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The multi-peak solitons and their stability are investigated for the nonlocal nonlinear system with
the sine-oscillation response, including both the cases of positive and negative Kerr coefficients. The
Hermite-Gaussian-type multi-peak solitons and the ranges of the degree of nonlocality within which
the solitons exist are analytically obtained by the variational approach. This is the first time, to our
knowledge at least, to discuss the solution existence range of the multi-peak solitons analytically,
although approximately. The variational analytical results are confirmed by the numerical ones.
The stability of the multi-peak solitons are addressed by the linear stability analysis. It is found
that the upper thresholds of the peak-number of the stable solitons are five and four for the system
with negative and positive Kerr coefficients, respectively.

I. INTRODUCTION

Nonlocality is ubiquitous and of great importance in many physical systems. In optics, a nonlinear medium is
considered spatially nonlocal when the nonlinear response of the material to the light wave is determined not only
by the wave at that point but also by its vicinity. The spatially nonlocal nonlinearity appears if the interaction
between light and matter involves a mechanism such as the diffusion of carriers, reorientation of molecules, heat
conduction, etc [1, 2]. Since the pioneering work done by Snyder and Mitchell[3], the research on optical beams in
nonlocal nonlinear media has been brought in focus. Some particular properties resulting from nonlocality have been
found, such as the long-range interactions between beams [4–6], the large phase shift of solitons [7–9], the supports
of complex spatial solitons [10–20] and chaoticons [21, 22], etc.

However, most of the researches concentrated on the nonlocal nonlinearity with positive definite and localized
response function, such as the phenomenological Gaussian response function [7, 14, 16, 20], the logarithmic response
function [23, 24] in the lead-glass [10, 19, 23, 24] for negligible loss thermal-nonlinearity [25], the exponential-decay
response function [4, 11, 21, 22] and the zeroth-order modified Bessel function [6, 13] in media with a nonlinearity
described by the diffusion-type equation [13], e.g., the effect of plasma heating on the propagation of electromagnetic
waves [26], the orientational nonlinearity of the nematic liquid crystal [1, 27], and the thermal-nonlinearity in the
regime of strong absorption [25]. Recently, some attention has been paid to the nonlocal nonlinear system with the
sine-oscillation response function [28–35], which was first put forward by Nikolov et al in the study of quadratic
solitons [36]. The distinct difference of such a response function from the localized ones lies in that it is periodically
oscillatory. The peculiarity of the response function may lead to some novel properties for the nonlocal nonlinear
system. For example, the very recent research [33, 34] revealed that there appears a transition between self-focusing
and self-defocusing in this kind of nonlocal nonlinear media when the degree of nonlocality goes across a critical value.

As it is known, in the nonlocal nonlinear systems with localized response functions, there exist not only the
fundamental solitons, but also high order solitons with multi-peak [11, 16, 19]. The reason may relate to the fact that
the nonlinear refractive index (NRI) is approximate to the parabolic shape on the condition of strong nonlocality,
which possesses the Hermite-Gaussian (HG) soliton solutions with multi-peaks. However, the upper thresholds of the
peak-number of stable solitons supported are different in the system with different response function. For instance,
in the nonlocal system with the exponential-decay response, only the multi-peak solitons with the peak-number less
than five are stable [11, 21]. While in the system with the Gaussian response, the multi-peak solitons with any peak-
number are stable [11, 16]. For the nonlocal nonlinear system with the sine-oscillation response, the fundamental
solitons and a kind of dipole soliton have been discussed [32–34]. Here we will study the existence and the stability
of the multi-peak solitons in this system by both the analytical and numerical methods.

The paper is organized as follows. In Sec. II, the model describing the nonlocal nonlinear system with the sine-
oscillation response is introduced. In Sec. III, the HG multi-peak solitons and their existence condition are investigated
by the variational approach. In Sec. IV, the numerical multi-peak solitons are acquired, and the relations between
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several quantities are discussed. In Sec. V, the stability of the multi-peak solitons is studied by the linear stability
analysing. Section VI gives the conclusion that the variational and numerical results agree with each other, and the
upper thresholds of the peak-number of the stable solitons are five and four in the cases with negative and positive
Kerr coefficients, respectively.

