computer-assisted proof

Recalling Remark 4.4 about the maximal step size, we now present a simple heuristic to optimize the step-

size before attempting a computer-assisted proof. Recall the definition of the bound Z; in (85), and fix a

target value thargCt)

Z§target)

< 1 that we want to achieve for Z; and a tolerance tol. In all of the examples below,

we chose = 0.7 and tol = 0.01. Fix an initial tentative step-size hg > 0, and start the procedure.
Compute a solution a@ of F(a,b) = 0 using an iterative procedure (we use pseudo-Newton a — a —
L71F(a,b), which avoids having to compute numerically DF(a) and DF(a)~!). Make sure that the last
Chebyshev coefficients of each Fourier modes ay(t) are of the order of machine precision (~ 107!¢). Then
compute (without interval arithmetic) the bound § = §(hg) given by formula (79). Using (85), compute

Zy = hé||DQ(a)| p(x, 1)

where the bound ||D,Q(a)||p(x, ) is easily obtained using Banach algebra estimates (e.g. see the explicit
Zy bounds (90) and (94) for each model we consider).

o If 7, > Zl(targEt) and |Z; — Zl(target)| > tol, replace hg — 0.9h¢ and start from the beginning.
o If 7y < Z\"5%) and |Zy — Z{"™")| > £o1, replace ho ~» 1.01hg and start from the beginning.
o If |Z; — Z£target)| < tol, then stop the procedure.

Repeat the steps until the wanted tolerance tol is achieved or until you have reached an a priori fixed
maximal number of steps.
We are now ready to present some applications.

5.2 Fisher’s equation

Fisher’s equation is given by

Up = Ugy + au — ou®, a€R (87)
and it has applications in mathematical ecology, genetics, and the theory of Brownian motion [32, 33, 34].
We supplement Fisher’s equation with even (i.e. u(t,—z) = u(t,z)) boundary conditions, plug (2) in (87)
and this leads to the following infinite system of ordinary differential equations

dag, )

Wk — {7(@) = (<K + o)y — alaxa), k>0 (88)

Recalling (3), we get for Fisher that A\, = —k% + o and Qy.(a) = —a(a?)y.
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5.2.1 The bound ~(r) and hpmax

Given any ¢ € B, (a) and h € B; (0), note that D,Q(c)h = —2a(c * h). Therefore

1DaQ(O)lB(x,) < sup_ 2|alllellx, . Ihllx,. <3(r) = 20l (la]lx,, +7)-
heB1(0)

Recalling Lemma 4.3, the polynomial ~(r) satisfies (83) and (84), the bound Z(r) for Fisher is given by
Z(r) = 2hdlal||al x, , + 2hd|alr (89)
and
Zy = Z(0) = 2hé|elllal|x, , - (90)

Hence, when applying the procedure for optimizing the step-size before a computer-assisted proof (see
Section 5.1), we have that
1

mar = S n=n__ °
26|allal x, ,

We fixed the parameter value in Fisher’s equation to be e = 100, at which there are 10 unstable eigen-
values Ay € {19,36,51,64,75,84,91,96,99,100}. We fixed the initial condition to be ug(z) = —0.1 +
0.02 cos(z) — 0.002 cos(2x). For the whole integration, we fixed the number of Fourier coefficients to be 20.
We report the results in Table 1 and in Figure 4.

h<h

Steps h # of Cheb. coeff. 1) ro
1 4.5001 x 1073 17 1.571 1.6371 x 10713
2 3.2806 x 1073 17 1.455 5.6452 x 10713
3 2.3915 x 10~3 16 1.455 1.4908 x 10~12
4 1.7963 x 1073 16 1.455 3.4225 x 10712
5 1.4550 x 1073 16 1.455 7.5886 x 10712
6 1.1785 x 1073 16 1.455 1.6416 x 10~ 11
7 9.5459 x 1074 15 1.455 3.4419 x 1011
8 7.9665 x 10~* 15 1.455 7.1317 x 10~11
9 7.1698 x 10~4 15 1.455 1.5120 x 10~19
10  5.8076 x 10~* 15 1.455 3.1155 x 10710
15  2.9487 x 10~* 15 1.455  1.2089 x 10~
20  1.6470 x 10~* 15 1.455  4.6332 x 1077
25  9.7251 x 107° 15 1.455 1.7835 x 107°
30  5.7426 x 107° 15 1.455 7.0234 x 10~*
35 3.4249 x 1075 15 1.455 2.6702 x 10~2

Table 1: Data for the rigorous enclosure of the solution of the Cauchy problem for Fisher’s equation.

