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Abstract

We study the stability of synchronized fixed-point state for linear fractional-
order coupled map lattice(CML). We observe that the eigenvalues of the
connectivity matrix determine the stability as for integer-order CML. These
eigenvalues can be determined exactly in certain cases. We find exact bounds
in one-dimensional lattice with translationally invariant coupling using the
theory of circulant matrices. This can be extended to any finite dimension.
Similar analysis can be carried out for the synchronized fixed point of non-
linear coupled fractional maps where eigenvalues of the Jacobian matrix play
the same role. The analysis is generic and demonstrates that the eigenvalues
of connectivity matrix play a pivotal role in stability analysis of synchronized
fixed point even in coupled fractional maps.

1. Introduction

Fractional dynamics extends the dynamical systems to systems with mem-
ory and studies in fractional order differential equations have exploded in the
recent past. In integer-order systems, dynamical systems theory has been en-
riched by studies in flows as well as maps. Numerical difficulties are almost
absent in the simulation of maps. Almost all routes to chaos observed in
flows are observed in maps as well [1]. Most chaos control schemes are ap-
plicable in the flows as well as maps. They appear naturally in scientific
contexts where time is discrete. They have found applications in convecting
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fluids, lasers, heart cells, chemical oscillators, etc [2]. Circle map has found
applications in several systems described by a damped driven pendulum.
Examples include Josephson junction in microwave field [3], charge density
waves, lasers [4, 5] cardiac arrhythmia [6] and even air-bubble formation [7].
Logistic maps have found applications in chemical physics and population
dynamics [8, 9] These systems have been extended to a spatially extended
version popularly known as coupled map lattice. Coupled map lattices have
found applications in diverse fields such as austenite-martensite structural
transformation, convection and crystal growth [10, 11, 12].

Thus it can be useful to investigate coupled fractional maps to understand
the dynamics of spatiotemporal systems in presence of memory. Studies
in fractional maps are unfrequent compared to fractional differential equa-
tions. Simulation of the fractional differential equation is computationally
cumbersome compared to ordinary differential equation. It also needs do-
main expertise in numerical analysis. Simulating high dimensional system of
fractional differential equations will need extensive computational resources.
Though simulation of fractional maps is more time-consuming than integer-
order maps, the computational resources required are far less than that for
fractional differential equations.

Systems with power-law memory occur in several physical situations rang-
ing from electromagnetic waves in dielectric media to adaptation in biological
systems [13, 14]. In this work, we study coupled fractional maps and investi-
gate a very basic problem of existence and stability of fixed-point solution and
state conditions for a synchronized fixed-point solution. In certain important
cases, such as coupled map lattice in finite dimension, explicit bounds can
be derived for stability.

2. Preliminaries

In this section, we present some basic definitions and results. Let h >
0, a ∈ R, (hN)a = {a, a+ h, a+ 2h, . . .} and Na = {a, a+ 1, a+ 2, . . .}.

Definition 2.1. (see [15, 16, 17]). For a function x : (hN)a → R, the
forward h-difference operator if defined as

(∆hx)(t) =
x(t+ h)− x(t)

h
,

where t ∈ (hN)a.
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Throughout this paper, we take a = 0 and h = 1.

Definition 2.2. [17] For a function x : N◦ → R the fractional sum of order
α > 0 is given by

(∆−αx)(t) =
1

Γ(α)

n∑
s=0

Γ(α + n− s)
Γ(n− s+ 1)

x(s), (1)

where, t = α + n, n ∈ N◦.

Definition 2.3. [17, 18] Let µ > 0 and m − 1 < µ < m, where m ∈ N,
m = dµe. The µth fractional Caputo like difference is defined as

∆µx(t) = ∆−(m−µ) (∆mx(t)) , (2)

where t ∈ Nm−µ and

∆mx(t) =
m∑
k=0

(
m

k

)
(−1)m−kx(t+ k). (3)

Definition 2.4. [17] The Z-transform of a sequence {y(n)}∞n=0 is a complex
function given by Y (z) = Z[y](z) =

∑∞
k=0 y(k)z−k where z ∈ C is a complex

number for which the series converges absolutely.