II. MODEL

We consider the paraxial propagation of a (1+1)-dimensional optical beam in a nonlocal nonlinear medium described
by the coupled equations [32–34]

i
∂q

∂z
+

1

2

∂2q

∂x2
+ q∆n = 0, (1)

w2
M

∂2∆n

∂x2
+ ∆n− s|q|2 = 0, (2)

in which q(x, z) and ∆n(x, z) are the dimensionless complex optical field amplitude and the light-induced NRI,
respectively, x and z stand for the transverse and longitudinal coordinates, respectively, and wM is the nonlinear
characteristic length of the media, s(= ±1) is the sign of the Kerr coefficient. When the Kerr coefficient is negative
(s = −1), Eqs. (1) and (2) resemble the model describing the propagation of beams in the nematic liquid crystals [4,
11, 21, 22], where the only difference is that the sign before the second term is minus in Eq. (2). When the Kerr
coefficient is positive (s = 1), Eqs. (1) and (2) are identical with the second harmonic generation model in media
with the quadratic nonlinearity for the stationary solutions [37]. Thus, these equations can be deemed a reasonable
extension of the models describing the real physics [33, 34].

When the boundary of Eq. (2) satisfies certain conditions [33], the NRI can be expressed as a convolution

∆n(x, z) = sR⊗ |q|2 = s

∫ ∞
−∞

R(x− x′)|q(x′, z)|2dx′, (3)

where the symbol ⊗ denotes the convolution, the response function R is of the sine-oscillation form

R(x) =
1

2wM
sin

(
|x|
wM

)
. (4)

We can find easily that the oscillation period of the above response function is 2πwM . Then Eq. (3) are equivalent to
Eq. (2).

The soliton (stationary) solutions of Eqs. (1) and (3) have the form

q(x, z) = u(x) exp(ibz), (5)

in which both the profile function u and the propagation constant b are real. The existence and the shape of the
soliton solution depend not only on the sign of s, but also on the generalized degree of nonlocality (GDN) [32, 33]
σ = wM/w, in which the beam width is defined by the second order moment

w =

(
2

∫ ∞
−∞

x2|q|2dx/

∫ ∞
−∞
|q|2dx

)1/2

. (6)

As stated in previous works [33], there exists the intertransition between the self-focusing and self-defocusing nonlin-
earity. When s = −1 and σ > 0.82, or s = 1 and σ < 0.82, the system exhibits the self-focusing nonlinearity, and
the fundamental solitons [32, 33] and a kind of out-of-phase solitons [32] had been found. Here in this paper, we will
discuss the bright solitons with multi-peak analytically and numerically for the self-focusing nonlinearity state.

III. VARIATIONAL PROCEDURE

Now we will find the approximate multi-peak solitons analytically by using the variational approach. The Lagrangian
density of the system described by Eqs. (1) and (3) is [38, 39]

l =
i

2

(
q∗
∂q

∂z
− q ∂q

∗

∂z

)
− 1

2

∣∣∣∣ ∂q∂x
∣∣∣∣2 +

s

2
|q|2

∫ ∞
−∞

R(x− ξ)|q(ξ, z)|2dξ, (7)
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where the superscript ∗ denotes the conjugate complex. We search the multi-peak solitons with the HG shape, so the
trial solution q(x, z) for the variational problem is supposed to be [16, 39]

qn(x, z) =
An(z) exp[iαn(z)]

(
√
π2nn!)1/2

Hn

[√
2n+ 1x

wn(z)

]
exp

[
− (2n+ 1)x2

2w2
n(z)

