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Abstract

We construct all (2+1)-dimensional PDEs depending only on 2nd-
order derivatives of unknown which have the Euler-Lagrange form and
determine the corresponding Lagrangians. We convert these equations
and their Lagrangians to two-component forms and find Hamiltonian
representations of all these systems using Dirac’s theory of constraints.
We consider three-parameter integrable equations that are cubic in
partial derivatives of the unknown applying our method of skew fac-
torization of the symmetry condition. Lax pairs and recursion re-
lations for symmetries are determined both for one-component and
two-component forms. For cubic three-parameter equations in the
two-component form we obtain recursion operators in 2 × 2 matrix
form and bi-Hamiltonian representations, thus discovering three new
bi-Hamiltonian (2+1) systems.
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1 Introduction

We study integrability properties of (2+1)-dimensional second-order equa-
tions of the general form

F = f − uttg = 0, (g 6= 0) ⇐⇒ utt =
f

g
(1.1)

where f and g are arbitrary smooth functions of ut1, ut2, u11, u12, u22. Here
u = u(t, z1, z2), uti = ∂2u/∂t∂zi, uij = ∂2u/∂zi∂zj . Equations of the form
(1.1) are equivalent to evolutionary two-component system ut = v, vt =
G(v1, v2, u11, u12, u22). Equations of this type arise in a wide range of applica-
tions, such as nonlinear physics, general relativity, differential geometry and
integrable systems. Some examples are the Khokhlov-Zabolotskaya (dKP)
equation in non-linear acoustics, the theory of Einstein-Weyl structures and
the Boyer-Finley equation in self-dual gravity.

By integrability properties we mean Lax pairs, recursion operators and
bi-Hamiltonian representations. E. Ferapontov et al. studied integrability
of equation (1.1) which was understood as the existence of infinitely many
hydrodynamic reductions [2]. These authors showed the integrability con-
dition to be equivalent to the property of equation (1.1) to be linearizable
by contact transformations. However, this result does not provide a way
to obtain explicitly such transformations and does not present a method to
derive Lax pairs, recursion operators and bi-Hamiltonian representations of
the considered equations.

Recently we studied the particular case utt = f , i.e. g = 1 [11], so here we
concentrate on the case g 6= 1. We are interested in all equations (1.1) which
have the Euler-Lagrange form [9]. In other words, we consider the equations
utt = f/g which are Lagrangian or become Lagrangian after multiplication by
g, an integrating factor of the variational calculus. According to Helmholtz
conditions [9], equation (1.1) is an Euler-Lagrange equation for a variational
problem iff its Fréchet derivative operator is self-adjoint, D∗

F = DF . We solve
completely the latter equation and obtain explicitly all (2+1)-dimensional
equations (1.1) which have the Euler-Lagrange form and their Lagrangians
have also been constructed.

We utilize the method which we used earlier for constructing a degenerate
Lagrangian for two-component evolutionary systems [8, 12, 13] and applying
Dirac’s theory of constraints [1] in order to obtain Hamiltonian form of the
system.
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To discover integrable systems, we apply our modification [11] of A. Ser-
gyeyev’s method for constructing recursion operators [10] which, as opposed
to [10], does not require previous knowledge of Lax pairs. Our method con-
sists in the skew factorization of symmetry condition for considered equation
and we explicitly demonstrate how to achieve this goal for a class of cubic
three-parameter systems.

Composing a recursion operator in 2×2 matrix form with the first Hamil-
tonian operator we obtain the second Hamiltonian operator and then find the
corresponding Hamiltonian density, ending up with bi-Hamiltonian represen-
tations of the two-component systems.

We concentrate here on three-parameter systems that are cubic in the
derivatives of unknown, the case which was not considered in our previous
work [11].

The paper is organized as follows. In Section 2, we obtain all equations
(1.1) that have the Euler-Lagrange form and derive their Lagrangians. In
Subsection 2.1, we convert our equations to two-component forms and con-
struct degenerate Lagrangians for the two-component systems. In Section 3,
using the Dirac’s theory of constraints we obtain the Hamiltonian operator
J0 and Hamiltonian density H1 ending up with the Hamiltonian form of each
of our systems. In Section 4, we give some comments on the integrability
of multi-dimensional dispersionless equations and present an outline of the
method of hydrodynamic reductions [2] by E. Ferapontov et. al., together
with its illustration by the example of the dKP equation. Further we specify
a subclass of cubic equations of the form (2.1) for which we seek for re-
cursion operators and bi-Hamiltonian structures. In Section 5, we show how
converting the symmetry condition to a skew-factorized form we immediately
extract Lax pair and recursion relations for symmetries. In three subsequent
subsections, we obtain explicit results for cubic equations depending only on
three parameters. In Section 6, for reader’s convenience we give a summary
of notations used for bi-Hamiltonian system in the following sections and
some remarks concerning the second Hamiltonian operator.

In Section 7 we give a summary of new bi-Hamiltonian systems. In sub-
sections 7.1, 7.2 and 7.3, we present recursion operators R in a 2× 2 matrix
form, the second Hamiltonian operators J1 = RJ0 and Hamiltonian densities
H0 for two-component forms of the considered equations, thus obtaining bi-
Hamiltonian representations of these systems. The results are given in the
form of theorems without proofs. The proofs are following in three subse-
quent sections 8, 9 and 10.
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2 Lagrangian evolutionary equations in 2+1

dimensions

Theorem 2.1 The general Lagrangian equation of the type (1.1) has the
following form

F = a1
{

utt(u11u22 − u2
12
)− ut1(ut1u22 − ut2u12) + ut2(ut1u12 − ut2u11)

}

+a2(uttu11 − u2t1) + a3(uttu12 − ut1ut2) + a4(uttu22 − u2t2) + a5utt

+c1(ut1u12 − ut2u11) + c2(ut1u22 − ut2u12) + c3(u11u22 − u2
12
)

+c4ut1 + c5ut2 + c6u11 + c7u12 + c8u22 + c9 = 0. (2.1)

Proof: The Fréchet derivative operator is defined as DF =
∑

J FJ [u]DJ ,
where J = (u, ut, u1, u2, utt, ut1, ut2, u11, u12, u22) is a multi-index and DJ is
the corresponding total derivative [9], or explicitly

DF = −gD2

t + (fut1
− uttgut1

)DtD1 + (fut2
− uttgut2

)DtD2

+(fu11
− uttgu11

)D2

1
+ (fu12

− uttgu12
)D1D2 + (fu22

− uttgu22
)D2

2
,

D∗

F = −D2

t g +DtD1(fut1
− uttgut1

) +DtD2(fut2
− uttgut2

)

+D2

1
(fu11

− uttgu11
) +D1D2(fu12

− uttgu12
) +D2

2
(fu22

− uttgu22
).

