
ON THE EQUILATERAL PENTAGONAL CENTRAL
CONFIGURATIONS

M. ALVAREZ-RAMÍREZ1, A. GASULL2,3, AND J. LLIBRE2

Abstract. An equilateral pentagon is a polygon in the plane with five sides of equal
length. In this paper we classify the central configurations of the 5-body problem hav-
ing the five bodies at the vertices of an equilateral pentagon with an axis of symmetry.
We prove that there are two unique classes of such equilateral pentagons providing
central configurations, one concave equilateral pentagon and one convex equilateral
pentagon, the regular one. A key point of our proof is the use of rational parame-
terizations to transform the corresponding equations, which involve square roots, into
polynomial equations.

1. Introduction and statement of the result

The Newtonian planar 5-body problem describes the dynamics of five point particles
of positive masses mi at positions qi ∈ R2 moving according to the Newton’s laws under
their mutual gravitational forces. The equations of motion of this 5-body problem are

miq̈i = −
5∑

j=1,j 6=i

Gmimj
qi − qj

r3ij
, 1 ≤ i ≤ 5,

where rij = |qi − qj| is the mutual distances between the masses mi and mj, and G is
the gravitational constant. We take conveniently the time unit so that G = 1.

The configuration space is defined by

E = {q = (q1, . . . ,q5) ∈ (R2)5 : qi 6= qj, i 6= j}.

The configuration q = (q1, . . . ,q5) is called central if the position vector of each body
with respect to the center of mass is proportional to the corresponding acceleration
vector. In other words, if there exists a positive constant λ such that

q̈i = λ(qi − cm), i = 1, . . . , 5,

where cm = (m1q1 + · · ·+m5q5)/M and M = m1 + · · ·+m5, being cm and M the center
of mass of the five bodies and the total mass, respectively. Hence a given configuration
(q1, . . . ,q5) ∈ E of the 5-body problem with positive masses m1, . . . ,m5, is central if
there exists a λ such that (λ,q1, . . . ,q5) is a solution of the system

(1)
5∑

j=1,j 6=i

mj
qi − qj

r3ij
= λ(qi − cm), 1 ≤ i ≤ 5.
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A central configuration is convex if no body belongs to the convex hull of the other
four bodies; otherwise it is called concave. A planar central configuration is called a
relative equilibrium when they become equilibrium solutions in a rotating coordinate
system [17].

Since equations (1) are invariant under rotations, translations and dilations, when we
consider the number of central configurations, this will be restricted to count the classes
of central configurations modulo these mentioned transformations.

The central configurations are of special importance in Celestial Mechanics for several
reasons. For instance, central configurations are the initial conditions for the homo-
graphic orbits of the n-body problem. Central configurations play an important role
in the description of the topology of the integral manifolds in the n-body problem.
Moreover, in the planar case the central configurations are initial positions for periodic
solutions. For more information on this subject, recent advances and open questions,
the reader is addressed to [18] and references therein.

In this paper we will investigate some central configurations of the 5-body problem,
for which there are few known results. The first results concerning this issue take us
back decades ago to the work due to Williams [23], who settled necessary and sufficient
conditions for any plane central configuration of five bodies. In what follows we offer
a non-exhaustive list of some interesting works concerning this topic, which have been
published more recently.

Albouy and Kaloshin [3] proved that for a choice of five positive masses in the com-
plement of a codimension-two algebraic variety in the mass space, there are only a finite
number of equivalence classes of central configurations of the Newtonian 5-body prob-
lem. In [4] Chen and Hsiao provided necessary conditions for strictly convex central
configurations of the planar 5-body problem.

In the last times the interest in stacked central configurations has grown a lot, that
is, central configurations in which some subset of three or more masses also forms a
central configuration. This concept was introduced by Hampton [12], who was arguably
the first to find stacked central configurations in the 5-body problem, where two bodies
can be removed and the remaining three bodies are already in a central configuration.
After, several papers have been published showing the existence of other stacked central
configurations in the planar 5-body problem; see, among others, [5], [6, 8, 11, 16, 14].

Other studies have focused on restricting the problem to a particular shape, in [15]
it was proved that the unique co-circular central configuration in the planar 5-body
problem is the regular 5-gon with equal masses, while in [14] was proved the existence of
three families of planar central configurations where three bodies are at the vertices of
an equilateral triangle and the other two bodies are on a perpendicular bisector. Later
on in [21] was studied the central configuration in a symmetric 5-body problem with
three masses on an axis of symmetry and two other masses outside this axis, placed in
symmetric positions. A complete classification of the isolated central configurations of
the planar 5-body problem with equal masses was given in [13]. Recently in [7] were
studied the central configurations of the planar 5-body problem having four bodies at
the vertices of a rhombus.
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Figure 1. Pentagonal configurations: a convex one in the left hand pic-
ture and two different type of concave ones

For the reader’s convenience, we summarize here some basic facts about the pentagon,
which is a polygon with five sides and five angles. It is said that it is convex if all its
vertices are pointing outwards, otherwise it is concave; see Figure 1. A pentagon with
five sides of equal length is named equilateral. Moreover, a pentagon is called regular
when all the sides are equal in length, and five angles are of equal measures. If the
pentagon does not have equal side length and angle measure, then it is called irregular.
The regular pentagon is unique, up to similarity transformations, because it is equilateral
and its five angles are equal.

The goal in this paper is to characterize the equilateral pentagonal central config-
urations with an axis of symmetry for the planar 5-body problem whose five positive
masses are at the vertices of an equilateral pentagon.

