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Abstract

The exponential fitting technique uses information on the expected behaviour of the solu-
tion of a differential problem to define accurate and efficient numerical methods. In particular,
exponentially fitted methods are very effective when applied to problems with oscillatory so-
lutions. In this cases, compared to standard methods, they have proved to be very accurate
even using large integration steps.

In this paper we consider exponentially fitted Runge-Kutta methods and we give charac-
terizations of those that preserve local conservation laws of linear and quadratic quantities.

As benchmark problems we consider wave equations arising as models in several fields such
as fluid dynamics and quantum physics, and derive exponentially fitted methods that preserve
their conservation laws of mass (or charge) and momentum. The proposed methods are applied
to approximate breather wave solutions and are compared to other known methods of the same
order.

Keywords: Exponential fitting; Conservation laws; Symplectic Runge-Kutta methods;
Modified Korteweg-de Vries; Nonlinear Schrödinger; Breathers.

1 Introduction

We consider a Partial Differential Equation (PDE) in the form

ut = f(x, t, [u]x), (a, b)× (t0, T ) (1.1)

equipped with suitable initial and boundary conditions. Here and henceforth u(x, t) ∈ R, and
given a generic regular function h, the symbol [h]x denotes h and its spatial derivatives. We
consider problem (1.1) for simplicity of discussion but the arguments can be straightforwardly
applied to systems of PDEs, PDEs in multiple dimensions, and PDEs of the form

Dt(g(x, [u]x)) = f(x, t, [u]x),

where here and henceforth Dz denotes the total derivative with respect to z, and g is linear
homogeneous in [u]x. PDEs that arise as a realistic model for a natural phenomenon typically
have conservation laws. A conservation law is a total divergence,

DivF = DxF (x, t, [u]x, [ut]x) +DtG(x, [u]x), (1.2)
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that vanishes on solutions of the PDE (1.1). The functions F and G are the flux and the
density of the conservation law. The density G usually has a physical interpretation such as
charge, mass, momentum or energy.

When the boundary conditions are conservative (e.g., periodic) integration in space of (1.2)
calculated on solutions of (1.1) yields

Dt

∫ b

a

G(x, [u]x) dx = 0,

therefore, ∫ b

a

G(x, [u]x) dx (1.3)

is a global invariant.
It is well known that numerical methods that preserve global invariants perform better

than standard ones as the accumulation of the error is slower over long times [23, 25, 37]. On
one hand, methods that preserve conservation laws have this same property [32]. On the
other hand, conservation laws govern the local variation of the conserved quantities, and so a
numerical scheme must satisfy stronger constraints to preserve them.

Finite difference methods that preserve conservation laws have been introduced for a range
of numerical equations by using a novel technique in [29–32]. Although these particular geo-
metric integrators perform better than standard methods, when the solution of the problem is
highly oscillatory they require very small stepsizes in order to correctly reproduce the oscilla-
tions of the solution.

In this paper we focus on problems whose oscillatory behaviour is known a priori. Problems
of this kind are for example breather solutions. In the context of ODEs breathers solutions are
periodic in time with energy localized in only a few low-frequency normal modes [11,12,28]. For
wave models such as the modified Korteweg-de Vries equation [10, 38], nonlinear Schrödinger
equation [2, 46], sine-Gordon equation [3, 22, 32], Gardner equation [38, 45], breathers are par-
ticular solutions that oscillate in time (resp. space) and are localized in space (resp. time) [1].

When the behaviour of the solution is known a priori, exponential fitting techniques can be
used to derive numerical methods that accurately solve the problem at hand with relatively large
stepsizes. In fact, exponentially fitted methods are obtained by requiring exact integration of
the solutions in a fitting space generated by a suitable set of functions [7,20,34,42]. The choice
of the fitting space is made on the basis of the expected behaviour of the solution. For example,
when the solution is known to be oscillatory the fitting space can be conveniently defined by
combinations of sine and cosine functions that can capture the frequency of oscillation of the
solution. In this paper we assume that this frequency is known or that it can be derived
from the problem. However, several techniques are available from the literature to numerically
estimate the frequency when unknown [17,19,48,50,51].

Exponential fitting techniques have been used in several contexts, such as fractional differ-
ential equations [4], quadrature [9, 14, 16, 26, 27], interpolation [24], peer integrators for ODEs
and PDEs [13,15], integral equations [8], boundary value problems [36].

Particular attention has been devoted to the development and analysis of exponentially
fitted Runge-Kutta (EFRK) methods (see, e.g., [17, 18, 21, 40, 41, 44, 51, 52]), and in particular
of symplectic methods (see, e.g., [5, 47–49]) that have extended to the context of exponential
fitting the well known theory of Runge-Kutta methods [35,43].

In this spirit it has been proved in [5] that symplectic EFRK methods conserve all linear
and quadratic invariants of a system of ODEs. This extends the analogue result that is well
known to hold for symplectic Runge-Kutta methods [6].

In the context of PDEs symplectic Runge-Kutta methods preserve all the conservation laws
with either linear or quadratic density G of a suitable space discretization [31].
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The scope of this paper is twofold. On one hand, we prove that symplectic EFRK meth-
ods satisfy a similar property. However, only some of them preserve conservation laws with
quadratic non homogeneous density G. On the other hand, we show the benefits of using
symplectic EFRK methods to solve PDEs with breather type solutions.