5.3 Swift-Hohenberg equation

Swift-Hohenberg’s (SH) equation
ur = (@ — Du — 2Ugp — Ugpgge — w?, aeR (91)
is used as a model for pattern formation due to a finite wavelength instability, such as in Rayleigh—Bénard
convection [39, 40]. Considering even boundary conditions leads (via the cosine Fourier expansion (2) plugged
in (91)) to
da . ~ O
% — féSH)(d) = (k' 2k +a—1)a,— (axa*a), k>0. (92)
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Figure 4: The solution of the Cauchy problem for Fisher with o = 100 and ug(z) = —0.1 4 0.02 cos(x) —
0.002 cos(2z). The number of steps is 35 and the total integration time is 0.021895. There are 10 unstable
eigenvalues which are given by A, € {19, 36,51,64,75,84,91,96,99,100}. Hence, the problem is very stiff.

Recalling (3), we get for SH that A\ = —k* + 2k? + a — 1 and Qx(a) = —(a®)s.

5.3.1 The bound ~(7) and haz

Given any ¢ € B, (a) and h € By (0), D,Q(c)h = —3c? x h, and hence

def

_ 2
1DaQ(O) I 5(x,1) < v(r) = 3 (lallx,. +7)"-

We therefore set

Z(r) = 3ndall%, , + 6hdllallx, ,r + 3hér? (93)
and
Zy = 2(0) = 3hdlall%, , - (94)
Recall (86) and note that for SH,
1
h < hmaz = Sxi=n2 -
33lall%, ,

We consider o = 8.1. At that parameter value, there are 2 unstable eigenvalues: 7.1 and 8.1. Fix the
initial condition to be ug(x) = 0.02 cos(x) which is roughly is the unstable manifold of u = 0. We fix k = 5,
which fixes the number of blocks £ (k =0,...,5), that we invert using the computer-assisted approach of
Section 3.1. For the whole integration, we fixed the number of Fourier coefficients to be 15. We report the
results in Table 2 and in Figure 5.

We report some results in Figure 5.

6 Future directions

There are many future research directions and open problems related to the described method that we
will pursue in our future work. Major research efforts will be devoted to making our approach applicable
for performing computer-assisted proofs in dynamics that require validated forward integration, like the
existence of connecting orbits. To achieve this ultimate goal several improvements will be introduced. First,
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Steps h # of Cheb. coeff. 1) ro

1 1.3391 x 107! 17 2.9986 7.3026 x 10716
2 2.0136 x 107! 20 5.2733  2.4007 x 10713
3 9.9226 x 1072 19 2.2522  1.4644 x 10712
4 5.8592 x 1072 17 1.6137  4.6899 x 10~12
5 3.8443 x 1072 16 1.455 1.1851 x 10~!!
6 2.5729 x 10~2 15 1.455  2.6352 x 1011
7 2.0841 x 10~2 14 1.455  5.7253 x 10~11
8 1.6881 x 102 14 1.455  1.2073 x 10—t
9 1.4371 x 102 13 1.455  2.5096 x 10~10
10 1.2934 x 102 13 1.455  5.2304 x 10710
15 9.2809 x 1073 13 1.455  1.9945 x 10~8
20  7.2538 x 1073 12 1.455  7.5762 x 1077
25  6.7263 x 1073 12 1.455  2.9086 x 10~°
30 6.2371 x 1073 11 1.455  1.1231 x 1073
35  6.2371 x 1073 11 1.455  4.6083 x 1072

Table 2: Data for the rigorous enclosure of the solution of the Cauchy problem for SH equation.

u(t, )

Figure 5: The solution of the Cauchy problem for the Swift-Hohenberg equation with o = 8.1 and wg(x) =
0.02 cos(z), which is roughly is the unstable manifold of v = 0. The number of steps is 35 and the total
integration time is 0.81035. In thick black, we portrait the graph of a steady states of (91), which shows
that we almost an entire connecting orbit between 0 and the nontrivial steady states. Note that there are
two unstable eigenvalues: 7.1 and 8.1.

to deal with longer orbits (i.e. larger h) and solutions with larger norms, £ = DF(a) should be considered
instead of £ = DF(0) when computing an approximate inverse for a Newton-like operator. Second, an
effective way of fighting the wrapping effect needs to be employed (see Remark 4.1). Virtually all forward
integration schemes suffer the issue when the error resulting from a single step of forward integration is being
accumulated in a multiplicative way and leads to blow-up of bounds after a finite time. A promising simple
solution to this issue in the context of our method is to employ a multi-step forward integration operator
instead of the single-step one.