(a) Convex (b) Concave

m2 m1 m2 m1

m4 m3

m4 m3

m5

m5

1

Figure 2. The two equilateral pentagonal central configurations with an
axis of symmetry of the 5-body problem.

Then our main result is the following one, which will be proved in the next section.

Theorem 1. There are two classes of equilateral pentagonal central configuration having
an axis of symmetry for the 5-body problem.

(a) The convex regular pentagon with equal five masses, see Figure 2(a).

(b) The equilateral concave pentagon with the masses normalized, i.e.
∑5

i=1mi =
1, equal to m1 = m2 ≈ 0.0922539749, m3 = m4 ≈ 0.3860948766 and m5 ≈
0.04330242730. In Figure 2(b) we show a representative of its class where the
bodies of masses m1 and m2 are fixed at (0, 1/2) and (0,−1/2), respectively.
The other bodies of masses m3,m4 and m5 are located at (x3, y3), (−x3, y3) and
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(0, y5), respectively, where x3 ≈ 0.5402091568, y3 ≈ 0.9991912848 and y5 ≈
0.1576604970. See Remark 2 for some comments of how these values are obtained.

Remark 2. From the proof of Theorem 1 and the results of Appendix B we obtain a
value t = t∗ ≈ 0.7332148086 which is the smallest root of the quadratic polynomial
t2 − u∗t + 1 = 0, where u = u∗ ≈ 2.0970716051 is the unique root in the interval
[205/100, 210/100] of the polynomial of degree 60 with integer coefficients, R60(u), given
in Appendix B. This polynomial is constructed from a reciprocal polynomial of degree 120
and also with integer coefficients that appears in (10). Then y5 = (1− (t∗)2)/(4t∗) and
all the other values in the theorem, x3, y3,mj, j = 1, 2, . . . , 5, can be obtained from this t∗

by elementary computations: sums, subtractions, multiplications, divisions and square
roots. Recall that, although we do not know the exact value of u∗, the classical use of
Sturm sequences allows to obtain explicit intervals, with rational endpoints, containing
u∗ and with arbitrarily small length.

At this stage the reader should be warned that there is a previous work by Perko and
Walter [19], who showed that n equal masses at the vertices of a regular polygon, for
n ≥ 4, forms a central configuration if and only if the masses are equal. Therefore it was
known that the regular pentagon with equal masses is a central configuration for the
5-body problem, but it was unknown that it is the unique equilateral convex pentagonal
central configuration with an axis of symmetry.

One of the key points of our approach is the use of rational parameterizations to
eliminate some of the square roots that appear in the equations governing the central
configurations, converting in this way these equations into polynomial ones. Then these
equations can be treated analytically by using some classical tools, like for instance the
Sturm sequences or the computation of resultants.

2. Preliminaries

Central configurations are invariant under composition of translations, rotations, and
scaling through its center of mass, hence without loss of generality we can assume that
the position of the masses mi > 0 for i = 1 . . . , 5 at the vertices of an equilateral
pentagon with an axis of symmetry are pk = (xk, yk) for k = 1, 2, 3, 4, 5, where y1 = 0,
x2 = −x1, y2 = 0, x4 = −x3, y4 = y3 and x5 = 0. Note that we can assume that x1 > 0,
x3 > 0, y3 > 0, y5 > 0 and y3 6= y5, because we want that the points (xi, yi) be the
vertices of a pentagon.

Next we will obtain the coordinates for the equilateral pentagon vertices. By a suitable
scaling we may assume that r12 = 1, so x1 = 1/2. Now we substitute this value into the
equation r13 = 1, obtaining that y23 = (3 + 4x3 − 4x23)/4. These values replaced in the
equation r35 = 1 provides x3 in terms of y5,

(2) x3 = Ψ±(y5) =
1

4
± y5

2
Φ(y5), where Φ(y) =

√
15− 4y2

1 + 4y2
.

Since we are interested in central configurations, with an axis of symmetry, modulus
rotations and homothetic transformations, without loss of generality, we have the next
result.
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Proposition 3. Suppose that q1, . . . ,q5 form an equilateral pentagon, with q1 and q2

fixed on the x-axis and with the y-axis as an axis of symmetry. Then

(x1, y1) = (0, 1/2), (x2, y2) = (−1/2, 0), (x3, y3), (−x3, y3) and (0, y5),

where

(a) either x3 = Ψ+(y5) =
1

4
+
y5
2

Φ(y5), y3 =
y5
2

+
1

4
Φ(y5), and y5 ∈

(
0,
√

15/2
)
,

(b) or x3 = Ψ−(y5) =
1

4
− y5

2
Φ(y5), y3 =

y5
2
− 1

4
Φ(y5), and y5 ∈

(
1 +

√
3/2,
√

15/2
)
.

The geometrically distinct equilateral pentagon are shown in Figure 3. It follows
from the case (a) of Proposition 3 that the equilateral pentagon is concave when y5 ∈
(0,
√

3/2), and convex if y5 ∈ (
√

3/2,
√

15/2). While in case (b) of Proposition 3 the
equilateral pentagon is always concave.

B < y5 < C y5 = C

y5 = 0 0 < y5 < A y5 = A a < y5 < C y5 = C

x3 = Ψ+(y5)

x3 = Ψ−(y5)

A = √3/2 ≈ 0.866, B = 1 +√3/2 ≈ 1.866, C = √15/2 ≈ 1.936.