The paper is organized as follows. In Section 2 we show how to use the technique in [31]
to define space discretizations that preserve conservation laws. In Section 3 we deal with the
time discretization and prove original results on the conservation properties of EFRK methods.
In Section 4 we consider three different equations: the linear advection equation, the modified
KdV equation and the nonlinear Schrödinger equation. The latter provides an application of
the new theory in this paper to a system of PDEs. For each of these three PDEs we introduce
a conservative exponentially fitted numerical method and give explicit formulae of the discrete
conservation laws satisfied by the numerical solutions. In Section 5 we consider oscillatory and
breather solutions and use them as benchmark problems to show the conservative properties
of the proposed methods and their advantages compared to classic symplectic methods of the
same order. Finally, in Section 6 we draw some conclusive remarks.

2 Space discretization

In this section we show how to find finite difference semidiscretizations of (1.1) that preserve
conservation laws. We first select q conservation laws to preserve and write them in character-
istic form,

DxFℓ(x, t, [u]x, [ut]x) +DtGℓ(x, [u]x) = AQℓ, ℓ = 1, . . . , q, (2.1)

where
A = ut − f(x, t, [u]x),

and Qℓ is a multiplier function called the characteristic of the ℓ-th conservation law to preserve,
that may depend on x, t, u and its partial derivatives [39].

Given a uniform grid of nodes,

xm = a+ (m− 1)∆x, m = 1, . . . ,M, ∆x =
b− a

M − 1
,

we define the vectors

x ∈ R
M , xm = xm, U = U(t) ∈ R

M , Um(t) ≃ u(xm, t), m = 1, . . . ,M,

the forward shift,
S∆x(f(xm, t, Um)) = f(xm+1, t, Um+1),

and the forward difference operator

D∆x =
S∆x − I

∆x
,

where f is a generic function defined on the grid, and I is the identity operator. We look for a
space discretization of (1.1),

Ã(x, t,U) := DtU − f̃(x, t,U) = 0, (2.2)

and for approximations Q̃ℓ of Qℓ such that

ÃQ̃ℓ = D∆xF̃ℓ(x, t,U ,U t) +DtG̃ℓ(x,U), ℓ = 1, . . . , q, (2.3)

with F̃ℓ ≈ Fℓ and G̃ℓ ≈ Gℓ. The following theorem gives a characterization of the space of
semidiscrete divergences,

D∆xF̃ (x, t,U ,U t) +DtG̃(x,U), (2.4)
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Theorem 1 ( [31]) The kernel of the semidiscrete Euler operator

E =
∑

i,j

S−i
∆x(−Dt)

j ∂

∂(Dj
tU

α
i )
,

is the space of semidiscrete divergences (2.4).

On the basis of this result, the following strategy is here used to find bespoke finite difference
space discretizations (2.2) with conservation laws (2.3).

1. Select a set of nodes and define on it generic finite difference approximations Ã ≈ A
and Q̃1 ≈ Q1. The coefficients defining these approximations are free parameters to be
determined.

2. Fix some of the parameters by solving desired order conditions.

3. Fix more parameters by solving symbolically

E(ÃQ̃1) = 0. (2.5)

As a consequence of Theorem 1 there exist F̃1 ≈ F1 and G̃1 ≈ G1 such that

ÃQ̃1 = D∆xF̃1 +DtG̃1

is a conservation law of Ã.

4. Iterate to preserve more conservation laws replacing Q̃1 with Q̃ℓ until equation (2.5)
admits solutions.

Typically, at the end of the procedure above one obtains a family of methods that depend on
some remaining parameters that can be arbitrarily chosen [29–32]. In general, optimal values
of these parameters are not available a priori. However, these can be identified by minimizing
an estimate of the local truncation error for the specific problem at hand, as done in [33].

The purpose of this paper is neither finding all possible semidiscretizations with the desired
conservation laws, nor identifying the most accurate of these schemes for a given problem.
Therefore, in the following we set equal zero any remaining parameter that can be arbitrarily
chosen at the end of the procedure above. Hence, for each of the equations studied in this
paper, we focus on only one of infinitely many possible conservative semidiscretizations.

3 Exponentially fitted time integration

For the time integration of (1.1) we consider here only one-step methods and we discuss only
the first step of integration that can be similarly iterated.

Let be u0 the vector of the values of the initial condition at the nodes x, and u1 the
approximation at the next time step,

t1 = t0 +∆t,

given by an s-stage EFRK method. An s-stage EFRK method applied to (2.2) amounts to

u1 = u0 +∆t
s∑

i=1

bif̃(x, t0 + ci∆t,Y i), (3.1)

Y i = γiu0 +∆t
s∑

j=1

ai,j f̃(x, t0 + cj∆t,Y j), i = 1, ..., s, (3.2)



Exponentially fitted methods that preserve conservation laws 5

where the real coefficients γi > 0, ai,j , bi, and ci may depend on the time step, ∆t, and on
a parameter, ω, that characterizes the exact solution [34]. These coefficients are obtained by
choosing a fitting space and requiring that (3.1)–(3.2) is exact on solutions that belong to
the fitting space. The choice of the fitting space is based on the expected behaviour of the
solution. For example, when the solution is oscillatory, the parameter ω > 0 is the frequency
of oscillation, and the basis of the fitting space is typically chosen as

F = {1, x, . . . , xK , cos(ωt), sin(ωt), x cos(ωt), x sin(ωt), . . . , xP cos(ωt), xP sin(ωt)}.