A very important research direction is to adapt our technique to other important PDEs that are beyond
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scope of the present implementation, including Kuramoto-Sivashinsky, Burgers, Navier-Stokes, Cahn-Hilliard
and Ohta-Kawasaki model. Generalizing this approach to PDEs defined on higher dimensional domains
(allowing a Fourier expansion in space) is also an interesting direction.
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A  Proof of Theorem 3.22

Assume i > 1.
Lemma 3.17 provides the following explicit formula for 7~ ! ower triangle ¢! norm (including the diagonal)

E:ol(c) L’ for n = 1,

-1
H (Tk )row(N—Qn-i—l:N),col(N—2n+c)

1 I~00l(0) L + Z;L:_f H;c (an—z‘ + dn—i) H;_:11 &n—p|j~20‘7 for1<n< %7
(95)
where n € {1,..., %} denotes the considered column pair of T}, ' (the largest index n = |u] denotes the

first column pair, and n = 2 denotes before the last pair), ¢ = 1,2 denotes the first and the second element
of the pair respectively, and I is the 2 x 2 diagonal block (48) that corresponds to the considered columns.
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In order to bound ¢! norm of full T,;l matrix, it reminds to bound ¢! norm of T,;l upper triangle. We
obtain an analogous formula to the one derived in Lemma 3.17, but just considering the 'reversed’ T} matrix,
which we denote by T, i.e.,

2N Uk 0 .

e | e 2N =2 O

Th = | . . : ) (96)
0 — Uk 2

We define recursive sequences {a}, {@} (analogous to {ax}, {a} from Def. 3.7)

Definition A.1. Let {Ej }é\’:1 be the sequence of T, diagonal elements, i.e., Ej = 2N — 25+ 2, let us define
the following recursive sequences (@, ao = 0)

. e _ EN—2j+2+Ej:1Hi _ doj 14 14}

J Ay _sjp1dN 252485 1dy ajpipd+pd  dajdag 1@ vdoj g i
i d:ef _ _ P _ — ka

7 dN—_2j41dN_2j 424G _1do;pi+p2 dajdaj—1+a;—1dzjui+ug

o N
for j=1,2,3,..., 5.

And obtain the analogous result to Lemma 3.17, but considering the 'reversed’ T} matrix, i.e., T}. By

——1
‘reversed’ we mean that it holds (T ) = (1! -
k row(2n+1:N),col(2n—2-+c) ( k )row(l:N—Zn)7col(N—2n+c )

Lemma A.2. It holds that

—1
) e -
H( k row(2n+1:N),col(2n—2+c) || 1 ( k )raw(l:N72n),col(N72n+c) 1
F-n i—1 _ N
Z I (a%—nﬂ—z’ +6%—n+1—i) Ha%—n+1—p|l2c|; forl<n< o (97)
i=1 p=1

where c =1, =2 or c=2,¢ = 1. In the sum above for the case i = 1 we put H;_:ll 5%_n+1_p =1.

Proof. The lower triangle of T;l corresponds to the upper triangle 7, ! The same calculations as in the
proof of Lemma 3.17, but performed for T'. O

Lemma A.3. It holds that
Ej < agfjJrl.

Proof. Follows directly from the definition of @;’s Definition A.1, compare with the definition of a;’s Defini-
tion 3.7. 0

Using the bound derived in Lemma A.3 we obtain an upper bound for ¢! norm of T, L upper triangle

Lemma A.4. It holds that

N_n

P} i—1
i . . ~ N
< i (@i + anga) [ ] ansplTacl, for 1 <n < 5 (98)
i=1 p=1

—1
H (Tk )row(l:N—2n),col(N—2n+c) 1

where ¢ =1 or 2. In the sum above for the case i =1 we put H;;ll Gpyp = 1.