+ icn(z)x2
]
, (8)

where Hn(x) = (−1)nex
2

dne−x
2

/dxn is the nth-order (n = 0, 1, 2, 3, ...) Hermite polynomial [40], An and αn are
the amplitude and phase of the complex amplitude of the solution, respectively, cn is the phase-front curvature,
wn is exactly the beam width given in Eq. (6). All of An, αn, wn and cn are the real functions of z, the power
Pn =

∫∞
−∞ |qn|

2dx = A2
nwn/

√
2n+ 1. When n = 0, H0(x) = 1, Eq. (8) degenerates to the Gaussian form with the

shape of single peak.
By substituting the trial solution (8) into the Lagrangian density (7), using the expression Hn+1(x) − 2xHn(x) +

2nHn−1(x) = 0 and the orthogonality of the Hermite polynomial, the Lagrangian L =
∫∞
−∞ ldx can be obtained

L = − w3
nA

2
n

2
√

2n+ 1

[
dcn
dz

+
(2n+ 1)2

2w4
n

+ 2c2n

]
− wnA

2
n√

2n+ 1

dαn

dz
+

sA4
n

2(
√
π2nn!)2

en(wn, wM ), (9)

where en(wn, wM ) =
∫∞
−∞H2

n exp[−(2n + 1)x2/w2
n]{R(x) ⊗ H2

n exp[−(2n + 1)x2/w2
n]}dx. Following the standard

procedures of the variational approach [38], we obtain the second order differential equation for the width of the HG
beam (The detailed deviation is given in appendix A.)

d2wn

dz2
=

(2n+ 1)2

w3
n

− sPn(2n+ 1)

(
√
π2nn!)2

Nn(wn, wM ), (10)

where

Nn(wn, wM ) =
2en(wn, wM )− fn(wn, wM )

w3
n

, (11)

and fn(wn, wM ) =
∫∞
−∞(H2

n+1 − 4n2H2
n−1) exp[−(2n+ 1)x2/w2

n]{R(x)⊗H2
n exp[−(2n+ 1)x2/w2

n]}dx.

By comparing Eq. (10) with the Newton’s second law in the classical mechanics [7], the right hand side can be
viewed as the “force”

F =
(2n+ 1)2

w3
n

− sPn(2n+ 1)

(
√
π2nn!)2

Nn(wn, wM ) (12)

acted on a particle with the unit mass for the one-dimensional motion. Here the beam width wn and the longitudinal
coordinate z are equivalent to the spatial and temporal coordinates of the particle, respectively. The “potential” of the
force is Vn = −

∫ wn

wn0
Fdwn. The existence of the stationary solutions, equivalently, the stable equilibrium state of the

particle, appears on the minimal point of the potential. Then the two conditions should be met: dVn/dwn(= −F ) = 0
and d2Vn/dw

2
n(= −dF/dwn) > 0.

According to the condition of dVn/dwn = 0 and Eq. (12), we can easily obtain the critical power Pnc = (2n +
1)(
√
π2nn!)2/[sw3

nNn(wn, wM )], which is the power carried by the n-th order HG solitons. The beam is assumed
to be incident at its waist, that is, [dwn(z)/dz]|z=0 = 0 (the equivalent particle starts from rest). And the initial
“position” is regarded as wn(z)|z=0 = wn0 = 1 for the dimensionless system. Then the nonlinear characteristic
length wM = σwn = σ0|wn0=1, where the initial GDN σ0 = σ(z)|z=0. The beam will keep the width wn(z) = wn0 = 1
unchanged during the propagation, since the equivalent particle at rest will never move when it is acted by the balance
force. Hence the critical power can be rewritten as

Pnc =
(2n+ 1)(

√
π2nn!)2

sNn(1, σ0)
. (13)