The Helmholtz condition implies

−2Dt[g] +D1[fut1
− uttgut1

] +D2[fut2
− uttgut2

] = 0

where the square brackets denote taking the values of differential operators.
Splitting this equation in third derivatives we obtain gut1

= gut2
= 0 and the

last equation simplifies to the following one

− 2Dt[g] +D1[fut1
] +D2[fut2

] = 0. (2.2)

In a similar way we obtain from the Helmholtz condition three more equations

Dt[fut1
] + 2D1[fu11

]− 2uttD1[gu11
]− 2utt1gu11

+D2[fu12
]− uttD2[gu12

]− utt2gu12
= 0 (2.3)

Dt[fut2
] +D1[fu12

]− uttD1[gu12
]− utt1gu12

+2D2[fu22
]− 2uttD2[gu22

]− 2utt2gu22
= 0 (2.4)
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−D2

t [g] +DtD1[fut1
] +DtD2[fut2

]

+D2

1
[fu11

− uttgu11
] +D2

2
[fu22

− uttgu22
] = 0. (2.5)

The general solution of these equations results in the formula (2.1). �

Theorem 2.2 Lagrangian for equation (2.1) reads

L = a1
u

4
{utt(u11u22 − u2

12
)− ut1(ut1u22 − ut2u12) + ut2(ut1u12 − ut2u11)}

+
u

3
{a2(uttu11 − u2t1) + a3(uttu12 − ut1ut2) + a4(uttu22 − u2t2)

+c1(ut1u12 − ut2u11) + c2(ut1u22 − ut2u12) + c3(u11u22 − u2
12
)}

+
u

2
(a5utt + c4ut1 + c5ut2 + c6u11 + c7u12 + c8u22) + c9u. (2.6)

Proof: The homotopy formula [9] L[u] =
∫

1

0
uF (λu) dλ, applied to F in

(2.1), yields the result (2.6). �

2.1 Two-component form

The two-component form of our equation F = 0 with F given in (2.1) reads

ut = v,

vt =
1

�
{a1(v

2

1
u22 − 2v1v2u12 + v2

2
u11) + a2v

2

1
+ a3v1v2 + a4v

2

2

+c1(v2u11 − v1u12) + c2(v2u12 − v1u22) + c3(u
2

12
− u11u22)

−c4v1 − c5v2 − c6u11 − c7u12 − c8u22 − c9} (2.7)

where
� = a1(u11u22 − u2

12
) + a2u11 + a3u12 + a4u22 + a5. (2.8)

Theorem 2.3 Lagrangian for the two-component form (2.7) of our system
has the form

L =

(

utv −
v2

2

)

{a1(u11u22 − u2
12
) + a2u11 + a3u12 + a4u22 + a5}

+ut(c1u1 − c2u2)u12 +
ut
2
(c4u1 + c5u2)−

c3
3
u(u11u22 − u2

12
)

−
u

2
(c6u11 + c7u12 + c8u22)− c9u. (2.9)

Proof: We modify the Lagrangian L given in (2.6) and skip some total
derivative terms to obtain the result (2.9). �
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3 Hamiltonian representation

Theorem 3.1 The system (2.7) can be presented in the Hamiltonian form

(

ut
vt

)

= J0

(

δuH1

δvH1

)

(3.1)

where δu and δv are Euler-Lagrange operators [9] with respect to u and v, re-
spectively. Here J0 is the Hamiltonian operator, which determines the struc-
ture of the Poisson bracket, defined as

J0 =

(

0 −K−1

21

K−1

12
K−1

12
K11K

−1

12

)

=

(

0 1

�

− 1

�

1

�
K11

1

�

)

. (3.2)

where

K11 = a1{2(v1u22 − v2u12)D1 + 2(v2u11 − v1u12)D2

+v11u22 + v22u11 − 2v12u12}

+a2(2v1D1 + v11) + a3(v2D1 + v1D2 + v12) + a4(2v2D2 + v22)

+c1(u11D2 − u12D1) + c2(u12D2 − u22D1)− c4D1 − c5D2 (3.3)

whereas H1 is the corresponding Hamiltonian density defined as

H1 =
1

2
v2�+

c3
3
u(u11u22 − u2

12
) +

u

2
(c6u11 + c7u12 + c8u22)

+c9u. (3.4)

Proof: We define canonical momenta

πu =
∂L

∂ut
= v{a1(u11u22 − u2

12
) + a2u11 + a3u12 + a4u22 + a5}

+(c1u1 − c2u2)u12 +
1

2
(c4u1 + c5u2), πv =

∂L

∂vt
= 0 (3.5)

which satisfy canonical Poisson brackets

[πi(z), u
k(z′)] = δki δ(z − z′)

where u1 = u, u2 = v, z = (z1, z2). The only nonzero Poisson bracket is
[πu, u] = δ(z1 − z′

1
)δ(z2 − z′

2
).
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The Lagrangian (2.9) is degenerate because the momenta cannot be in-
verted for the velocities. Therefore, following the Dirac’s theory of con-
straints [1], we impose (3.5) as constraints

Φu = πu − v{a1(u11u22 − u2
12
) + a2u11 + a3u12 + a4u22 + a5}

−(c1u1 − c2u2)u12 −
1

2
(c4u1 + c5u2),

Φv = πv

and calculate Poisson brackets for the constraints

K11 = [Φu(z1, z2),Φu′(z′
1
, z′

2
)], K12 = [Φu(z1, z2),Φv′(z

′

1
, z′

2
)]

K21 = [Φv(z1, z2),Φu′(z′
1
, z′

2
)], K22 = [Φv(z1, z2),Φv′(z

′

1
, z′

2
)].