Proof. Put j =& —n+1—4in Lemma A.3, then ax iy < Onie O
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Lemma A.5. The following bound holds

N/2 N/2
—1 T T ~ A
H(Tk ) row(ieny.col(N—2nto ||, S [|Teot@][,  Hll2c] z;aj +a; | < Z;aj + aj, (99)
J= J=
J#n

for allnzl,...,%—l and c=1,2.

Proof. Applying Lemmas 3.17, A.4, the upper bounds from Lemma 3.9 we bound the sums in (95) and (98)
N

by (for both of ¢ values) Z;le aj+a; and 3 7 ., a; +a; respectively. Using the upper bounds (60) we

overestimate

Tcol(l)H < Qp + ap, fcol(g)H < bin—2n+2)/2 + Gn < an + Gn. Hence the final overestimate
1 1
follows. O

Let us recall the following bound from Lemma 3.9 (it also holds for @, which is easy to check)

1
0<ay, aj < — (100)
o

We will use the fact (Lemma 3.6) that a; and &; is increasing as a function of a;_;.
We use the following trivial lower bound for a;’s

d 4 4
a; = N P) Z /Jle Z . (101)
dy—1dn + pi; — 17pg = 17ug

We show that lower bound 17‘; holds also for a;. We proceed by induction, assuming a;_, > we have

17u ’

dn_2j+2 + aj_11 dN_2j42 +4 a
dn—2j+1dN—2j+2 + aj_1dN_2j1 113 + 3 dN 9it1dN—2j12 + V2urdN_2j11 + 117

a; =

denoting 8 = dy_2;+1, we validate

B+2+4 o4
B(B+2) + V2urB+pi — 17T’

after simplifying we end up with
(17 — 4v/2) B + 26 — 48% > 0,

which is true for all 8 < 2uy, (we consider only rows 1 : 2 |ug]).

Using the upper bound a;_; < L}? from Lemma 3.9, (101), and the fact that a; is increasing as a function
of a;_, we obtain the following upper bound for a;’s

s dn_2j42 + V24 < dn—2jt+2 + V2 _
7= dN 9j42dN—2j+1 + aj_1dn_ojp1pi + pi T dn—2jr2dN_2j+1 + ddN_ojp1p /1T + pf

j.

It also holds

w dn_gj42 + Aj_ 1/Jk
7= dN ojr2dn—2j4+1 +4dn_ojp1pk/1T 4+ p2’
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dn_2j+a+V2ux
dN_2j43dN_2j4a+4dN _ojyspr/17+p3 "
By performing analogous computations it also holds that

where Aj—l =

Pk
s
7= dN 9jt2dN—2j4+1 + 4dN_ojp1 /1T + pi

We estimate the first sum in (99) by the definite integral, where we use substitution y £ % — j, we also
use pu = py, to simplify the notation. The range for y’s is fixed y € [1, |k |], as the norm in (99) concerns
only rows 1 : 2|ug], i.e. j such that N — 25 + 2 < 2| ug|. We overestimate the finite sums by the definite
integral over the wider and continuous range y € [0, ] as follows

Za‘</u 2(2y +2) + Ay dy</“ WD+ (V2utaly+2)
— 7 J 0 42y +2)(2y + 1) + 82y + Vp/1T+p2 7 T Sy (12 + 16y2)°

12 (4 (4+V2) +17v2tan "1 (4)) + 8p* (4 + 17tan"'(4)) + 164 + 16 + 68 tan—'(4)
13643 '

The maximal order w.r.t. p is the same in the numerator as in denominator, hence the function above is
decreasing w.r.t. p. The proof of the integral formula, a plot, and numerical evaluations for given u’s can
be found in the attached Mathematica script.

It holds for example

Lik ]

> a; <0.474 for p = 10,

j=1

Lok ]

> a; < 0.404 for p = 100, (102a)
j=1

Le]

> a; <0.395 for p = 1000,

Jj=1

The second term in Lemma A.5 is constant as

Lew I
H® H 1 -1
dy < —————dy=—-tan” (4
g / 42y +2) 2y + 1) + 8(2y + Dp/17 + 12 y_/y_016y2+u2 ¥=1 )
Hence,

L]

> a; <0.332. (103)

j=1

Finally the explicit bounds given in Theorem 3.22 follow from Lemma A.5, (102), and (103). O
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