1

Figure 3. Gallery of possible pentagon equilateral configurations, ac-
cording whether x3 = Ψ+(y5) or x3 = Ψ−(y5) and the value of y5, together
with the boundary cases, that are no more pentagons.

In the next section we will see that the only values of y5 that give rise to central

configurations will be x3 = Ψ+(y5), where y5 = (
√

5 + 2
√

5)/2 ≈ 1.539 is associated to
the regular pentagon, while y5 ≈ 0.1576605 gives a concave central configuration.

3. Proof of Theorem 1

By a suitable scaling we may assume that m1 + m2 + m3 + m4 + m5 = 1. Then the
center of mass of the five bodies is

cm = (xm, ym) =

(
m1 −m2 + 2(m3 −m4)x3

2
,
(m3 +m4)

√
3 + 4x3 − 4x23 + 2m5y5

2

)
.
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Since we are studying equilateral pentagons we can assume that r12 = r13 = r35 =
r45 = r24 = 1. Then the others mutual distances are

(3) r14 = r2,3 =
√

1 + 2x3, r1,5 = r2,5 =
√
y25 + 1/4, r3,4 = 2x3.

From (1) we obtain the ten equations for the central configurations of the 5-body problem
in the plane:

(4)

ej =
5∑

j=1,j 6=i

mj(xi − xj)
r3i,j

− λ(xj − xm) = 0, 1 ≤ j ≤ 5,

ej+5 =
5∑

j=1,j 6=i

mj(yi − yj)
r3i,j

− λ(yj − ym) = 0, 1 ≤ j ≤ 5.

Substituting into (4) the values and expressions of the mutual distances and taking
m5 = 1−m1 −m2 −m3 −m4, it is seen that

(5) e8 − e9 = −(m1 −m2)
√

3 + 4x3 − 4x23(−1 +
√

1 + 2x3 + 2x3
√

1 + 2x3 )

2(1 + 2x3)3/2
= 0.

A straightforward computation shows that
√

3 + 4x3 − 4x23(−1+
√

1 + 2x3+2x3
√

1 + 2x3) =
0 for x3 = −1/2, 0, 3/2. However, any of these values is good, because x3 > 0 and

x3 = 3/2 implies that r1,3 =
√

1 + y23, but this is impossible because we have assumed
that y3 6= 0 and r1,3 = 1. So m2 = m1.

Since e3 + e4 = (m3 −m4)(1 + 8λx33)/(4x
2
3) = 0. It follows that either m4 = m3, or

λ = −1/(8x33). In this last case we obtain

e6 − e7 =
(m3 −m4)

√
3 + 4x3 − 4x23(−1 +

√
1 + 2x3 + 2x3

√
1 + 2x3 )

2(1 + 2x3)3/2
= 0.

Hence as in (5) we have that m4 = m3. Therefore we do not need to consider λ =
−1/(8x33), and in what follows we consider that m4 = m3, such that, e6 − e7 = 0.

In summary, we have that e1+e2 = 0, e5 = 0 and e6−e7 = 0. Hence we conclude that
from the ten equations (4) only e1, e3, e6, e8, e10 remain independent. These equations
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are

f1 = −λ
2
− 4

E3

+m1

(
−1 +

8

E3

)
+m3

(
−1

2
+ x3 −

1

2E1

+
8

E3

)
,

f2 = −(1 + λ)x3 +
1

4
m3

(
8− 1

x33

)
x3 +m1

(
1

2
+ x3 −

1

2E1

)
,

f3 = y5

(
λ+

8

E3

)
+m1

(
−2λy5 −

16y5
E3

)
+m3

(
1

2
E2

(
1 +

1

(1 + 2x3)E1

)
+ λ
(
E2 − 2y5

)
− 16y5

E3

)
,

f4 = −1

2
(1 + λ)

(
E2 − 2y5

)
+ (1 + λ)m3

(
E2 − 2y5

)
+ m1

(
1

2
E2

(
1− 1

(1 + 2x3)E1

)
− 2(1 + λ)y5

)
,

f5 = (1 + λ)m3 (E2 − 2y5) +m1

(
−2λy5 −

16y5
E3

)
,

where E1 =
√

1 + 2x3, E2 =
√

3 + 4x3 − 4x23 and E3 = (1 + 4y25)3/2.

Solving f2 = 0 and f5 = 0, we obtain the following expressions for m1 and m3

(6)
m1 =

(
2E1E3(1 + λ)2x33(E2 − 2y5))/m,

m3 =
(
4E1(1 + λ)(8 + E3λ)x33y5)

)
/m,

where

m = 2E1 (E2E3λ+ 2λy5E3 + E2E3 − 2E3y5 + 32y5)x3
3

+ E3 (1 + λ) (E2 − 2y5) (E1 − 1)x3
2 − E1y5 (λE3 + 8) .