Therefore, the trail solution Eq. (8) is of the form of the soliton solution [Eq. (5)]: qn(x, z) = un(x) exp(ibnz), where
the propagation constant is bn = dαn/dz = −(2n+ 1)2/2 + 3(2n+ 1)2[2en− fn/3]/[4Nn(1, σ0)], the profile function is

un =

(
Pnc

√
2n+ 1

2nn!
√
π

)1/2

Hn(
√

2n+ 1x) exp

[
− (2n+ 1)x2

2

]
. (14)

Obviously, the profile of the n-th order HG soliton possesses n+ 1 peaks.
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To consider the condition of d2Vn/dw
2
n > 0, we obtain firstly

d2Vn
dw2

n

=
(2n+ 1)2

Nn(1, σ0)

[
2fn(1, σ0)− ∂fn(1, σ0)

∂wn

]
=

2(2n+ 1)2

Nn(1, σ0)
Φn(1, σ0),

(15)

where

Φn(1, σ0) =

∫ +∞

−∞

[
H2

n+1 − 4n2H2
n−1 + (2n2 + 2n+ 1)H2

n − 4n2(n− 1)2H2
n−2 −

H2
n+2

4

]
exp[−(2n+ 1)x2]

{
R(x)⊗H2

n exp[−(2n+ 1)x2]
}

dx

−
∫ +∞

−∞

(
H2

n+1

4
− n2H2

n−1

)
exp[−(2n+ 1)x2]{

R(x)⊗ (H2
n+1 − 4n2H2

n−1) exp[−(2n+ 1)x2]
}

dx.

(16)

It is clear from Eq. (15) that a positive value of d2Vn/dw
2
n requires the same signs of Nn and Φn. Additionally, the

power Pnc [given by Eq. (13)] is demanded to be positive for a physical system, which requires that the signs of s and
Nn should also be same. Therefore, for the case of s = −1, the inequations of Nn < 0 and Φn < 0 should hold. On
the contrary, for the case of s = 1, the inequations of Nn > 0 and Φn > 0 should hold. Then we can find the ranges
of σ0 within which the above conditions are satisfied by solving numerically the algebraic equations of Nn(1, σ0) = 0
and Φn(1, σ0) = 0, where the two functions Nn and Φn are given by Eqs. (11) and (16), respectively. Without
loss of generality, the triple-solitons (n = 2) are exemplified. When s = −1, the inequations of Nn(1, σ0) < 0 and
Φn(1, σ0) < 0 correspond to the ranges that σ0 ∈ (0.12, 0.14)∪ (0.24, 0.30)∪ (1.06,+∞). When s = 1, the inequations
of Nn(1, σ0) > 0 and Φn(1, σ0) > 0 correspond to the ranges that σ0 ∈ (0, 0.06)∪(0.09, 0.11)∪(0.17, 0.21)∪(0.39, 0.79).

However, the above two conditions are not sufficient physically for the existence of the HG solions. The HG solitons
exist only in the condition that the induced NRI is bell-shaped, or quasi-bell-shaped, because the solitary waves
can be considered as the eigen-modes of the self-induced waveguide, i.e., the linear waveguide induced by the waves
themselves [41]. The bell-shaped NRI induced by the beam appears only within the rightmost range of the GDN
obtained above. Taking the case of triple-solitons for example, the induced NRIs [given by Eq. (3)] at different σ0 are
shown in Fig. 1. For comparison, the corresponding intensity I(x)[= |u2(x)|2] of the HG wave [described by Eq. (14)]
are also shown. We can see that for both s = −1 [Fig. 1 (a)] and s = 1 [Fig. 1 (b)], the NRI with the σ0 in the
rightmost range, i.e., σ0 ∈ (1.06,+∞) and σ0 ∈ (0.39, 0.79), respectively, are bell-shaped. Otherwise, the NRI with
the σ0 in other ranges, even close to the rightmost one, is not bell-shaped at all (the dashed blue curves in Fig. 1),
and can not construct a waveguide. Likewise, in the cases of other n, the bell-shaped [or quasi-bell-shaped, as shown
in Fig. 2 (a)] NRI appears only in the rightmost GDN ranges obtained from the minimal “potential”. Following the
same procedure, the ranges of σ0 within which the HG solitons exist are given in Table I (the variational results).