The coefficients defining method (3.1)–(3.2) are then obtained by requiring that the functionals

L[y(t),∆t] := y(t+∆t)− y(t)−∆t

s∑

i=1

biy
′(t+ ci∆t), (3.3)

Li[y(t),∆t] := y(t+ ci∆t)− y(t)−∆t

s∑

j=1

ai,jy
′(t+ cj∆t), i = 1, ..., s, (3.4)

all vanish for any function y in the fitting space generated by F .
If, moreover, the coefficients ai,j , bi and γi satisfy

bi
ai,j
γi

+ bj
aj,i
γj

− bibj = 0, 1 ≤ i, j ≤ s, (3.5)

then the EFRK method (3.1)–(3.2) is symplectic [49].
It is known that symplectic EFRK methods conserve all linear and quadratic invariants of

a system of ODEs [5]. We prove here some local conservation properties of symplectic EFRK
methods when applied to a space discretization (2.2) of a PDE (1.1) with conservation laws
(2.3). For clarity of notation, henceforth we drop the index ℓ in (2.3) and refer to a generic
conservation law,

D∆xF̃ (x, t,U ,U t) +DtG̃(x,U) = 0, (3.6)

satisfied by the solutions of the semidiscretization (2.2).

Theorem 2 The EFRK method (3.1)—(3.2)

1. preserves the conservation law (3.6) with G̃ linear in U .

2. preserves the conservation laws (3.6) with G̃ quadratic homogeneous in U iff its coeffi-
cients satisfy condition (3.5).

Proof

1. As G̃(x,U) is linear in U , its m-th entry, G̃m, relative to the node xm is in the form

G̃m(x,U) = w
T
m(x)U , wm ∈ R

M .

Differentiating (3.6) and substituting, yields

D∆xF̃m(x, t,U , f̃(x, t,U)) = −w
T
m(x)f̃(x, t,U), (3.7)

where F̃m is the m-th entry of F̃ (x,U) relative to xm. Multiplying (3.1) by wm(x)T on
the left gives

G̃m(x,u1) = G̃m(x,u0) + ∆t

s∑

i=1

biwm(x)T f̃ i, (3.8)

where here and henceforth,

f̃ i := f̃(x, t0 + ci∆t,Y i).
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Considering (3.7), equation (3.8) shows that the solutions of (3.1)–(3.2) satisfy the totally
discrete conservation law

D∆t(G̃m(x,u0)) +D∆x

(
s∑

i=1

biF̃m(x, t0 + ci∆t,Y i, f̃(x, t0 + ci∆t,Y i))

)
= 0, (3.9)

where D∆t is the forward difference operator in time.

2. As G̃ is quadratic homogeneous, then there exists Ωm(x) = ΩT
m(x) ∈ R

M×M such that

G̃m(x,U) = 1
2
U

TΩm(x)U .

The conservation law (3.6) yields

D∆xF̃m(x, t,U , f̃(x, t,U)) = −DtG̃m(x,U) = −U
TΩm(x)f̃(x, t,U). (3.10)

Therefore, considering (3.1),

G̃m(x,u1) = 1
2
(u0 +∆t

s∑

i=1

bif̃
i)TΩm(x)(u0 +∆t

s∑

i=1

bif̃
i) (3.11)

= 1
2
u0

TΩm(x)u0 +∆t
s∑

i=1

biu0

TΩm(x)f̃ i + ∆t2

2

s∑

i,j=1

bibj f̃
i TΩm(x)f̃ j .

Moreover, equation (3.2) gives

u0 =
Y i

γi
−∆t

s∑

j=1

ai,j
γi
f̃ j , i = 1, . . . , s.

Substituting in the first sum in (3.11), yields

G̃m(x,u1)= G̃m(x,u0)+ ∆t
s∑

i=1

bi
γi

Y
T
i Ωmf̃

i +∆t2

2

s∑

i,j=1

(
bibj − bi

ai,j
γi

− bj
aj,i
γj

)
f̃ i TΩmf̃

j.

Therefore, taking into account (3.5) and (3.10),

D∆tG̃m(x,u0) +D∆x

(
s∑

i=1

bi
γi
F̃m

(
x, t0 + ci∆t,Y i, f̃(x, t0 + ci∆t,Y i)

))
(3.12)

is a totally discrete approximation of (3.6) satisfied by the solutions of (3.1)–(3.2) applied
to (2.2).

✷

In literature several authors (see, e.g., [5,18,44,49]) have focused on EFRK methods (3.1)–
(3.2) with

γi = γ, i = 1, . . . , s. (3.13)

For these particular schemes the following more general result holds true.