We obtain the following matrix of Poisson brackets

K =

(

K11 −�

� 0

)

(3.6)

where K11 is defined in (3.3) or in a skew-symmetric form

K11 = a1{D1(v1u22 − v2u12) + (v1u22 − v2u12)D1

+D2(v2u11 − v1u12) + (v2u11 − v1u12)D2}

+a2(D1v1 + v1D1) + a3(D1v2 + v2D1 +D2v1 + v1D2)

+a4(D2v2 + v2D2) + c1(D2u11 −D1u12) + c2(D2u12 −D1u22)

−c4D1 − c5D2. (3.7)

The Hamiltonian operator, which determines the structure of the Poisson
bracket, is the inverse to the symplectic operator J0 = K−1

Here

J22

0
=

1

�
K11

1

�
(3.8)

with K11 defined by (3.7). More precisely, operator J0 is Hamiltonian if and
only if its inverse K is symplectic [4], which means that the volume integral
Ω =

∫∫∫

V
ωdV of ω = (1/2)dui ∧Kijdu

j should be a symplectic form, i.e. at
appropriate boundary conditions dω = 0 modulo total divergence. Another
way of formulation is to say that the vertical differential of ω should vanish [6].
In ω summations over i, j run from 1 to 2 and u1 = u, u2 = v. Using (3.6),
we obtain

ω =
1

2
du ∧K11du−�du ∧ dv. (3.9)
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Using here K11 from (3.7), taking exterior derivative of (3.9) and skipping
total divergence terms, we have checked that dω = 0 which proves that op-
erator K is symplectic and hence J0 defined in (3.2) is indeed a Hamiltonian
operator.

The corresponding Hamiltonian density H1 is defined by H1 = utπu +
vtπv − L with the result (3.4).

The Hamiltonian form of this system is determined by (3.1). �

4 Some comments on integrability

There are various approaches to integrability of multi-dimensional systems.
The most traditional one uses the Lax pair and the inverse scattering trans-
form. However, there are integrable equations to which this method can-
not be applied. The well-known example is the dispersionless Kadomtsev-
Petviashvili (dKP) equation (in our notation y 7→ t, x 7→ z1, t 7→ z2)

uyy = uxt −
1

2
u2xx. (4.1)

E. Ferapontov et. al. [2, 3] use more general definition of integrability which
requires the existence of infinitely many hydrodynamic reductions. According
to this method, one decouples a three-dimensional PDE, like dKP, into a
pair of commuting n-component (1+1)-dimensional systems of hydrodynamic
type

Ri
t = λi(R)Ri

x, Ri
y = µi(R)Ri

x (4.2)

where the characteristic speeds λi and µi satisfy the compatibility conditions

∂jλ
i

λj − λi
=

∂jµ
i

µj − µi
, i 6= j.

Here ∂j = ∂Rj . For the example of dKP, the authors in [2] use its quasilinear
representation

ay = bx, at = px, bt = py, by =

(

p−
1

2
a2
)

x

(4.3)

with the notation a = uxx, b = uxy, p = uxt. Seek multi-phase solutions
a = a(R), b = b(R), p = p(R) with R = (R1, . . . , Rn) where the phases
Ri(x, y, t) satisfy equations (4.2). Then (4.3) implies

∂ib = µi∂ia, ∂ip = λi∂ia, λi = a + (µi)2
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with the compatibility conditions resulting in the Gibbons-Tsarev system for
a(R) and µi(R)

∂jµ
i =

∂ja

µj − µi
, ∂i∂ja =

2∂ia∂ja

(µj − µi)2
, i 6= j, i, j = 1, . . . , n. (4.4)

This system is in involution and its general solution depends on n arbitrary
functions of one variable. Thus, the dKP equation possesses infinitely many
n-component reductions parameterized by n arbitrary functions of one vari-
able. This result suggests the definition [2].

Definition An equation of the form (1.1) is said to be integrable if, for
any n, it possesses infinitely many n-component hydrodynamic reductions
parameterized by n arbitrary functions of one variable.

Our concept of integrability implicates the existence of Lax pairs, recur-
sion operators and bi-Hamiltonian representations. However, we note that
the form of equation (2.1) is exactly the same as obtained by E. Ferapontov
et. al. (equation (21) in [2]) with an appropriate change of notation.

Thus, the requirement that the equation (1.1) should have the Euler-
Lagrangian form yields the same form of equation as the one obtained by the
method of hydrodynamic reductions.

E. Ferapontov et. al. have derived in [2] an integrability condition for
the symplectic Monge–Ampère equation (2.1), the integrability meaning that
the equation (2.1) admits infinitely many hydrodynamic reductions [3]. The
integrability turns out to be equivalent to linearizability of equation (2.1)
though it does not show the way how the linearizing transformation could
be explicitly found. It was shown in [2] that one can distinguish two cases
for equation (2.1) together with its integrability condition.
Case I : a1 = 1, a2 = a3 = a4 = 0, c1 = c2 = c3 = 0,
Equation simplifies to the following one

det





utt ut1 ut2
u1t u11 u12
u2t u21 u22



+ a5utt + c4ut1 + c5ut2

+c6u11 + c7u12 + c8u22 + c9 = 0. (4.5)

Integrability condition becomes

4a5c6c8 + c4c5c7 + c2
9
− (c2

5
c6 + c2

4
c8 + c2

7
a5) = 0. (4.6)

9



Case II : ε ≡ a1 = 0. There are no further simplifications.
In our earlier paper [11] we have studied the subcase of the case II with
a2 = a3 = a4 = 0, a5 = −1.

Here we concentrate on the case I where the equation has the form (4.5).

5 Symmetry condition and integrability

Our method is based on the presentation of the symmetry condition of the
considered equation in the skew-factorized form.

Symmetry condition is the differential compatibility condition of equation
(2.1) and the Lie equation uτ = ϕ, where ϕ is the symmetry characteristic and
τ is the group parameter. It has the form of Fréchet derivative (linearization)
of equation (2.1), DτF = M [ϕ] = 0, with the operator M of the symmetry
condition given by

M = a1
[

(u11u22 − u2
12
)D2

t + utt(u22D
2

1
+ u11D

2

2
− 2u12D1D2)

+2ut1(u12DtD2 − u22DtD1) + 2ut2(u12DtD1 − u11DtD2)

+2ut1ut2D1D2 − u2t2D
2

1
− u2t1D

2

2

]

+ a2(u11D
2

t + uttD
2

1
− 2ut1DtD1)

+a3(u12D
2

t + uttD1D2 − ut2DtD1 − ut1DtD2)

+a4(u22D
2

t + uttD
2

2
− 2ut2DtD2) + a5D

2

t

+c1(u12DtD1 + ut1D1D2 − u11DtD2 − ut2D
2

1
)

+c2(u22DtD1 + ut1D
2

2
− u12DtD2 − ut2D1D2)

+c3(u22D
2

1
+ u11D

2

2
− 2u12D1D2) + c4DtD1 + c5DtD2 + c6D

2

1

+c7D1D2 + c8D
2

2
. (5.1)

In case I, the symmetry condition becomes M [ϕ] = 0 with M defined as

M =
[

(u11u22 − u2
12
)D2

t + utt(u22D
2

1
+ u11D

2

2
− 2u12D1D2)