  

(a) (b) 

FIG. 1: The NRI ∆n (normalized values) induced by the triple-soliton at different σ0. (a) σ0 = 1.10 (the dotted black curve)
and σ0 = 0.29 (the dashed blue curve) for s = −1. (b) σ0 = 0.40 (the dotted black curve) and σ0 = 0.21 (the dashed blue
curve) for s = 1. The solid red curves represent the corresponding intensity of the beam.
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TABLE I: The ranges of σ0 within which the HG-type solitons exist

n = 0* n = 1 n = 2 n ≥ 3
s = −1 variational (1.05,+∞) (1.06,+∞) (1.06,+∞) (1.06,+∞)

numerical (1.05,+∞) (1.05,+∞) (1.05,+∞) (1.05,+∞)
s = +1 variational (0, 0.77) (0.38, 0.79) (0.39, 0.79) (0.39, 0.79)

numerical (0.05, 0.78) (0.38, 0.78)** (0.39, 0.78) (0.40, 0.78)

* The cases that n = 0 were discussed in the Ref. [34].
** It is the case referred to as the out-of-phase bound-state solitons in the
Ref. [32], where the existence range of the soliton is 0.16 ≤ σ ≤ 0.78, and
the algorithm used is the imaginary-time method. However, the results

on σ < 0.38 in the Ref. [32] are unreliable, because of the reason given in
the Ref. [44].

IV. NUMERICAL SOLUTIONS

For the nonlocal nonlinear system described by Eqs. (1) and (3), we know from the variational analysis above that
there exist the HG-type solitos on the conditions that σ0 > 1.06 when s = −1, and 0.38 < σ0 < 0.79 when s = 1.
Next we will search its multi-peak solitons by numerical methods according to the stationary equation

1

2

d2u(x)

dx2
+ u(x)

∫ ∞
−∞

R(x− ξ)|u(ξ)|2dξ = bu(x), (17)

which is obtained by substituting Eq. (5) into Eqs. (1) and (3). In the computation, the wM can be chosen arbitrarily,
and a set of soliton solutions with any value of wM can be obtained from the solution of a given wM , because the
system has the transform invariance [32].

For the case that s = −1, the multi-peak solitons are obtained by the perturbation-iteration method [42], and
the initial conditions are taken as the variational solutions. The numerical results show that the multi-peak solitons
always exist when the initial GDN σ0 > 1.05. The ranges of σ0 obtained by the numerical method are also shown in
Table I, from which we can observe that the numerical and variational values agree well with each other. The profiles
u(x) of several multi-peak solitons and the light induced NRIs ∆n(x) are shown in Fig. 2, where wM = 5. It can
be found that the NRIs are of convex shapes at the center of the beams, although the values are negative. In such
cases, the beams can sample the self-focusing NRIs that construct the self-induced waveguides. For comparison, the
variational solutions with the same σ0, wM and n are also given. Clearly, the variational multi-peak solitons are in
good agreement with the numerical ones.

For the case that s = 1, the numerical results are shown in Fig. 3. We can find that the NRIs in the main area
of the beams are almost positive, although they can be negative in the area with zero light intensity. Like in the
above case that s = −1, the corresponding variational HG solitons are shown for comparison. Obviously, there
appears more considerable difference between the numerical and variational ones compared with Fig. 2, especially
in Fig. 3(a, c) with large σ0. The profiles u(x) are HG-like when σ0 is small [Fig. 3(b, d)], while they deform to
be with flat step-like wings and far from the HG-like shape when σ0 becomes large [Fig. 3(a, c)]. The GDN ranges
within which the numerical multi-peak solitons exist are also given in Table I. We can see that the numerical results
agree well with the variational ones, too. Here the multi-peak solitons with relatively small GDN (about σ0 ≤ 0.5)
can be obtained by the perturbation-iteration method as in the case that s = −1. However, when σ0 increases,
the perturbation-iteration has a poor accuracy, even can not convergent (when σ0 > 0.65). The reason may lies in
that the perturbation-iteration method only applies to the solutions close to the HG function. Thus, we should use
another method, the Newton-conjugate-gradient method [43], to obtain the soliton solutions on this condition. Since
the Newton-conjugate-gradient method is sensitive to the initial condition, that is, the initial condition should be
reasonably close to the exact solution [43], we at advance obtain the soliton with smaller GDN, by iterating with the
solition acquired by the perturbation-iteration method as the initial condition. Then the solitons with larger GDN
are iterated stepwise by taking the solitons with slightly smaller GDN as the initial conditions.