Theorem 3 The EFRK method (3.1)—(3.2) with coefficients (3.13) preserves (3.6) with G̃
quadratic in U iff its coefficients satisfy (3.5).
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Proof
The m-th entry of the density G̃(x,U) is of the form

G̃m(x,U) = 1
2
U

TΩm(x)U +w
T
m(x)U ,

where Ωm and wm are defined as above. The semidiscrete conservation law (3.6) at the point
xm amounts to

D∆xF̃m(x, t,U , f̃(x, t,U)) = −(UTΩm(x) +w
T
m(x))f̃(x, t,U). (3.14)

Therefore, (3.1) yields

G̃m(x, γu1) =
(

γ
2
u0

TΩm(x) +w
T
m(x)

)
γu0 + γ∆t

s∑

i=1

bi(γu0

TΩm(x) +w
T
m(x))f̃ i

+ γ2∆t2

2

s∑

i,j=1

bibj f̃
i TΩm(x)f̃ j .

Substituting

γu0 = Y i −∆t
s∑

j=1

ai,j f̃
j , i = 1, . . . , s,

in the first sum, yields

G̃m(x, γu1) = G̃m(x, γu0) + γ∆t
s∑

i=1

bi
(
Y

T
i Ωm(x) +wm(x)T

)
f̃ i

+ γ2∆t2

2

s∑

i,j=1

(
bibj − bi

ai,j
γ

− bj
aj,i
γ

)
f̃ i TΩm(x)f̃ j .

Therefore, taking into account (3.14) and (3.5), the method preserves the conservation law

D∆tG̃m(x, γu0) +D∆x

(
γ

s∑

i=1

biF̃m

(
x, t0 + ci∆t,Y i, f̃(x, t0 + ci∆t,Y i)

))
= 0. (3.15)

✷

One-step methods

We focus now on the simple case of one-stage EFRK methods, obtained by requiring the
exactness for solutions in the fitting space generated by

F = 〈exp (±iωt)〉 = 〈cos (ωt), sin (ωt)〉.

The coefficients of the method are obtained by solving

L[cos(ωt),∆t] = L[sin(ωt),∆t] = L1[cos(ωt),∆t] = L1[sin(ωt),∆t] = 0, (3.16)

where the functionals L and L1 are defined as in (3.3) and (3.4), respectively, with s = 1.
The solution of (3.16) in dependence of c1 = c1(ω,∆t) and ν = ω∆t, is [5]

γ1 =
1

cos(c1ν)
, a1,1 =

tan(c1ν)

ν
, b1 =

sin ν

ν cos(c1ν)
.
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Moreover, condition (3.5) amounts to

b1 = 2γ−1
1 a1,1,

and yields
2 sin(c1ν) cos(c1ν) = sin ν,

that is satisfied iff c1 = 1
2
. Therefore, there is a unique one-stage EFRK method that preserves

discrete versions of conservation laws with quadratic density. This is the exponentially fitted
midpoint (EF midpoint) method and amounts to

u1 =u0 +∆tb1f̃(x, t0 +
1
2
∆t,Y 1),

Y 1 = γ1u0 +∆ta1,1f̃(x, t0 +
1
2
∆t,Y 1).

Considering that
a1,1
b1

=
γ1
2

=⇒ Y 1 =
γ1
2
(u1 + u0),

the method can be equivalently recast in the more compact form,

u1 = u0 +
∆t sin ν

ν cos(ν/2)
f̃

(
x, t0 +

∆t

2
,
u1 + u0

2 cos(ν/2)

)
, (3.17)

that converges to the classic midpoint method when ν → 0.
As the method is one-step, then Theorem 3 applies. Hence, if G̃ is a quadratic density, the

discrete conservation law (3.15) satisfied by the solutions of (3.17) at the node xm amounts to

D∆tG̃m

(
x,

u0

cos(ν/2)

)
+D∆x

(
sin ν

ν cos2(ν/2)
F̃m

(
x, t0+

∆t

2
,
u1 + u0

2 cos(ν/2)
,
ν cos(ν/2)

sin ν
D∆tu0

))
= 0.

(3.18)

Note that in the particular cases when G̃ is linear or quadratic homogeneous (3.18) reduces to
(3.9) or (3.12), respectively, with s = 1.

4 Conservative exponentially fitted schemes

In this section we consider three different PDEs: the linear advection equation, the modified
KdV (mKdV) equation, and the nonlinear Schrödinger (NLS) equation. Each of these equations
has two conservation laws whose density G is either linear or quadratic. They govern the local
variation of mass and charge or momentum, respectively.

For each equation we introduce here an exponentially fitted method that preserves the
selected conservation laws locally. The conservative semidiscretizations are found following
the strategy described in Section 2. Fully discrete second order schemes are then obtained by
applying the EF midpoint method (3.17) in time.

Henceforth we denote with µ∆x the forward average operator in space whose action on a
function f of the semidiscrete or discrete solution is defined as

µ∆x : f(Um) → f(Um+1) + f(Um)

2
, µ∆x : f(um,n) →

f(um+1,n) + f(um,n)

2
,

respectively. The discrete forward average operator in time is analogously defined as

µ∆t : f(um,n) →
f(um,n+1) + f(um,n)

2
.
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Linear advection equation

The linear advection equation,
ut = ωux, (4.1)

is itself a conservation law, with density, flux and characteristic

F1 = −ωu, G1 = u Q1 = 1

Solutions of (4.1) satisfy the momentum conservation law defined by

F2 = −ω
2
u2, G2 =

1

2
u2 Q2 = u.