+2ut1(u12DtD2 − u22DtD1) + 2ut2(u12DtD1 − u11DtD2)

+2ut1ut2D1D2 − u2t2D
2

1
− u2t1D

2

2

]

+ a5D
2

t

+c4DtD1 + c5DtD2 + c6D
2

1
+ c7D1D2 + c8D

2

2
. (5.2)

We apply our modification [11] of A. Sergyeyev’s method for constructing
recursion operators [10] which does not require previous knowledge of the Lax
pair. For integrable equation (4.5), the symmetry condition M [ϕ] = 0, with
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the operator M given by (5.2), should be presented in the skew-factorized
form

(A1B2 − A2B1)ϕ = 0 (5.3)

where the commutator relations

[A1, A2] = 0, [A1, B2]− [A2, B1] = 0, [B1, B2] = 0 (5.4)

should be satisfied on solutions of equation (4.5). It immediately follows that
the following two operators also commute on solutions

X1 = λA1 +B1, X2 = λA2 +B2, [X1, X2] = 0 (5.5)

and therefore constitute Lax representation for equation (4.5) with λ being
a spectral parameter.

Symmetry condition in the form (5.3) also provides the recursion relations
for symmetries

A1ϕ̃ = B1ϕ, A2ϕ̃ = B2ϕ (5.6)

where ϕ̃ satisfies symmetry condition M [ϕ̃] = 0 if and only if ϕ is also a
symmetry, M [ϕ] = 0. The latter claim follows from the consequences of
relations (5.4)

(A1B2 −A2B1)ϕ = [A1, A2]ϕ̃ = 0, (A1B2 − A2B1)ϕ̃ = [B2, B1]ϕ = 0.

It is convenient to introduce first-order differential operators

M12 = (u11u22 − u2
12
)Dt − (ut1u22 − ut2u12)D1 + (ut1u12 − ut2u11)D2

M2t = −(ut1u22 − ut2u12)Dt + (uttu22 − u2t2)D1 − (uttu12 − ut1ut2)D2

Mt1 = (ut1u12 − ut2u11)Dt − (uttu12 − ut1ut2)D1 + (uttu11 − u2t1)D2.

(5.7)

Operator M of symmetry condition (5.2) becomes

M =M12Dt +M2tD1 +Mt1D2 + a5D
2

t

+c4DtD1 + c5DtD2 + c6D
2

1
+ c7D1D2 + c8D

2

2
. (5.8)

We note the identities

uttM12 + ut1M2t + ut2Mt1 = ∆Dt,

ut1M12 + u11M2t + u12Mt1 = ∆D1, (5.9)

ut2M12 + u12M2t + u22Mt1 = ∆D2,

11



∆ = det





utt ut1 ut2
u1t u11 u12
u2t u21 u22



 (5.10)

which can be replaced due to equation (4.5) by the expression

∆ = −(a5utt + c4ut1 + c5ut2 + c6u11 + c7u12 + c8u22 + c9). (5.11)

In the following, we will use obvious symmetries of the equation (4.5) gen-
erated by X = ∂/∂t, X = ∂/∂1, X = ∂/∂2 with the symmetry characteristics
ϕ = ut, ϕ = u1, ϕ = u2, respectively, which identically satisfy symmetry
condition M [ϕ] = 0 with M defined in (5.8).

5.1 (a5c4c5)-parameter system

We consider here the three-parameter equation obtained by setting c6 = c7 =
c8 = c9 = 0 in (5.11)

∆ + a5utt + c4ut1 + c5ut2 = 0 (5.12)

where ∆ is defined in (5.10).

Theorem 5.1 Equation (5.12) is integrable with the Lax pair

X1 =
1

utt
(λ(M2t + c4Dt) + ut2Dt − uttD2)

X2 =
1

utt
(λ(Mt1 + c5Dt) + uttD1 − ut1Dt). (5.13)

and the recursions for symmetries

(M2t + c4Dt)ϕ̃ = (ut2Dt − uttD2)ϕ, (Mt1 + c5Dt)ϕ̃ = (uttD1 − ut1Dt)ϕ.
(5.14)

Proof: The symmetry condition for equation (5.12) becomes

M [ϕ] = {M12Dt+M2tD1+Mt1D2+a5D
2

t +c4DtD1+c5DtD2}ϕ = 0. (5.15)

It is identically satisfied by ϕ = ut

M12[utt] +M2t[ut1] +Mt1[ut2] + a5uttt + c4utt1 + c5utt2 = 0 (5.16)

12



where the square brackets denote values of operators. We combine (5.16)
with the first equation from (5.9) to obtain

M12utt +M2tut1 +Mt1ut2 +Dt(a5utt + c4ut1 + c5ut2) = 0. (5.17)

We use (5.17) in the identity transformation

M12Dt =M12utt
1

utt
Dt

= −{M2tut1 +Mt1ut2 +Dt(a5utt + c4ut1 + c5ut2)}
1

utt
Dt. (5.18)

Applying this to the symmetry condition (5.15) we transform it to the skew-
factorized form (5.3)
{

(M2t + c4Dt)

(

D1 −
ut1
utt
Dt

)

+ (Mt1 + c5Dt)

(

D2 −
ut2
utt
Dt

)}

ϕ = 0.

(5.19)
We adopt the definitions

A1 =
1

utt
(M2t + c4Dt), A2 =

1

utt
(Mt1 + c5Dt)

B1 = −D2 +
ut2
utt
Dt, B2 = D1 −

ut1
utt
Dt (5.20)

so that (5.19) takes the skew-factorized form (5.3). A straightforward check
shows that all the integrability conditions (5.4) are identically satisfied on
solutions of equation (5.12), together with their immediate consequences for
the Lax pair (5.5) and recursion relations for symmetries (5.6).

If we choose Bi to be the second factors in (5.19), then Ai are defined by
(5.19) only up to a common factor. It is interesting to note that choosing this
factor to be 1/utt, the same as involved in Bi, we obtain as a consequence
that all the operators Ai and Bi automatically satisfy all the conditions (5.4).
A similar property holds for three-parameter equations given below.

The Lax pair is constituted by the operators (5.13).
The recursions for symmetries are given by (5.14). �

5.2 (c4c6c7)-parameter system

Here we consider the three-parameter equation obtained by setting a5 = c5 =
c8 = c9 = 0 in (5.11)

∆ + c4ut1 + c6u11 + c7u12 = 0 (5.21)
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where ∆ is defined in (5.10).