Then, let us investigate the dependencies of the power Pc =
∫∞
−∞ |u(x)|2dx and the propagation constant b on the

GDN σ0 for the multi-peak solitons. We present the results with the peak numbers ranging from 2 (n = 1) to 9 (n = 8)
in Fig. 4, the upper row of which are for the case s = −1 with the GDN σ0 ≤ 5, the bottom row of which are for the
case s = 1 with the GDN σ0 in the whole existence range of the solitons. Here the results about the dipole-solitons
(n = 1) for the case s = 1 are omitted, since they, referred to as the out-of-phase solitons, had been discussed [32].
It is clear from Fig. 4 (a, c) that Pc increase monotonically with σ0 for all the multi-peak solitons. From Fig. 4 (b,
d), we can see that all the propagation constants b are negative, which decrease monotonically with σ0. These results
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(c) (d) 

(a) (b) 

FIG. 2: The profiles of the numerical multi-peak solitons u(x) (the solid red curves) and the light induced NRI ∆n(x) (the
dotted blue curves) for s = −1 and wM = 5. (a-d) for n = 1, 4, 5, 6 and σ0 = 1.13, 1.43, 3.52, 1.08, respectively. The variational
results [the dashed black curves for u(x), and the dashed green curves for ∆n(x)] with the same parameters are also given for
comparison.

are similar to the low order solitons [32, 33], but the slope (the absolute value) of the curves increases with the peak
number.

V. STABILITY OF THE MULTI-PEAK SOLITONS

Further more, we will study the stability of the HG-type solitons by the linear stability analysing [11, 19, 32, 33].
The perturbed soliton solution is supposed to be of the form q(x, z) = [u(x) + g(x, z) + ih(x, z)] exp(ibz), where the
real part g(x, z) and the imaginary part h(x, z) of the perturbation can grow with a complex rate δ on propagation.
Linearization of Eq. (1) around the soliton solution u(x) yields the eigenvalue equations [32, 33]

δg = −1

2

d2h

dx2
+ bh−∆nh, (18)

δh = −1

2

d2g

dx2
− bg + ∆ng + u∆N, (19)

in which ∆N = 2
∫∞
−∞R(x− x′)u(x′)g(x′)dx′ is the refractive index perturbation. By solving the system of Eqs. (18)

and (19) we obtain the eigenvalues δ, a positive real part of which means the instability of the solution u(x).
Fig. 5 shows the maximal real parts of the perturbation growth rate Re(δ) for the multi-peak solitons with different

n, in which figures (a) and (b) are for the cases s = −1 and s = 1, respectively. We can see from Fig. 5 (a-1) that
the dipole-, triple- and quadrupole-solitons (n = 1, 2, 3, respectively) are stable [Re(δ) = 0] when the GDN exceed
certain values, while they are unstable [Re(δ) > 0] at small σ0. Fig. 5 (a-2) shows that the multi-peak solitons that
n > 4 are all unstable; however, when n = 4 the (fifth-order) solitons can be stable only within a small range of GDN.
From figure (b), we can see that most of the Re(δ) are positive, but Re(δ) = 0 for the triple- and quadrupole-solitons
(n = 2, 3, respectively) in very small ranges of GDN. That is, the multi-peak solitons are unstable on most conditions,
except for the cases that n = 2, 3 within very small ranges of σ0. The ranges of the GDN σ0 within which the stable
HG-type solitons exist are summarized in Table II.