Centred at a generic point xm, the semidiscretization

DtUm = ωD∆xµ∆xUm−1, (4.2)

has a semidiscrete mass conservation law defined by

F̃1 = −ωµ∆xUm−1, G̃1 = Um, Q̃1 = 1,

and a momentum conservation law with flux, density and characteristic

F̃2 = −ω
2
UmUm−1, G̃2 =

1

2
U2

m, Q̃1 = Um,

respectively. Applying the EF midpoint method (3.17) to (4.2) gives a fully discrete scheme.
The discrete conservation laws are given by equation (3.18) and amount to

D∆tum,0 +D∆x

(
− ω sin ν

ν cos2(ν/2)
µ∆x(µ∆tum−1,0)

)
= 0, (4.3)

D∆t

(
1

2
u2
m,0

)
+D∆x

(
− ω sin ν

2ν cos2(ν/2)
(µ∆tum−1,0)(µ∆tum,0)

)
= 0. (4.4)

Modified Korteweg-de Vries equation

The mKdV equation,
ut + 6u2ux + uxxx = 0, (4.5)

has infinitely many conservation laws. Among them the ones of the mass and momentum are
defined by

F1 = 2u3 + uxx, G1 = u, Q1 = 1,

and
F2 = 3

2
u4 + uuxx − 1

2
u2
x, G2 = 1

2
u2, Q2 = u,

respectively. Fully discrete schemes for the mKdV equation that preserve these conservation
laws have been introduced in [29]. Considering a generic point xm, the semidiscretization

DtUm +D∆x

(
2(µ∆xUm−1)µ∆x(U

2
m−1) +D2

∆xµ∆xUm−2

)
= 0, (4.6)

has mass and momentum conservation laws defined by

F̃1 =2(µ∆xUm−1)µ∆x(U
2
m−1) +D2

∆xµ∆xUm−2, G̃1 = Um, Q̃1 = 1,

F̃2 = 1
2
Um−1Um(U2

m−1+U
2
m+Um−1Um)+(µ∆xUm−1)D

2
∆xµ∆xUm−2

− 1
4
(D∆xUm−1)D∆x(Um−2+Um), G̃2 = 1

2
U2

m, Q̃2 = Um.
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The fully discrete scheme obtained by applying the EF midpoint method (3.17) to (4.6) has
totally discrete conservation laws given by (see (3.18)),

D∆tum,0 +D∆x

(
sin ν

ν cos(ν/2)
F̃1|Um=(µ∆tum,0)/cos(ν/2)

)
, (4.7)

D∆tu
2
m,0 +D∆x

(
sin ν

ν
F̃2|Um=(µ∆tum,0)/cos(ν/2)

)
(4.8)

The nonlinear Schrödinger equation

We finally consider the NLS equation for a complex solution, ψ(x, t) ∈ C,

iψt + ψxx + |ψ|2ψ = 0.

Setting ψ = u+iv, with u, v ∈ R, the NLS equation can be equivalently written as the following
system of PDEs for its real and imaginary part:

A :=
(
ut + vxx + (u2 + v2)v,−vt + uxx + (u2 + v2)u

)
= 0. (4.9)

Also the NLS equation has infinitely many conservation laws. Among them, the ones defined
by

F1 = 2uvx − 2uxv, G1 = u2 + v2, Q1 = (2u,−2v)T ,

and by

F2 = u2
x + v2x + utv − uvt +

1
2
(u2 + v2)2, G2 = uvx − uxv, Q2 = (2vx, 2ux)

T ,

represent the conservation laws of charge and momentum, respectively. Although in Section 2
we have only considered a single PDE, the strategy can be straightforwardly extended to deal
with systems of PDEs (see [31]). A wide range of numerical methods for the NLS equation
that preserve both the charge and momentum conservation laws has been derived in [32]. The
semidiscretization,

DtUm +D2
∆xVm−1 +

1

2
(U0(U−1 + U1) + V0(V−1 + V1))V0 =0, (4.10)

−DtVm +D2
∆xUm−1 +

1

2
(U0(U−1 + U1) + V0(V−1 + V1))U0 =0. (4.11)

has conservation laws of charge and momentum defined by

F̃1 =2(µ∆xUm−1)D∆xVm−1−2(D∆xUm−1)µ∆xVm−1, G̃1=U
2
m+V 2

m, Q̃1= (2Um,−2Vm)T,

F̃2 =(D∆xUm−1)
2 + (D∆xVm−1)

2 + (µ∆xVm−1)(Dtµ∆xUm−1)− (µ∆xUm−1)(Dtµ∆xVm−1)

+ 1
2
(UmUm−1 + VmVm−1)

2 −∆x2

4
{(DtD∆xUm−1)D∆xVm−1−(DtD∆xVm−1)D∆xUm−1},

G̃2 =UmD∆xµ∆xVm−1−VmD∆xµ∆xUm−1, Q̃2 = (2D∆xµ∆xVm−1, 2D∆xµ∆xUm−1)
T ,

respectively. The conservation laws preserved by the EF midpoint, obtained from (3.18), are:

D∆t(u
2
m,0 + v2m,0) +D∆x

(
sin ν

ν
F̃1

)
, (4.12)

D∆t(um,0D∆xµ∆xvm−1,0 − vm,0D∆xµ∆xum−1,0) +D∆x

(
sin ν

ν
F̃2

)
, (4.13)

where F̃1 and F̃2 are calculated at Um = (µ∆tum,0)/cos(ν/2), and Vm = (µ∆tvm,0)/cos(ν/2).
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5 Numerical Tests