We substitute the values of m1 and m3 into the equations f1 = 0, f3 = 0 and f4 = 0,
and taking only the numerators of these three equations because the denominators do
not vanish, the former system, reduce to

g1 =8E1E3 (1 + λ) (λE3 + 8) y5x3
4 +

((
16E1E3

2λ− 4λ2E3
2 + 8E1E3

2 − 192λE1E3 − 4λE3
2

− 64E1E3 + 512E1λ− 32λE3 − 32E3

)
y5 − 2E1E2E3 (1 + λ) (3λE3 + 2E3 − 16λ− 8)

)
x3

3

+ (2E3 (1 + λ) (λE3 + 8) (E1 − 1) y5 − E2E3 (1 + λ) (λE3 + 8) (E1 − 1))x3
2

+ E1 (λE3 + 8)2 y5,

g3 =(8 + E3λ)y5(L2λ− L1),

g4 =(1 + λ)(2y5 − E2)(L2λ− L1),

where

L1 =− 2 (1 + 2x3)
(
2E1E3x3

3 − E1E3x3
2 + x3

2E3 − 4E1

)
y5 − E2E3x3

2 (2x3E1 + E1 − 1) ,

L2 = (1 + 2x3)
(
12E1E3x3

3 − 2E1E3x3
2 − 64x3

3E1 + 2x3
2E3 − E1E3

)
y5

+ E2E3x3
2 (2x3E1 + E1 − 1) ,
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Computing λ from equation g3 = 0 we obtain the two solutions

(7) λ1 = − 8

E3

, λ2 =
L1

L2

.

The solution λ = λ1 is not suitable because then m3 = 0. Substituting the solution
λ = λ2 in the equations g1 = 0 and g4 = 0, we get that g4 ≡ 0, and the equation g1 = 0
reduces to

h̄1 = (2x33y5E1E3(E3 − 8)2(2x3 − 1)(1 + 2x3 + 4x23)h1 = 0,

where

h1 =− 4 (1 + 2x3)
2 (4E1

2 (E3 − 16)x3
4 − 8E1 (E1E3 − 4E1 − 4)x3

3 − E3 (E1 − 1)2 x3
2

+ E1
2 (E3 − 8)

)
y5

2 − 2E2 (1 + 2x3)
(
16E1

2 (E3 − 4)x3
4 + 4E1 (3E1E3 − 8E1 − E3 − 8)x3

3

+ 2E3 (E1 − 1)2 x3
2 − 2E1

2 (E3 − 8)x3 − E1
2 (E3 − 8)

)
y5 + E2

2E3x3
2 (2x3E1 + E1 − 1)2 .

Notice that 2x33y5E1E3(1 + 2x3 + 4x23) does not vanish because x3 ∈ (0, 1), y5 > 0 and
E1 = r1,4 > 0.

At this step we shall prove that condition (E3− 8)(2x3− 1) = 0 implies that m5 = 0.
This is so, because

m5 =1− (m1 +m2 +m3 +m4) = 1− 2(m1 +m3)

=
2E1y5x3

3E2E3 (2x3 − 1) (4x3
2 + 2x3 + 1) (E3 − 8)

L2
2

×
(
− (1 + 2x3)

[
8E1

2 (E3 − 16)x3
4 + 8E1 (E3 − 8) (E1 + 1)x3

3 + 2E3 (E1 − 1)2 x3
2

− 2E1
2 (E3 − 16)x3 − E1 (E1E3 − 16E1 + E3)

]
y5 + E2E3x3

2 (2E1x3 + E1 − 1)2
)
,

where we have used the expressions (6) for m1,m3 and substituted λ = λ2 where λ2 is
given in equation (7). In short we have proved that the equations h̄1 = 0 and h1 = 0
are equivalent.

From Proposition 3 we have that

x3 =
1

4
± y5

2

√
15− 4y25
1 + 4y25

,

or equivalently,

(8) h2 = (1− 4x3)
2(1 + 4y25) + 4y25(4y25 − 15) = 0.

Hence the central configurations are the solutions of the simultaneous solution of
both equations h1 = 0 and h2 = 0, with the two unknowns x3 and y5. Indeed it provides
positive masses mj. In order to avoid the square roots which appear in E1, E2 and E3 in
h1, we do a change of variables such that the expressions appearing inside each square
root are equal to some new squared expressions. These changes of variables are given by
the so called rational parameterizations and correspond to parameterizations of planar
algebraic curves given by rational functions. Due to the famous Cayley-Riemann’s
Theorem [1, 2] they exist if and only if the corresponding surfaces have genus zero.
There are effective methods to find one of these parameterizations see for instance [20,
Chap. 4 & 5]. In fact, many programs of symbolic calculus have implemented some
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methods and algorithms for obtaining them. For more information on this subject the
reader is addressed to [10] and references therein, where there are several examples of
applications of this approach.

In our case, for instance, we have that E1 =
√

1 + 2x3, E2 =
√

3 + 4x3 − 4x23. Hence

if we write x3 = (u2 − 1)/2 we get that E1 =
√
u2. Then

3 + 4x3 − 4x23

∣∣∣
x3=(u2−1)/2

= u2(4− u2).

Consider now the algebraic curve F (u, v) = u2(4− u2)− v2 = 0. It has genus 0, and by
the Cayley-Riemann’s theorem it admits a rational parameterization. For example, for
all s,

F
( 4 (2s− 1) s

5s2 − 4s+ 1
,
8s (s− 1) (3s− 1) (2s− 1)

(5s2 − 4s+ 1)2

)
= 0.

As a consequence, by taking

x3 = u2(4− u2)
∣∣∣
u=

4(2s−1)s

5s2−4s+1

=
(3s2 − 1) (13s2 − 8s+ 1)

2 (5s2 − 4s+ 1)2

we obtain that

E2 =
√
v2 =

√(
8s (s− 1) (3s− 1) (2s− 1)

)2
(5s2 − 4s+ 1)4

.

The rational parameterization of E3 = (1 + 4y25)3/2 is much simpler and can be obtained
similarly. It suffices to consider the algebraic curve of genus 0, G(y5, w) = 1+4y25−w2 =
0. A good parameterization for y5 is y5 = (1− t2)/(4t).