Theorem 5.2 Equation (5.21) is integrable with the Lax pair (5.5) and re-
cursion relations for symmetries (5.6) where operators Ai and Bi are defined
in (5.26).

Proof: The symmetry condition becomes

M [ϕ] = {M12Dt+M2tD1+Mt1D2+c4DtD1+c6D
2

1
+c7D1D2}ϕ = 0. (5.22)

It is identically satisfied by ϕ = u1. Combining equation M [u1] = 0 with the
second equation from (5.9) we obtain

M12ut1 +M2tu11 +Mt1u12 +D1(c4ut1 + c6u11 + c7u12) = 0. (5.23)

We use (5.23) in the identity transformation

M2tD1 =M2tu11
1

u11
D1

= −{M12ut1 +Mt1u12 +D1(c4ut1 + c6u11 + c7u12)}
1

u11
D1. (5.24)

Applying this to the symmetry condition (5.22) we transform it to the skew-
factorized form (5.3)

{

(M12 + c4D1)

(

Dt −
ut1
u11

D1

)

+ (Mt1 + c7D1)

(

D2 −
u12
u11

D1

)}

ϕ = 0.

(5.25)
We define

A1 =
1

u11
(M12 + c4D1), A2 =

1

u11
(Mt1 + c7D1)

B1 = −D2 +
u12
u11

D1, B2 = Dt −
ut1
u11

D1 (5.26)

so that (5.25) takes the skew-factorized form (5.3). A straightforward check
shows that all the integrability conditions (5.4) are identically satisfied on
solutions of equation (5.21), together with their immediate consequences for
the Lax pair (5.5) and recursion relations for symmetries (5.6).

The Lax pair and recursion relations for symmetries are obtained by using
(5.26) in the formulas (5.5) and (5.6), respectively. �
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5.3 (c5c7c8)-parameter system

Now we consider the three-parameter equation obtained by setting a5 = c4 =
c6 = c9 = 0 in (5.11)

∆ + c5ut2 + c7u12 + c8u22 = 0 (5.27)

where ∆ is defined in (5.10).

Theorem 5.3 Equation (5.27) is integrable with the Lax pair (5.5) and re-
cursion relations for symmetries (5.6) where operators Ai and Bi are defined
in (5.32).

Proof: The symmetry condition becomes

M [ϕ] = {M12Dt+M2tD1+Mt1D2+c5DtD2+c7D1D2+c8D
2

2
}ϕ = 0. (5.28)

It is identically satisfied by ϕ = u2. We combine the equation M [u2] = 0
with the second equation from (5.9) to obtain

M12ut2 +M2tu12 +Mt1u22 +D2(c5ut2 + c7u12 + c8u22) = 0. (5.29)

We use (5.29) in the identity transformation

Mt1D2 =Mt1u22
1

u22
D2

= −{M12ut2 +M2tu12 +D2(c5ut2 + c7u12 + c8u22)}
1

u22
D2. (5.30)

Applying this to the symmetry condition (5.28) we transform it to the skew-
factorized form (5.3)

{

(M12 + c5D2)

(

Dt −
ut2
u22

D2

)

+ (M2t + c7D2)

(

D1 −
u12
u22

D2

)}

ϕ = 0.

(5.31)
We define

A1 =
1

u22
(M12 + c5D2), A2 =

1

u22
(M2t + c7D2)

B1 = −D1 +
u12
u22

D2, B2 = Dt −
ut2
u22

D2 (5.32)
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so that (5.31) takes the skew-factorized form (5.3). A straightforward check
shows that all the integrability conditions (5.4) are identically satisfied on
solutions of equation (5.27), together with their immediate consequences for
the Lax pair (5.5) and recursion relations for symmetries (5.6).

The Lax pair and recursion relations for symmetries are obtained by using
(5.32) in the formulas (5.5) and (5.6), respectively. �

6 Notation for bi-Hamiltonian systems

Here we present the notation convenient for bi-Hamiltonian systems and some
remarks concerning second Hamiltonian operators.

� = u11u22 − u2
12
+ a5, Φ = v1u22 − v2u12, χ = v1u12 − v2u11. (6.1)

The determinant ∆ defined in (5.10) becomes

∆ = vt(�− a5)− v1Φ+ v2χ. (6.2)

We introduce the operators

Ψ = ΦD1 − χD2,=⇒ D1Φ−D2χ = −ΨT , Ψ̂ = Ψ− c4D1 − c5D2 (6.3)

where T denotes transposed operator. We will use the result

D1[Φ]−D2[χ] = v11u22 + v22u11 − 2v12u12 (6.4)

where square brackets denote values of operators. We define the following
operators

Γ = v2D1 − v1D2, Υ = u12D1 − u11D2, Θ = u22D1 − u12D2

Γ̃ = a5Γ + c4Υ+ c5Θ, Υ̃ = −(c4Γ + c6Υ+ c7Θ)

Θ̃ = c5Γ + c7Υ+ c8Θ. (6.5)

First-order differential operators (5.7) entering the symmetry condition op-
erator (5.8) take the form

M12 = (�−a5)Dt−Ψ, M2t = −ΦDt+vtΘ−v2Γ, Mt1 = χDt−vtΥ+v1Γ.
(6.6)
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In the following sections, we only show that the second Hamiltonian op-
erators J1 = RJ0 are skew symmetric, JT

1
= −J1. A check of the Jacobi

identities and compatibility of the two Hamiltonian operators J0 and J1 is
straightforward but too much lengthy to be presented here. These calcu-
lations are somewhat facilitated by P. Olver’s method of functional multi-
vectors [9], chapter 7. Examples of such calculations can be found in our
papers [12, 13].

The resulting bi-Hamiltonian system has the form

(

ut
vt

)

= J0

(

δuH1

δvH1

)

= J1

(

δuH0

δvH0

)

(6.7)

where J0 and J1 are the first and second Hamiltonian operators, respectively,
while H1 and H0 are the corresponding Hamiltonian densities.

7 Summary of new bi-Hamiltonian systems

In this section we present new recursion and Hamiltonian operators and new
bi-Hamiltonian (2+1)-dimensional systems in the form (6.7). These results
are given in the form of theorems while the appropriate proofs are transferred
to the subsequent sections.

The first Hamiltonian operator (3.2) has the same general form for all
new bi-Hamiltonian systems

J0 =

(

0, 1

�

− 1

�
, 1

�
(Ψ̂−ΨT ) 1

�

)

(7.1)

7.1 Bi-Hamiltonian form of (a5c4c5)-parameter system

According to (6.2) the equation (5.12) in the two-component form becomes

ut = v, vt =
v1(Φ− c4)− v2(χ+ c5)

�
≡

(Ψ[v]− c4v1 − c5v2)

�
≡

Ψ̂[v]

�
.