In this section we propose some numerical tests that highlight the advantages of exponentially
fitted methods over classic integrators when the solution of the problem is oscillatory, together
with their conservative properties proved in this manuscript. As in [30] we evaluate the error
on the q-th conservation law either as

Errq = ∆xmax
n

∣∣∣∣∣
∑

m

(
G̃q

∣∣
(xm,tn)

− G̃q

∣∣
(xm,t0)

)∣∣∣∣∣ , q = 1, 2, (5.1)

if the boundary conditions are periodic or zero, or as

Errq = max
m,n

(
{D∆xF̃q +D∆tG̃q}

∣∣
(xm,tn)

)
, q = 1, 2, (5.2)

otherwise. Note that (5.1) is an estimate of the error in the conservation of the invariant (1.3).
The error in the solution is calculated as

Sol err =
‖uN − uexact(x, T )‖

‖uexact(x, T )‖

for equations (4.1) and (4.5), and as

Sol err =

√
‖uN − uexact(x, T )‖2 + ‖vN − vexact(x, T )‖

‖uexact(x, T )‖2 + ‖vexact(x, T )‖2

for system (4.9), where N is the last time step. For small ∆x, the order of accuracy of the time
integrator is estimated as

Order =
log(Sol err∆t1/Sol err∆t2)

log(∆t1/∆t2)
,

where the error in the solution is evaluated as above using two different stepsizes, ∆t1 and ∆t2.

Linear advection equation

The solution of the linear advection equation (4.1) with initial condition u(x, 0) = f(x) and x ∈
R is given by uexact(x, t) = f(x+ωt). We consider here its restriction to (x, t) ∈ [−1, 1]× [0, 1],
assigning Dirichlet boundary conditions given by the values of f(x + ωt) at the endpoints of
the spatial interval.

As a first numerical test we set ω = 5 and the initial condition u(x, 0) = sin(x). The exact
solution, uexact(x, t) = sin(x + 5t), oscillates in time with frequency ω = 5. We solve this
problem with ∆x = 0.001 and ∆t = 0.1/2n , n = 0, . . . , 11.

We compare here the two schemes obtained applying either the classic midpoint rule or
the EF midpoint method (3.17) to the semidiscretization (4.2). The discrete conservation laws
preserved by the classic scheme are the limit for ν → 0 of (4.3) and (4.4).

In Table 5.1 we show the errors in the conservation laws evaluated as in (5.2), the solution
error, and the order of accuracy of the two schemes. The obtained results show that both
methods exactly preserve the local conservation laws, and the corresponding errors are only
due to accumulation of the round-offs.

The EF midpoint exactly integrates the solution of this problem, and so the error in the
solution is entirely due to the space discretization for any value of ∆t. By contrast, the classic
midpoint method converges as a second-order method and the error in time is negligible only
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Table 5.1: Errors in solution and conservation laws for u(x, 0) = sin(x)

Classic Midpoint EF Midpoint

n Sol err Order Err1 Err2 Sol err Order Err1 Err2

0 4.45e-2 8.94e-13 1.73e-12 3.43e-7 8.53e-13 1.58e-12

1 1.10e-2 2.01 9.38e-13 1.86e-12 3.49e-7 *** 9.07e-13 1.80e-12

2 2.74e-3 2.01 1.13e-12 2.26e-12 3.50e-7 *** 9.40e-13 1.84e-12

3 6.85e-4 2.00 1.11e-12 2.22e-12 3.50e-7 *** 9.94e-13 1.98e-12

4 1.71e-4 2.00 9.67e-13 1.90e-12 3.50e-7 *** 9.47e-13 1.84e-12

5 4.31e-5 1.99 9.72e-13 1.96e-12 3.50e-7 *** 1.01e-12 2.00e-12

6 1.10e-5 1.97 9.39e-13 1.83e-12 3.50e-7 *** 1.00e-12 1.88e-12

7 3.02e-6 1.87 1.05e-12 2.11e-12 3.50e-7 *** 1.14e-12 2.13e-12

8 1.02e-6 *** 1.53e-12 2.96e-12 3.50e-7 *** 1.48e-12 3.06e-12

9 5.17e-7 *** 2.47e-12 5.22e-12 3.50e-7 *** 2.63e-12 5.46e-12

10 3.92e-7 *** 5.10e-12 1.08e-11 3.50e-7 *** 4.92e-12 1.03e-11

11 3.61e-7 *** 9.09e-12 1.95e-11 3.50e-7 *** 1.00e-11 2.21e-11

Table 5.2: Errors in solution and conservation laws for u(x, 0) = log(x) sin(x);