We are interested on values y5 ∈ (0,
√

15/2) and x3 ∈ (0, 1). In short, we do the
change of variables (x3, y5)→ (s, t) where

x3 =
(3s2 − 1) (13s2 − 8s+ 1)

2 (5s2 − 4s+ 1)2
, y5 =

1− t2

4t
.

Then we have that t varies in the interval T := (4−
√

15, 1) and similarly, the values of
x3 ∈ (0, 1) are covered for instance for s ∈ S := (

√
3/3, (6 +

√
3)/11). Hence,

E1 =
4s(2s− 1)

5s2 − 4s+ 1
, E2 =

−8s(s− 1)(3s− 1)(2s− 1)

(5s2 − 4s+ 1)2
, E3 =

(t2 + 1)
3

8t3
.

In the variables (s, t) the two equations h1 = 0 and h2 = 0 become

(9)

h1 =
8s2(2s− 1)2

(5s2 − 4s+ 1)2 t3
H1 = 0,

h2 =
1

16 (5s2 − 4s+ 1)4 t4
H2 = 0,

respectively, where

H2 =
(
5s2 − 4s+ 1

)4 (
t8 + 1

)
− 4

(
47s4 − 152s3 + 150s2 − 56s+ 7

)
×
(
153s4 − 168s3 + 58s2 − 8s+ 1

) (
t6 + t2

)
+
(
101222s8 − 258784s7 + 326904s6

− 286240s5 + 183428s4 − 79776s3 + 21432s2 − 3168s+ 198
)
t4
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and H1 ia a huge polynomial of total degree 34 and with degs(H1) = 24 and degt(H1) =
10, which is given in Appendix A.

Taking into account that t ∈ T and s ∈ S to solve system (9), we see that this can be
reduced to solve the system H1 = 0, H2 = 0, because s(2s− 1)(s2 + 2s− 1) 6= 0. Hence,
to find the real solutions of the systems h1 = 0, h2 = 0, is equivalent to find the real
solutions, (s, t) ∈ S × T, of the polynomial system H1 = 0, H2 = 0.

To study the above planar systems of equations we will use a mixture of the classical
approach applying resultants together with simple inequalities in the original variables
x3 and y5. For our problem this approach is very suitable because of the simplicity of
the equation h2 = 0, given in (8).

We start with the polynomials system H1(s, t) = 0, H2(s, t) = 0. Recall that if (ŝ, t̂)
is one of its solutions (real or complex), then t = t̂ must be a zero of the one variable
polynomial

P (t) = Ress(H1, H2),

where Ress(·, ·) denotes the resultant of two polynomials with respect the variable s,
see for instance [22]. After some computations (implemented for instance in Maple or
Mathematica) we get that

(10) P (t) = (1 + t2)6p4(t)q4(t)p120(t)p132(t),

where p4(t) = 1 + 4t− 14t2 + 4t3 + t4, q4(t) = 1− 4t− 14t2 − 4t3 + t4 and pk denotes a
polynomial with integer coefficients of degree k that we do not detail. We only remark
that precisely p120 is the polynomial that gives rise to the polynomial R60, detailed in
Appendix B and that gives rise to the values t∗ and u∗ that appear in Remark 2. Hence,
by computing the Sturm sequences of each of the four polynomials, p4, q4, p120 and p132,
we get that they have respectively, 4,4, 28 and 32 real roots and, moreover, that all them
are simple. Furthermore, since we are only interested on the roots t ∈ T ∼ (0.127, 1),
we consider a slightly bigger interval T ⊂ T ′ = (3/25, 100), with rational endpoints.
Again, the corresponding Sturm sequences allow to prove that their number of roots in
T ′ are 1, 1, 7 and 9, respectively. We will denote them by t1; t2; t3, . . . , t9 and t10, . . . t18,
where for each pk the roots are ordered. Their approximated ordered value are

t10 ≈ 0.1278827, t3 ≈ 0.1296657, t11 ≈ 0.1318307, t12 ≈ 0.1535285, t2 ≈ 0.1583844,
t13 ≈ 0.1690804, t4 ≈ 0.1818971, t5 ≈ 0.1871837, t14 ≈ 0.4693713, t1 ≈ 0.5095254,
t15 ≈ 0.5490528, t16 ≈ 0.5930556, t6 ≈ 0.7095411, t7 ≈ 0.7332148, t8 ≈ 0.9432977,
t17 ≈ 0.9681690, t9 ≈ 0.9958185, t18 ≈ 0.9962499.

In fact, the roots t1 and t2 are t1 = −1 +
√

5 −
√

5− 2
√

5 ≈ 0.5095254 and t2 =

1 +
√

5−
√

5 + 2
√

5 ≈ 0.1583844, while each of the other sixteen roots can be obtained,
again using the Sturm sequences, with any desired error.

Therefore, each tj, j = 3, . . . , 18, can be bounded by tj < tj < tj, with tj, tj ∈ Q
and 0 < tj − tj as small, as desired. For each of these values of tj we can use that the
function t→ (1− t2)/(4t) is decreasing in (0, 1) and that y5 = (1− t2)/(4t) to get that
if (1− t2j)/(4tj) = y5(j), then

y
5
(j) =

1− t2j
4tj

< y5(j) <
1− t2j

4tj
= y5(j), with y

5
(j), y5(j) ∈ Q.
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Recall that in (2) we have introduced the functions

Ψ±(y) =
1

4
± y

2

√
15− 4y2

1 + 4y2
.