To confirm the above results of the stability analysis, we simulate the propagation of the multi-peak solitons with
the input condition q(x, 0) = u(x)[1+ρ(x)], where ρ(x) is a random function with a normal distribution and a standard
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(c) (d) 

(a) (b) 

FIG. 3: The profiles of the numerical multi-peak solitons u(x) (the solid red curves) and the light induced NRI ∆n(x) (the dotted
blue curves) for s = 1 and wM = 10. (a-d) for n = 2, 3, 5, 6 and σ0 = 0.74, 0.48, 0.75, 0.51, respectively. The corresponding
numerical results are denoted in the same way as in Fig. 2.

  

  

  

(a) (b) 

(d) (c) 

0 0 

0 0 

FIG. 4: The dependencies of the power Pc on the GDN σ0 [(a, c)] and the propagation constant b on the GDN σ0 [ (b, d)] for
the multi-peak solitons. (a, b) and (c, d) for s = −1 and s = 1, respectively.

deviation equal to 0.01. Fig. 6 depicts the contour plots of the intensity I(x, z) [= |q(x, z)|2 ] for the system that
s = −1. Fig. 6 (b) is for a stable fifth-order soliton, and the other three figures of Fig. 6 are for unstable propagations
of the multi-peak solitons. Similarly, the propagation of several multi-peak solitons for the case s = 1 are shown in
Fig. 7. Fig. 7 (b) is for the stable propagation of the quadrupole-soliton, the other three figures depict the unstable
propagations of the solitons. It is clear that the stable propagations of the solitons agree well with the zero value of
the Re(δ), while the unstable propagations of the solitons correspond to the positive Re(δ). We can also find that,
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(a-1) (a-2) 

(b) n=2 
n=3 
n=4 
n=5 
n=6 
n=7 
n=8 

n=4 
n=5 
n=6 
n=7 
n=8 

 

n=1 n=2 n=3 

0 

0 

0 

0 

FIG. 5: The maximal real parts of the perturbation growth rate Re(δ) versus the GDN σ0 for the multi-peak solitons. (a)
for s = −1, the open circles denoted by A to D corresponding to (n = 1, σ0 = 1.13), (n = 4, σ0 = 1.43), (n = 5, σ0 = 3.52)
and (n = 6, σ0 = 1.08), respectively. (b) for s = 1, the open circles denoted by A to D corresponding to (n = 2, σ0 = 0.74),
(n = 3, σ0 = 0.48), (n = 5, σ0 = 0.75) and (n = 6, σ0 = 0.51), respectively.

TABLE II: The ranges of σ0 within which the stable HG-type solitons exist

s = −1 s = +1

n = 0 * (1.05,+∞) (0.05, 0.78)

n = 1 (1.41,+∞) (0.38, 0.78)**

n = 2 (1.10,+∞) (0.42, 0.45)
n = 3 (1.10,+∞) (0.48, 0.49)
n = 4 (1.10, 1.61) no
n ≥ 5 no no

* The cases that n = 0 were
discussed in the Ref. [34].

** The value is different from
the result in the Ref. [32]

because of the reason noted
below Table I .

among the unstable cases, there are two quite different behaviours for the propagation of beams. In Fig. 6 (a, d) and
Fig. 7 (d), the beams break up after propagate several Rayleigh distances LR (= w2

0); on the other hand, the beams
keep self-trapped without spreading in Fig. 6 (c) and Fig. 7 (a, c). The former are for relatively small GDN, while
the latter are for relatively large GDN, either s = −1 or s = 1.