Classic Midpoint EF Midpoint

n Sol err Order Err1 Err2 Sol err Order Err1 Err2

0 1.14e-2 3.99e-11 3.16e-10 7.16e-4 3.59e-11 2.81e-10

1 3.15e-3 1.85 4.15e-11 3.33e-10 1.77e-4 2.02 3.62e-11 2.84e-10

2 7.90e-4 1.99 4.72e-11 3.80e-10 4.41e-5 2.01 4.37e-11 3.50e-10

3 1.98e-4 2.00 4.38e-11 3.52e-10 1.11e-5 1.98 4.87e-11 3.86e-10

4 4.98e-5 1.99 4.72e-11 3.79e-10 2.95e-6 1.92 4.60e-11 3.73e-10

5 1.27e-5 1.97 4.70e-11 3.93e-10 9.43e-7 *** 4.94e-11 3.92e-10

6 3.49e-6 1.87 5.47e-11 4.52e-10 5.07e-7 *** 6.12e-11 4.96e-10

7 1.18e-6 *** 6.69e-11 5.64e-10 4.26e-7 *** 7.00e-11 5.82e-10

8 5.97e-7 *** 1.05e-10 9.09e-10 4.09e-7 *** 1.01e-10 8.85e-10

9 4.52e-7 *** 1.86e-10 1.77e-9 4.05e-7 *** 1.95e-10 1.68e-9

when ∆t . 10−4. This can be further seen in the graph on the left of Figure 5.1, showing a
logarithmic plot of the solution errors for different values of ∆t.

For a second numerical test, we take ω = 50 and the initial condition u(x, 0) = log(x) sin(x).
The exact solution, uexact = log(x + 50t) sin(x + 50t), is highly oscillatory in time, but is not
exactly integrated by EF midpoint. We choose ∆x = 0.005 and ∆t = 0.005/2n , n = 0, . . . , 9.
The graph on the right of Figure 5.1 shows that both methods converge with order two, until
the error in time is larger than the error in space. However, the EF midpoint is more accurate
than the classic midpoint and it reaches the maximum accuracy with ∆t ≃ 10−4. In contrast,
classic midpoint is equally accurate only when ∆t ≃ 10−5 or smaller. The results in Table 5.2
reflect the conservative properties of the schemes, and show that EF midpoint is up to 18 times
more accurate than classic midpoint for the largest values of ∆t.
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Figure 5.1: Solution error for u(x, 0) = sin(x) (left) and u(x, 0) = log(x) sin(x) (right) (logarithmic
scale on both axis)

Modified Korteweg-de Vries equation

The mKdV equation (4.5) has a breather solution given by [10]

u(x, t) = −4
η

ξ

ξ cosh(ν2 + ρ2) sin(ν1 + ρ1) + η sinh(ν2 + ρ2) cos(ν1 + ρ1)

cosh2(ν2 + ρ2) + (η/ξ)2 cos2(ν1 + ρ1)
, (5.3)

with ξ ∈ R, η > 0,

ν1 = 2ξ(x+ 4(ξ2 − 3η2)t), ν2 = 2η(x− 4(η2 − 3ξ2)t),

and

tan ρ1 =
Bξ − Aη

Aξ +Bη
, e−ρ2 =

∣∣∣∣
ξ

2η

∣∣∣∣

√
A2 +B2

ξ2 + η2
.

We solve here the mKdV equation (4.5) with initial condition obtained evaluating (5.3) at
t = 0, zero boundary conditions, and setting

A = 3, B =
√

48ξ2 − 9, η = ξ
√
3,

so that
ν2 = 2

√
3ξx, ρ2 = 0,

and the wave does not travel, but it only oscillates around its initial position. The frequency
of oscillation can be calculated from the initial condition and it is

ω = 64ξ3.

We first choose ξ = 0.7, so the corresponding solution oscillates with frequency ω = 21.952.
Figure 5.2 shows the exact profile of this breather solution for (x, t) ∈ [−4, 4] × [0, 20] from
three different perspectives. In particular, the view on the x–t plane at the centre of Figure 5.2
shows a high number of oscillations in the considered time window. On the right of Figure 5.2,
the view on the x–u plane highlights that the wave only moves within a compact space support,
roughly the interval [−3, 3], and that the superposition of all the oscillations defines a profile
that is symmetric with respect to the plane x = 0.
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Figure 5.2: Breather solution of mKdV: 3D view (left), x–t view (centre), x–u view (right)

Figure 5.3: Solution of classic midpoint: 3D view (left), x–t view (centre), x–u view (right)
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Figure 5.4: Solution of EF midpoint: 3D view (left), x–t view (centre), x–u view (right)

Figure 5.5: Solution of EF midpoint t ∈ [0, 200]: 3D view (left), x–t view (centre), x–u view (right)

In this first numerical test we compare the solutions of the classic midpoint and of the EF
midpoint applied to the semidiscretization (4.6) setting ∆x = 0.04 and ∆t = 0.004. Figure 5.4
shows that the solution of classic midpoint travels towards negative values of x. Considering
longer time windows, the wave reaches the left boundary and escapes out of the considered
space domain. This solution is qualitatively incorrect. The solution of the EF midpoint is
shown in Figure 5.4. In particular, the graph on the right shows that the motion only consists
of pure oscillations and their superposition defines the correct symmetric profile. This method
reproduces the correct qualitative behaviour of the exact solution also on longer time windows.
As an example, we show in Figure 5.5 its solution for t ∈ [0, 200].

We now set ξ = 1 and show some quantitative comparisons. In this case the solution is a
breather that oscillates with frequency ω = 64. We solve this problem on (x, t) ∈ [−2, 2]×[0, 0.2]
with ∆x = 0.002 and ∆t = 0.0032/2n , n = 0, . . . , 5.