By simple derivation we get that Ψ+ (resp. Ψ− ) is increasing (resp. decreasing) for
y ∈ (0,

√
3/2) and decreasing (resp. increasing) for y ∈ (

√
3/2, 1). Hence, if we define

x±3 = Ψ±(y5) it holds that

• If j is such that y5(j) <
√

3/2 then

Ψ+(y
5
(j)) < x+3 (j) < Ψ+(y5(j)), Ψ−(y5(j)) < x−3 (j) < Ψ−(y

5
(j)).

• If j is such that y5(j) >
√

3/2 then

Ψ+(y5(j)) < x+3 (j) < Ψ+(y
5
(j)), Ψ−(y

5
(j)) < x−3 (j) < Ψ−(y5(j)).

From these inequalities it is easy to find rational values x±3 (j) and x±3 (j) such that

x±3 (j) < x±3 (j) < x±3 (j),

and with 0 < x±3 (j)−x±3 (j) as small as desired. Finally, the functions that define E1, E2

and E3, given by ψ1(x) =
√

1 + 2x, ψ2(x) =
√

3 + 4x− 4x2 and Ψ3(y) = (1+4y2)3/2 are
increasing, increasing for x ∈ (0,

√
3/3) and decreasing for x ∈ (

√
3/3, 1), and increasing,

respectively. Similarly that for x±(j) we can find rational bounds, Ej and Ej, j = 1, 2, 3,
as sharp as desired and satisfying

E1 < E1 < E1, E2 < E2 < E2, E3 < E3 < E3.

In short, we have found sharp rational upper and lower bound of any possible solution
y5 = y5(j), x

±
3 (j), corresponding to each t = tj, j = 1, 2, . . . , 18. These rational bounds

give also rational bounds for E1, E2 and E3. Gluing these bounds we prove that some
candidates to be solutions of our system can be discarded. That other candidates are
actual solution of our problem can be easily proved from Bolzano’s theorem. We detail
two examples, one of each type and skip the computations for all the rest.

A suitable way is to write h1 in function of the variables x3, y5, E1, E2 and E3, namely

h1 =− 128x3
3y5

2
(
4x3

2 + 4x3 + 1
)
E1 + 4x3

2y5
2
(
4x3

2 + 4x3 + 1
)
E3

+ 32y5
2
(
32x3

6 + 16x3
5 − 8x3

4 − 4x3
3 + 4x3

2 + 4x3 + 1
)
E1

2 + 64x3
3y5 (1 + 2x3)E1E2

− 8x3
2y5

2
(
4x3

2 + 4x3 + 1
)
E1E3 − 4x3

2y5 (1 + 2x3)E3E2

+ 16y5
(
16x3

5 + 16x3
4 + 4x3

3 − 4x3
2 − 4x3 − 1

)
E1

2E2

− 4y5
2
(
16x3

6 − 16x3
5 − 32x3

4 − 12x3
3 + 3x3

2 + 4x3 + 1
)
E1

2E3

+ 8x3
2y5
(
2x3

2 + 3x3 + 1
)
E1E2E3 + E2

2E3x3
2

− 2y5
(
32x3

5 + 40x3
4 + 16x3

3 − 2x3
2 − 4x3 − 1

)
E1

2E2E3

− 2x3
2 (1 + 2x3)E1E2

2E3 + x3
2
(
4x3

2 + 4x3 + 1
)
E1

2E2
2E3.

We remark that the addends of h1 can be bounded using the inequalities given above.
For instance

E2
2E3x3

2 < E2
2E3x3

2 < E2
2
E3x3

2,
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and

−4x3
2y5 (1 + 2x3)E3E2 < −4x3

2y5 (1 + 2x3)E3E2 < −4x3
2y

5
(1 + 2x3)E3E2.

Let us prove for instance that the value y5 = y5(5) corresponding to t = t5 ≈
0.1871837, together with x3 = x+3 (5) = Ψ+(y5(5)) does not provide a solution of our
system. From the Sturm sequence we get that

1871

10000
< t5 <

1872

10000
.

From these inequalities and all the above considerations we obtain that

1.2886701 ≈94234

73125
< y5 <

96499359

74840000
≈ 1.2894088,

9235

10000
< x+3 <

9238

10000
,

16873

10000
< E1 <

16873

10000
,

18118

10000
< E2 <

18115

10000
,

21128

1000
< E3 <

21161

1000
.

By using all these inequalities we obtain that the corresponding value of h1 > 242 and
the system has no solution for the value of y5, and its corresponding x+3 (5) associated
to t = t5.

On the other hand, let us prove that the value y5 = y5(7) corresponding to t = t7 =
t∗ ≈ 0.7332148 together with x3 = x+3 (7) = Ψ+(y5(7)) does provide an actual solution.
This is a simple consequence of Bolzano’s theorem, because if we denote as h1(τ) the
value of the expression of h1 when all the values y5, x

+
5 , E1, E2 and E3 are obtained when

t = τ we get for instance that

h1

( 7332

10000

)
h1

( 7333

10000

)
< 0.