(7.2)

Theorem 7.1 Recursion operator for the system (7.2) has the form

R =

(

R11 R12

R21 R22

)

(7.3)
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where

R11 = Γ̃−1Ψ̂, R12 = −Γ̃−1
�, R22 = −

1

�
ΨΓ̃−1

�

R21 =
1

�(Φ− c4)
{(Φ− c4)ΨΓ̃−1Ψ̂− v2Ψ̂ + Ψ̂[v]D2}. (7.4)

Theorem 7.2 The second Hamiltonian operator has the form

J1 = RJ0 =

(

Γ̃−1, Γ̃−1ΨT 1

�
1

�
ΨΓ̃−1, 1

�
(ΨΓ̃−1ΨT − Γ) 1

�

)

. (7.5)

Theorem 7.3 The system (7.2) has the bi-Hamiltonian form (6.7) with op-
erators J0 and J1 defined in (7.1) and (7.5), respectively, and the Hamiltonian
densities H1 = v2�/2 and

H0 = {F (v) + (c5z1 − c4z2)v}(u11u22 − u2
12
+ a5) (7.6)

where F (v) is an arbitrary smooth function.

7.2 Bi-Hamiltonian form of (c4c6c7)-parameter system

According to (6.2) the equation (5.21) in the two-component form becomes

ut = v, vt =
(Ψ[v]− c4v1 − c6u11 − c7u12)

�
≡

Ψ̂[v]− c6u11 − c7u12
�

. (7.7)

Theorem 7.4 Recursion operator for the system (7.7) has the form

R =

(

Υ̃−1Ψ −Υ̃−1
�

1

�
(Ψ̂Υ̃−1Ψ+Υ) − 1

�
Ψ̂Υ̃−1

�

)

. (7.8)

Theorem 7.5 The second Hamiltonian operator has the form

J1 = RJ0 =

(

Υ̃−1, Υ̃−1Ψ̂T 1

�

1

�
Ψ̂Υ̃−1, 1

�

ˆ(ΨΥ̃−1Ψ̂T +Υ) 1

�

)

. (7.9)

Theorem 7.6 The system (7.7) has the bi-Hamiltonian form (6.7)with oper-
ators J0 and J1 defined in (7.1) and (7.9), respectively, and the Hamiltonian
densities

H1 =
v2�

2
+
u

2
(c6u11 + c7u12). (7.10)

and
H0 = v�(c6z2 − c7z1 + f(u1)) + c4(F (u1) + c7u). (7.11)

Here f(u1) is an arbitrary smooth function and F (u1) is the antiderivative
for f(u1).
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7.3 Bi-Hamiltonian form of (c5c7c8)-parameter system

According to (6.2) the equation (5.27) in the two-component form becomes

ut = v, vt =
(Ψ[v]− c5v2 − c7u12 − c8u22)

�
≡

Ψ̂[v]− c7u12 − c8u22
�

. (7.12)

Theorem 7.7 Recursion operator for the system (7.12) has the form

R =

(

Θ̃−1Ψ −Θ̃−1
�

1

�
(Ψ̂Θ̃−1Ψ−Θ) − 1

�
Ψ̂Θ̃−1

�

)

. (7.13)

Theorem 7.8 The second Hamiltonian operator has the form

J1 = RJ0 =

(

Θ̃−1, Θ̃−1Ψ̂T 1

�

1

�
Ψ̂Θ̃−1, 1

�
(̂ΨΘ̃−1Ψ̂T −Θ) 1

�

)

. (7.14)

Theorem 7.9 The system (7.12) has the bi-Hamiltonian form (6.7)with op-
erators J0 and J1 defined in (7.1) and (7.14), respectively, and the Hamilto-
nian densities

H1 =
v2�

2
+
u

2
(c7u12 + c8u22). (7.15)

and
H0 = v�(c8z1 − c7z2 + f(u2)) + c5(F (u2) + c7u). (7.16)

Here F (u2) is the antiderivative of f(u2), the latter being an arbitrary smooth
function.

8 Bi-Hamiltonian form of (a5c4c5)-parameter

system: proofs

The equation (5.12) in the two-component form is given in (7.2).
We will use the inverse operator Γ̃−1 which can make sense merely as a

formal inverse. Thus, the relations involving Γ̃−1 are also formal. The proper
interpretation of the inverse operators and relations involving them requires
the language of differential coverings (see the original papers [5, 7] and the
recent survey [6]).
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We specify the inverse of Γ̃ by the property Γ̃−1Γ̃ = I where I is the
unit (identity) operator. A detailed example of constructing such an inverse
operator was given in our paper [12].

According to the definitions (5.20) and (6.6), we have

A1 =
1

vt
{−(Φ− c4)Dt + vtΘ− v2Γ}, B1 =

1

vt
(v2Dt − vtD2)

A2 =
1

vt
{(χ+ c5)Dt − vtΥ+ v1Γ}, B2 =

1

vt
(vtD1 − v1Dt).

(8.1)

Recursion relations (5.6) become

−(Φ− c4)ψ̃ + (vtΘ− v2Γ)ϕ̃ = v2ψ − vtD2ϕ

(χ+ c5)ψ̃ + (−vtΥ+ v1Γ)ϕ̃ = vtD1ϕ− v1ψ (8.2)

where ϕ and ϕ̃ are symmetry characteristics for the original and transformed
symmetry, respectively, and ψ = ϕt, ψ̃ = ϕ̃t. The subscripts denote partial
derivatives. Combining the two equations in (8.2) we eliminate ψ̃ with the
result

Γ̃ϕ̃ = Ψ̂ϕ−�ψ ⇐⇒ ϕ̃ = Γ̃−1(Ψ̂ϕ−�ψ). (8.3)

Utilization of (8.3) in (8.2) yields only one independent equation

ψ̃ =
1

�(Φ− c4)
{(Φ− c4)ΨΓ̃−1Ψ̂− v2Ψ̂ + Ψ̂[v]D2}ϕ

−
1

�
ΨΓ̃−1

�ψ (8.4)

where we have used the relations

v1Θ− v2Υ = Ψ, Ψ̂[v]Θ−�v2Γ = (Φ− c4)Ψ− v2Γ̃.