In Table 5.3 we show that the errors in the conservation laws of the two methods are of
the order of the roundoffs. As before, the conservation laws satisfied by the classic midpoint
method are the limit for ν → 0 of (4.7) and (4.8). Also in this case the exponentially fitted
midpoint is more accurate than the classic midpoint. Both methods converge with second
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Table 5.3: Order of convergence and error in solution and conservation laws
Classic Midpoint EF Midpoint

n Sol err Order Err1 Err2 Sol err Order Err1 Err2

0 5.66e-1 2.10e-12 1.04e-11 2.48e-1 2.83e-12 9.60e-12

1 1.62e-1 1.82 6.84e-13 7.70e-12 7.05e-2 1.83 2.06e-12 2.68e-11

2 3.97e-2 2.03 7.98e-13 2.70e-12 1.61e-2 2.13 1.57e-12 3.50e-12

3 8.72e-3 2.19 1.11e-12 5.34e-12 4.97e-3 1.70 9.57e-13 8.09e-12

4 4.64e-3 *** 7.05e-13 1.19e-12 5.17e-3 *** 1.15e-12 2.02e-12

5 5.44e-3 *** 5.32e-13 9.53e-13 5.65e-3 *** 3.47e-13 1.34e-12

10−4 10−3

10−2

10−1

100

Sol err(∆t)

Classic
EF
slope 2

Figure 5.6: Solution error for mKdV breather (logarithmic scale on both axis)

order until the error in time is negligible compared to the space accuracy, as is shown also in
Figure 5.6.

Nonlinear Schrödinger equation

We solve here the nonlinear Schrödinger equation (4.9) with the initial condition yielding the
following breather solution [2]

ψ(x, t) =

(
2β2 cosh θ + 2iβ

√
2− β2 sinh θ

2 cosh θ −
√

4− 2β2 cos(
√
ωβx)

− 1

)
√
ωeiωt, θ = ωβ

√
2− β2t, β <

√
2,

u(x, t) = Re(ψ), v(x, t) = Im(ψ).

We consider the restriction of this solution to the domain (x, t) ∈ [−π/7, π/7]× [0, 0.5] and we
set β = 1.4. The frequency of oscillation of u and v can be obtained from the initial condition
and is ω = 25. The exact solution is plotted in Figure 5.7 and it satisfies periodic boundary
conditions.

The numerical grids are defined with ∆x = 2π/7000, and ∆t = 0.01/2n , n = 0, . . . , 6. As
shown in Table 5.4 both EF midpoint and the classic midpoint preserve the conservation laws
(4.12)–(4.13) and their limit for ν → 0, respectively.

The results in Table 5.4 and in Figure 5.8 show that the convergence of both methods is
of the second order in time, and the error decreases with the time step until approaching the
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Figure 5.7: Solution of the breather problem for NLS: |ψ(x, t)| (left), u(x, t) (centre), v(x, t) (right)

10−4 10−3 10−2
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100

Sol err(∆t)
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EF
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Figure 5.8: Solution error for NLS breather (logarithmic scale on both axis)
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Table 5.4: Order of convergence and error in solution and conservation laws
Classic Midpoint EF Midpoint

n Sol err Order Err1 Err2 Sol err Order Err1 Err2

0 1.49e-1 3.34e-13 4.70e-13 6.72e-2 1.10e-13 1.48e-13

1 1.70e-1 -0.19 9.95e-14 2.18e-13 1.85e-2 1.86 9.59e-14 2.85e-13

2 5.66e-2 1.59 8.17e-14 4.56e-14 4.97e-3 1.90 1.49e-13 2.42e-13

3 1.52e-2 1.90 8.53e-14 8.19e-14 1.49e-3 1.74 9.59e-14 1.79e-13

4 4.09e-3 1.89 9.95e-14 6.42e-14 6.23e-4 *** 1.28e-13 1.79e-13

5 1.27e-3 1.69 8.88e-14 4.17e-14 4.07e-4 *** 8.88e-14 1.05e-13

6 5.68e-4 *** 7.82e-14 5.57e-14 3.54e-4 *** 8.53e-14 3.49e-14

7 3.94e-4 *** 8.53e-14 1.70e-14 3.41e-4 *** 1.03e-14 3.18e-14

accuracy in space. However, the classic midpoint converges with the expected order only for the
smaller values of ∆t. The EF midpoint is up to 11 times more accurate than classic midpoint
and reaches the space accuracy with larger values of ∆t.

6 Conclusions

In this paper, we have proved that any symplectic EFRK method preserves local conservation
laws with linear or quadratic homogeneous density of suitable space discretizations of a PDE.
We have also given the conditions that they need to satisfy in order to preserve conservation
laws whose density is quadratic nonhomogeneous.

Space discretizations that preserve conservation laws have been obtained using the technique
introduced in [31]. This allows to straightforwardly cope with PDEs depending on more than
two independent variables similarly as done in [31].

On the basis of this result we have proposed exponentially fitted methods that preserve
two conservation laws of the advection equation, the modified KdV equation and the system
of PDEs given by the real formulation of the NLS equation. The proposed schemes are second
order accurate, and higher order schemes can be similarly obtained combining higher order
space discretizations with higher order EFRK methods.

Numerical tests have confirmed the conservative properties of the proposed methods as well
as their convergence to the exact solution with the expected order of accuracy. Applications
to problems with oscillatory solutions, such as breather waves, have shown that the proposed
fitted schemes are more effective than other symplectic methods of the same order of accuracy.
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