We carry out similar computations for y5 = y5(j), corresponding to t = tj, and
x3 = x±3 (j) = Ψ±(y5(j)). We conclude that among the 36 candidates that could be a
solution of the system h1(x3, y5) = 0, h2(x3, y5) = 0 the only couples (x3, y5) that do
solve it are:

(I) (x+3 (2), y5(2)) =

(
1 +
√

5

4
,

√
5 + 2

√
5

2

)
≈ (0.8090170, 1.5388418) corresponding

to t = t2,
(II) (x+3 (7), y5(7)) ≈ (0.5402091, 0.1576605) corresponding to t = t7 = t∗,

(III) (x+3 (9), y5(9)) ≈ (0.2540572, 0.0020951) corresponding to t = t9,
(IV) (x−3 (4), y5(4)) ≈ (−0.4091526, 1.3289291) corresponding to t = t4,
(V) (x−3 (14), y5(14)) ≈ (−0.3542470, 0.4152845) corresponding to t = t14,

(VI) (x−3 (18), y5(18)) ≈ (0.2463622, 0.0018786) corresponding to t = t18.

Clearly, solutions in items (IV) and (V) can be discarded because the corresponding
values of x3 are negative. The solutions given in items (III) and (VI) are not good either,
since both options result in negative m5 values. In short the central configurations are:

(I) (x3, y3) =

(
1 +
√

5

4
,

√
10 + 2

√
5

4

)
and y5 =

√
5 + 2

√
5

2
, with masses mj = 1

5
,

for all j.
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(II) (x3, y3) = (x+3 (7), y+3 (7)) ≈ (0.5402091, 0.9991913) and y5 = y5(7) ≈ 0.1576605
with masses m1 = m2 ≈ 0.0922539, m3 = m4 ≈ 0.3860949 and m5 ≈ 0.04330243.

The values of y3 and mj are obtained from Proposition 3 and the expressions (6) and
(7).

The first solution provides the regular pentagon of Figure 2(a) as a convex central
configuration of the 5-body problem with masses equal to 1/5. While the second one
provides the equilateral concave pentagon of Figure 2(b) as a concave central configura-
tion of the 5-body problem with the masses given in the statement (b) of the theorem.
This completes the proof of Theorem 1.

3.1. Alternative approaches to solve system h1 = 0, h2 = 0. In this section we
comment about to alternative approaches two solve this system and its equivalent one
H1 = 0, H2 = 0.

A first one consists on computing the Gröbner basis of the two polynomials H1 and
H2 with respect to the two variables s and t. Doing this we obtain three polynomial
equations whose common solutions are also the solutions of system H1 = 0, H2 = 0. We
do not provide explicitly these three polynomials, but only comment that they are huge
and their expressions need many pages. The first one essentially coincides with P (t)
given in (10). The second one P2(s, t) = (1 + t2)2p259(s, t). depends on both variables s
and t, and P2 is linear in the variable s. Consequently each root t = tj of the polynomial
P provides a single value of s from P2(s, tj) = 0, say s = sj. Then we only need to keep
the j′s such that sj ∈ S. Finally, the third polynomial P3(s, t) of the Gröbner basis has
degree 262 but it is only cubic in the variable s. By keeping only the values sj ∈ S
that also satisfy P3(sj, tj) = 0 we arrive to the actual solutions. We have used our
approach instead of this one because it is not easy to check analytically all the above
facts because only two of the eighteen roots of P are known analytically. Moreover,
we prefer our point of view because the computation of a resultant is simple and self
contained while the computation of a Gröbner basis is implemented in the computer
algebra systems but the user has no control on what the algorithm is doing.

A second alternative approach would consist on computing also Q(s) = Rest(H1, H2).
In this case we arrive to

Q(s) = q62(s)q24(s)q120(s)q132(s),

for some polynomials qk of degree k, where here q4 is different to the one given in (10).
Their respective number of real roots are 0, 4, 28 and 32. Moreover, only 1, 0, 4 and 6
of them are in S. Call them sm, m = 1, 2, . . . , 11. Hence all the possible solutions of
system H1 = 0, H2 = 0 in S×T are given by 11× 18 values (sm, tj). Then, a discarding
process, similar to the one done in our proof of Theorem 1 can be done. On the other
hand, a proof that the non discarded candidates to be solutions are actual solutions can
be done for instance by using the nice Poincaré-Miranda theorem. See for instance [9]
to have more details of how to utilize this approach. We have not used it in our work
because the expression of h2 is much simpler that the one of Q.
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Appendix A. The expression of H1

The polynomial H1 in (9) writes as

H1(s, t) = R0(s)
(
t10 + 1)−R1(s)

(
t9 + 4t7 − t

)
+R2(s)

(
t8 + t2

)
+R3(s)

(
t7 + t3

)
+

6∑
j=4

Rj(s)t
j,

where

R0 =s2 (2s− 1)2
(

140137001s20 − 473336800s19 − 77771662s18 + 3288160224s17

− 8637659443s16 + 12537556864s15 − 12225124968s14 + 8691543680s13

− 4785798270s12 + 2180211392s11 − 880204628s10 + 324883264s9 − 105646862s8

+ 28078976s7 − 5656040s6 + 796288s5 − 67435s4 + 1568s3 + 306s2 − 32s+ 1
)
,

R1 =2s (s− 1) (3s− 1) (2s− 1)
(

402088273s20 − 1176961940s19 + 169440330s18

+ 4244422908s17 − 9214008723s16 + 10491664368s15 − 7879610248s14 + 4350977648s13

− 1966298574s12 + 810673640s11 − 313304452s10 + 104139528s9 − 26338798s8

+ 4329392s7 − 227208s6 − 97872s5 + 33277s4 − 5620s3 + 586s2 − 36s+ 1
)
,

R2 =2610735845s24 − 15402964740s23 + 36242909513s22 − 34656361080s21 − 19279444736s20