In the end of the paper, we would like to discuss the upper threshold for the peak number of the stable multi-peak
solitons in different nonlocal nonlinear systems. The system with the sine-oscillation response function can support
the stable multi-peak solitons with at most five peaks. On the other hand, the systems with the exponential-decay
response function [11] and the logarithmic response function (in the lead glass) [19] allow the stable multi-peak solitons
with at most four peaks, and the system with the Gaussian response function admits of no upper threshold for the
number of peaks of stable solitons [11, 16].
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(a) 

(c)  (d

(b)

)

FIG. 6: The contour plots of the intensity I(x, z) for the propagation of several multi-peak solitons in the system that s = −1.
(a-d) are corresponding to the cases denoted by A to D in Fig.5 (a), the initial inputs u(x) of which are shown in Fig. 2 (a-d),
respectively.

VI. CONCLUSIONS

In conclusion, the multi-peak solitons and their existence range for the nonlocal nonlinear system with the sine-
oscillation response have been studied. By the variational approach, the HG solitons have been obtained, and their
existence range have been acquired according to the minimal “potential” and the bell-shaped NRI. To our knowledge,
it is the first time to obtain analytically the existence range for the multi-peak solitons. The numerical multi-peak
solitons have been obtained also, which agree with the variational ones, especially in the case of negative Kerr
coefficient (s = −1). The linear stability analyses for the multi-peak solitons show that the system permits the stable
solitons with at most five and four peaks for the cases s = −1 and s = 1, respectively.
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Appendix A. Deviation of the evolution equation (10) for the beam width

The Euler-Lagrange equation corresponding to the variational problem δ
∫ +∞
0

L(An, wn, cn, αn, Ȧn, ẇn, ċn, α̇n)dz =
0 is

d

dz
(
∂L

∂q̇i
)− ∂L

∂qi
= 0, (A.1)

in which L is the Lagrangian [Eq. (9)],qi = {An, wn, cn, αn}, q̇i = dqi/dz. Following the standard procedures of the
variational approach, we get δL/δAn = 0, δL/δwn = 0, δL/δcn = 0, and δL/δαn = 0. Then, we can obtain the four
equations:

− w3
nAn√

2n+ 1

[
dcn
dz

+
(2n+ 1)2

2w4
n

+ 2c2n

]
− 2wnAn√

2n+ 1

dαn

dz
+

2sA3
n

(
√
π2nn!)2

en = 0, (A.2)



10

  

  

(a) 

(c) 

(d) 

FIG. 7: The contour plots of the intensity I(x, z) for the propagation of several multi-peak solitons in the system that s = 1.
(a-d) are corresponding to the cases denoted by A to D in Fig.5 (b), the initial inputs u(x) of which are shown in Fig. 3 (a-d),
respectively.

− 3w2
nA

2
n

2
√

2n+ 1

[
dcn
dz

+ 2c2n

]
+
A2

n(2n+ 1)3/2

4w2
n

− A2
n√

2n+ 1

dαn

dz
+

sA4
n

2wn(
√
π2nn!)2

fn = 0, (A.3)

− 1

2
√

2n+ 1

d(w3
nA

2
n)

dz
+

2w3
nA

2
n√

2n+ 1
cn = 0, (A.4)

− 1√
2n+ 1

d

dz
(wnA

2
n) = 0. (A.5)

The last equation (A.5) indicates that the power Pn = wnA
2
n/
√

2n+ 1 is a constant. By combining Eqs. (A.2) and
(A.3), we obtain

dαn

dz
= − (2n+ 1)2

2w2
n

+
3sPn(2n+ 1)

4w2
n(
√
π2nn!)2

[2en − fn/3], (A.6)

By substituting the constant power, the Eq. (A.4) can lead to

dcn
dz

= − 1

2w2
n

(
dwn

dz
)2 +

1

2wn

d2wn

dz2
. (A.7)

Then we can obtain the second order differential equation (10) about the evolution of the beam width by eliminating
other variables from Eqs. (A.4), (A.6) and (A.7).
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