Recursion relations (8.3) and (8.4) can be written in the form of a matrix
recursion operator R

(

ϕ̃

ψ̃

)

= R

(

ϕ
ψ

)

=

(

R11 R12

R21 R22

)(

ϕ
ψ

)

with the matrix elements (7.4).
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The first Hamiltonian operator (3.2) for equation (5.12) due to (3.7) is de-
termined by (7.1) and the corresponding Hamiltonian density (3.4) becomes

H1 = v2�/2. (8.5)

The second Hamiltonian operator obtained by the formula J1 = RJ0 has
the form (7.5) The operator J1 in (7.5) is manifestly skew symmetric, same
as J0 in (7.1).

The remaining task is to find the Hamiltonian density H0 corresponding
to the new Hamiltonian operator (7.5) according to the formula

J1

(

δuH0

δvH0

)

=





v

Ψ̂[v]

�



 (8.6)

where (7.2) has been used. We assume that H0 does not depend on partial
derivatives of v, so that δvH0 = H0,v.

The first line of equation (8.6) with J1 defined in (7.5)

Γ̃−1

(

δuH0 +ΨTH0,v

�

)

= v ⇐⇒ δuH0 = −ΨT H0,v

�
+ c4χ+ c5Φ (8.7)

being used in the second line of (8.6)

1

�
ΨΓ̃−1

(

δuH0 +ΨTH0,v

�

)

−
1

�
Γ
H0,v

�
=

Ψ̂[v]

�

implies Γ[H0,v/�] = c4v1 + c5v2 ⇐⇒ v2D1[H0,v/�] − v1D2[H0,v/�] =
c4v1 + c5v2. This equation implies

H0,v

�
= c5z1− c4z2+ f(v) ⇐⇒ H0 = �{(c5z1− c4z2)v+F (v)}+h[u] (8.8)

where f(v) is an arbitrary smooth function belonging to the kernel of Γ, F
is the antiderivative for f , � = u11u22 − u2

12
+ a5 and h[u] is a function only

of u and its partial derivatives in z1, z2.
H0 in (8.8) should satisfy the second equation in (8.7) which yields

δuH0 = (c5z1 − c4z2 + f(v))(v11u22 + v22u11 − 2v12u12)

+ f ′(v)(v2
1
u22 + v2

2
u11 − 2v1v2u12) + 2(c4χ+ c5Φ). (8.9)
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Calculating directly the variational derivative δuH0 from H0 in (8.8) and
comparing it with (8.9) we obtain δuh[u] = 0. In the final result we skip the
”null Hamiltonian” h[u] and obtain the result (7.6) for H0.

Thus, bi-Hamiltonian representation of the (a5c4c5)-parameter system
(7.2) has the form (6.7) with J0 defined in (7.1), H1 in (8.5), J1 in (7.5),
H0 in (7.6) and the recursion operator R determined by (7.4).

9 Bi-Hamiltonian form of (c4c6c7)-parameter

system: proofs

The equation (5.21) in the two-component form is given in (7.7).
We will use the inverse operator Υ̃−1 which we specify by the property

Υ̃−1Υ̃ = I. According to the definitions (5.26) and (6.6), we have

A1 =
1

u11
(�Dt −Ψ+ c4D1), B1 =

1

u11
Υ ≡

1

u11
(u12D1 − u11D2)

A2 =
1

u11
{χDt − vtΥ+ v1Γ + c7D1}, B2 =

1

u11
(u11Dt − v1D1).

(9.1)

Recursion relations (5.6) become

�ψ̃ − Ψ̂ϕ̃ = Υϕ

χψ̃ + (−vtΥ+ v1Γ + c7D1)ϕ̃ = −v1D1ϕ+ u11ψ (9.2)

where ψ = ϕt and ψ̃ = ϕ̃t. Combining the two equations in (9.2) we eliminate
ψ̃ with the result

Υ̃ϕ̃ = Ψϕ−�ψ ⇐⇒ ϕ̃ = Υ̃−1(Ψϕ−�ψ). (9.3)

Utilization of (9.3) in (9.2) yields only one independent equation

ψ̃ =
1

�
(Ψ̂Υ̃−1Ψ+Υ)ϕ−

1

�
Ψ̂Υ̃−1

�ψ. (9.4)

Recursion relations (9.3) and (9.4) can be written in the form of a matrix
recursion operator R

(

ϕ̃

ψ̃

)

= R

(

ϕ
ψ

)

=

(

Υ̃−1Ψ −Υ̃−1
�

1

�
(Ψ̂Υ̃−1Ψ+Υ) − 1

�
Ψ̂Υ̃−1

�

)(

ϕ
ψ

)

.
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The first Hamiltonian operator (3.2) for equation (5.21) due to (3.7) takes
the form (7.1) and the corresponding Hamiltonian density (3.4) becomes

H1 =
v2�

2
+
u

2
(c6u11 + c7u12).

The second Hamiltonian operator obtained by the formula J1 = RJ0 has
the form (7.9). The operator J1 in (7.9) is manifestly skew symmetric, same
as J0 in (7.1).

The remaining task is to find the Hamiltonian density H0 corresponding
to the new Hamiltonian operator (7.9) according to the formula

J1

(

δuH0

δvH0

)

=





v
1

�

(

Ψ̂[v]− c6u11 − c7u12

)



 (9.5)

where (7.7) has been used. We assume that H0 does not depend on partial
derivatives of v, so that δvH0 = H0,v. The first line of equation (9.5) with J1
defined in (7.9)

Υ̃−1

(

δuH0 + Ψ̂TH0,v

�

)

= v ⇐⇒ δuH0 = −Ψ̂T H0,v

�
− (c6Υ[v] + c7Θ[v])

(9.6)
being used in the second line of (9.5)

1

�
Ψ̂Υ̃−1

(

δuH0 + Ψ̂TH0,v

�

)

+
1

�
Υ
H0,v

�
=

1

�
(Ψ̂[v]− c6u11 − c7u12)

implies Υ[H0,v/�] = −(c6u11 + c7u12) ⇐⇒ H0,v/� = c6z2 − c7z1 + f(u1)
where f is an arbitrary smooth function belonging to the kernel of Υ. This
equation implies

H0 = v�(c6z2 − c7z1 + f(u1)) + h[u] (9.7)

where h[u] is a function only of u and its partial derivatives in z1, z2. H0 in
(9.7) should satisfy the second equation in (9.6) which yields

δuH0 = (c6z2 − c7z1 + f(u1))(v11u22 + v22u11 − 2v12u12)

+ v1(f
′(u1)�− 2c6u12 − 2c7u22) + 2v2(c6u11 + c7u12)

− c4f
′(u1)u11 + c4c7. (9.8)
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Calculating directly the variational derivative δuH0 from H0 in (9.7) and
comparing it with (9.8) we obtain δuh[u] = c4(−f

′(u1)u11 + c7). Introducing
F (u1) to be the antiderivative of f(u1) we finally obtain the result (7.11) for
H0.