+ 100341955724s19 − 143714126267s18 + 121841849904s17 − 68503362257s16

+ 27259846072s15 − 9818466526s14 + 5237546480s13 − 3390994016s12 + 1681689656s11

− 535976190s10 + 78574400s9 + 17032379s8 − 14081204s7 + 4575253s6

− 963768s5 + 142992s4 − 15044s3 + 1081s2 − 48s+ 1,

R3 =4s (2s− 1)
(

4011437555s22 − 17997365760s21 + 47815887103s20 − 119864245704s19

+ 262594976801s18 − 427430598888s17 + 498867338773s16 − 424920266400s15

+ 272105947982s14 − 136189975712s13 + 56438427910s12 − 20882782960s11

+ 7255673746s10 − 2308064816s9 + 623396538s8 − 133508384s7 + 21674927s6

− 2595360s5 + 227627s4 − 15240s3 + 861s2 − 40s+ 1
)
,

R4 =− 128824963717s24 + 476911508392s23 + 165019719846s22 − 4572358588576s21

+ 13580634656322s20 − 22953475876792s19 + 26679405170926s18 − 23043609894160s17

+ 15476921278317s16 − 8354767360048s15 + 3726249539948s14 − 1406580864896s13

+ 458981618588s12 − 132125593264s11 + 34342034540s10 − 8246853600s9 + 1837269525s8

− 367787384s7 + 62442990s6 − 8479328s5 + 879394s4 − 67480s3 + 3750s2 − 144s+ 3,
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R5 =− 1024s3 (2s− 1)3
(

5478853s18 − 19634676s17 + 61412857s16 − 189035488s15

+ 395309060s14 − 534006384s13 + 487648452s12 − 316317344s11 + 154130630s10

− 61395832s9 + 22312398s8 − 7766560s7 + 2406420s6 − 594416s5

+ 108148s4 − 13664s3 + 1117s2 − 52s+ 1
)
,

R6 =138883898747s24 − 544790344792s23 + 35213761702s22 + 4234516514656s21

− 13218500821438s20 + 22675637356616s19 − 26464806060818s18 + 22812618679024s17

− 15226596524179s16 + 8152770613200s15 − 3614885715604s14 + 1368000514176s13

− 453304331364s12 + 133617865040s11 − 35152022420s10 + 8179417120s9 − 1643965931s8

+ 272577160s7 − 34266642s6 + 2694560s5 − 25822s4 − 22424s3 + 2726s2 − 144s+ 3

Appendix B. The polynomial R60

The polynomial p120(t) is reciprocal, that is p120(t) − t120p120(1/t) ≡ 0. Notice that
if t̂ is one of its roots, 1/t̂ is another one. Hence there is a standard trick to “reduce”
its degree to the half. Consider the numerator of t + 1/t = u, that is t2 + tu − 1 and
compute the resultant between it and p120(t). We obtain that

Rest
(
p120(t), t

2 − ut+ 1
)

= (R60(u))2,
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where R60 is the polynomial of degree 120/2 = 60,

u60 + 4u59 − 480u58 − 2368u57 + 102656u56 + 661504u55 − 12378112u54 − 114393088u53

+ 813367296u52 + 13487570944u51 − 6779043840u50 − 1119258411008u49

− 4587041849344u48 + 63761809408000u47 + 556458915659776u46 − 2085902406909952u45

− 38793866899357696u44 − 14062083704356864u43 + 1871701598900584448u42

+ 6613561341561012224u41 − 63439436081954553856u40 − 468879147034843545600u39

+ 1328797291115756650496u38 + 20993318838230010822656u37

− 2305632465931114381312u36 − 680737782622703312699392u35

− 1102380299141445066948608u34 + 16433802069777919820955648u33

+ 51705311821812917239545856u32 − 287454839290286351637807104u31

− 1467660179422186654016733184u30 + 3159833116868066015124127744u29

+ 30235824601650376596023934976u28 − 3647821652057127970278473728u27

− 478786881979744683498227630080u26 − 692146369158869263721793847296u25

+ 6031919651486804311277903544320u24 + 17009050671171345412955758919680u23

− 62657388272839173181632407404544u22 − 249363510060237095878177991950336u21

+ 558394430418773435280130962358272u20 + 2603575445697403174765988761567232u19

− 4366163704989486187475739888058368u18 − 20183899906055516645882016026329088u17

+ 29417136038642440588505535383339008u16 + 117121419223047038546206624994820096u15

− 162680894447793178205603154016337920u14 − 505682422731087446635760756082081792u13

+ 700532798421762302278975021920550912u12 + 1597276835067625721595839817342517248u11

− 2240245382048536583959836766075092992u10 − 3574566797945169482598857579834638336u9

+ 5053220375882588124433490027151884288u8 + 5336383096359169095222217602355953664u7

− 7423686433490169801891477126702432256u6 − 4673067172681344865677446696298086400u5

+ 5934795309305307979410357304298569728u4 + 1599227432428726909587392869399789568u3

− 996920996838686904677855295210258432u2 + 332306998946228968225951765070086144u

− 1329227995784915872903807060280344576.

Then all the roots of p120 can be obtained simply by computing the roots of R60 and
then for each one of them, say u = û, two roots of p120 are given by the solutions of the
quadratic equation t2 − ût+ 1 = 0.

By computing its Sturm sequence we get that R60 has exactly 14 real roots, all
them simple (of course half the number the real roots of p120). One of them is u =
u∗ ≈ 2.0970716051 and the value t = t∗ appearing in Remark 2 is the smallest root of
t2 − u∗t+ 1 = 0.
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