Thus, bi-Hamiltonian representation of the (c4c6c7)-parameter system
(7.7) has the form (6.7) with J0 defined in (7.1), H1 in (7.10), J1 in (7.9), H0

in (7.11) and the recursion operator R determined in (7.8).

10 Bi-Hamiltonian form of (c5c7c8)-parameter

system: proofs

We will use the inverse operator Θ̃−1 which we specify by the property
Θ̃−1Θ̃ = I.

According to the definitions (5.32) and (6.6), we have

A1 =
1

u22
(�Dt −Ψ+ c5D2), B1 = −

1

u22
Θ ≡

1

u22
(u12D2 − u22D1)

A2 =
1

u22
{−ΦDt + vtΘ− v2Γ + c7D2}, B2 =

1

u22
(u22Dt − v2D2).

(10.1)

Recursion relations (5.6) become

�ψ̃ − Ψ̂ϕ̃ = −Θϕ

−Φψ̃ + (vtΘ− v2Γ + c7D2)ϕ̃ = −v2D2ϕ+ u22ψ (10.2)

where ψ = ϕt and ψ̃ = ϕ̃t. Combining the two equations in (10.2) we
eliminate ψ̃ with the result

Θ̃ϕ̃ = Ψϕ−�ψ ⇐⇒ ϕ̃ = Θ̃−1(Ψϕ−�ψ). (10.3)

Utilization of (10.3) in (10.2) yields only one independent equation

ψ̃ =
1

�
(Ψ̂Θ̃−1Ψ−Θ)ϕ−

1

�
Ψ̂Θ̃−1

�ψ. (10.4)

Recursion relations (10.3) and (10.4) can be written in the form of a matrix
recursion operator R

(

ϕ̃

ψ̃

)

= R

(

ϕ
ψ

)

=

(

Θ̃−1Ψ −Θ̃−1
�

1

�
(Ψ̂Θ̃−1Ψ−Θ) − 1

�
Ψ̂Θ̃−1

�

)(

ϕ
ψ

)

.
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The first Hamiltonian operator (3.2) for equation (5.27) due to (3.7) takes
the form

J0 =

(

0, 1

�

− 1

�
, 1

�
(Ψ̂−ΨT ) 1

�

)

(10.5)

and the corresponding Hamiltonian density (3.4) becomes

H1 =
v2�

2
+
u

2
(c7u12 + c8u22).

The second Hamiltonian operator obtained by the formula J1 = RJ0 has
the form

J1 =

(

Θ̃−1, Θ̃−1Ψ̂T 1

�

1

�
Ψ̂Θ̃−1, 1

�
(̂ΨΘ̃−1Ψ̂T −Θ) 1

�

)

.

The operator J1 in (7.14) is manifestly skew symmetric, same as J0 in (10.5).
The remaining task is to find the Hamiltonian density H0 corresponding

to the new Hamiltonian operator (7.14) according to the formula

J1

(

δuH0

δvH0

)

=





v
1

�

(

Ψ̂[v]− c7u12 − c8u22

)



 (10.6)

where (7.12) has been used. We assume that H0 does not depend on partial
derivatives of v, so that δvH0 = H0,v. The first line of equation (10.6) with
J1 defined in (7.14)

Θ̃−1

(

δuH0 + Ψ̂TH0,v

�

)

= v ⇐⇒ δuH0 = −Ψ̂TH0,v

�
+ c7χ+ c8Φ (10.7)

being used in the second line of (10.6)

1

�
Ψ̂Θ̃−1

(

δuH0 + Ψ̂TH0,v

�

)

−
1

�
Θ
H0,v

�
=

1

�
(Ψ̂[v]− c7u12 − c8u22)

implies Θ[H0,v/�] = c7u12+c8u22 ⇐⇒ H0,v/� = c8z1−c7z2+f(u2) where f
is an arbitrary smooth function belonging to the kernel of Θ. This equation
implies

H0 = v�(c8z1 − c7z2 + f(u2)) + h[u] (10.8)
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where h[u] is a function only of u and its partial derivatives in z1, z2. H0 in
(10.8) should satisfy the second equation in (10.7) which yields

δuH0 = (c8z1 − c7z2 + f(u2))(v11u22 + v22u11 − 2v12u12)

+ 2c7χ+ 2c8Φ + v2f
′(u2)�+ c5(c7 − f ′(u2)u22). (10.9)

Calculating directly the variational derivative δuH0 from H0 in (10.8) and
comparing it with (10.9) we obtain δuh[u] = c5(−f

′(u2)u22+c7). Introducing
F (u2) to be the antiderivative of f(u2) we finally obtain

H0 = v�(c8z1 − c7z2 + f(u2)) + c5(F (u2) + c7u).

Thus, bi-Hamiltonian representation of the (c5c7c8)-parameter system
(7.12) has the form (6.7) with J0 defined in (10.5), H1 in (7.15), J1 in (7.14),
H0 in (7.16) and the recursion operator R determined in (7.13).

Conclusion

We have obtained the general form of Euler-Lagrange evolutionary equations
in (2 + 1) dimensions containing only second order partial derivatives of the
unknown. Their Lagrangians have also been constructed. We have con-
verted these equations into two-component evolutionary form and obtained
Lagrangians for the two-component systems. The Lagrangians are degen-
erate because the momenta cannot be inverted for the velocities. Applying
to these degenerate Lagrangians the Dirac’s theory of constraints, we have
obtained a symplectic operator and its inverse, the Hamiltonian operator J0
for each such system together with the Hamiltonian density H1. Thus, all
these systems have been presented in a Hamiltonian form.

We have explicitly demonstrated how the presentation of a symmetry
condition in the skew-factorized form supply Lax pairs and recursion rela-
tions without the previous knowledge of Lax pairs. In particular, we have
shown how the symmetry condition for three-parameter cubic equations can
be converted to a skew-factorized form and obtained Lax pair and recursion
relations for such an equation. This procedure may serve as a hint for a
future general method for skew-factorization of the symmetry condition.

We have derived recursion operators in a 2×2 matrix form for the three-
parameter two-component cubic systems. Composing the recursion operators
R with the Hamiltonian operator J0 we have obtained second Hamiltonian
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operators J1 = RJ0 for all such systems. We have found the Hamiltonian den-
sity H0 corresponding to J1, thus ending up with three new bi-Hamiltonian
three-parameter cubic systems in (2 + 1) dimensions.
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