Definition 2.5. [17] Let φ̃α(n) be a family of binomial functions defined on
Z, parametrized by α defined by

φ̃α(n) =
Γ(n+ α− 1)

Γ(α)Γ(n)

=

(
n+ α− 1

n

)
= (−1)n

(
−α
n

)
. (4)

Then

Z(φ̃α(t)) =
1

(1− z−1)α
, |z| > 1.

Definition 2.6. [17] The convolution φ ∗ x of the functions φ and x defined
on N is defined as

(φ ∗ x) (n) =
n∑
s=0

φ(n− s)x(s) =
n∑
s=0

φ(s)x(n− s).

Then the Z-transform of this convolution is

Z (φ ∗ x) (n) = (Z (φ) (n)) (Z (x) (n)) . (5)
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Lemma 2.1. [18] The discrete function x(t) is solution of an initial value
problem

∆αx(t) = f(x(t+ α− 1)), t ∈ N1−α, 0 < α < 1,

x(0) = x0 (6)

if and only if x(t) is solution of following fractional discrete dynamical system

x(t) = x0 +
t−α∑

s=1−α

Γ(t− s)
Γ(α)Γ(t− s− α + 1)

f (x(s+ α− 1))

= x0 +
t−1∑
j=0

Γ(t− j + α− 1)

Γ(α)Γ(t− j)
f (x(j)) . (7)

3. Fractional order coupled map lattices: Linear systems

Consider the linear coupled map lattice of fractional order α ∈ (0, 1)

xt+1(k) = x0(k) +
t∑

j=0

N∑
m=1

Γ(t− j + α)

Γ(α)Γ(t− j + 1)
(Akmxj(m)− xj(k)) , (8)

where xt(k) is the variable at time t associated with the k-th lattice point,
k = 1, 2, · · · , N , xt(0) = xt(N) and xt(N + 1) = xt(1) and A = (Akm) is
N ×N connectivity matrix.
If we write Xt = (xt(1), xt(2), · · · , xt(N)), a column vector in RN then the
system (8) is equivalent to

Xt+1 = X0 +
t∑

j=0

Γ(t− j + α)

Γ(α)Γ(t− j + 1)
(A− I)Xj,

= X0 + (A− I)
(
φ̃α(t) ∗Xt

)
, (9)

where I is N × N identity matrix. Applying Z-transform and using the
properties given in Section 2, we get

zX̄(z)− zX0 =
1

1− z−1
X0 +

1

(1− z−1)α
X̄(z) (A− I) , |z| > 1,
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Figure 1: The stability region of fractional order map

where X̄(z) is the Z-transform of Xt. Therefore, the characteristic equation
of system (9) is given as

det
(
z(1− z−1)αI − (A− I)

)
= 0. (10)

Motivated from [19, 20], we propose the following stability theorem.

Theorem 3.1. The zero solution of the system (8) or (9) is asymptotically
stable if and only if all the roots of the characteristic equation (10) satisfy
|z| < 1.

3.1. Stable Region

At the boundary of stable region, the root z of characteristic equation
(10) should satisfy |z| = 1. Therefore, we obtain the parametric boundary
curve β(t) of stable region by substituting z = eιt, 0 ≤ t ≤ 2π in the (10) as

β(t) =
(

2α (sin(t/2))α cos
(
α
π

2
+ t(1− α/2)

)
+ 1, 2α (sin(t/2))α sin

(
α
π

2
+ t(1− α/2)

))
.

(11)
The boundary curves β(t) for different values of α ∈ (0, 1] are sketched in
Figure 1. If the eigenvalues of A are complex, we need to consider if the
given eigenvalue is in the stable region defined by the cardioid given above
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and the solution is stable only if all eigenvalues lie in the stable region.

We have following result [19, 21, 22, 20].

Theorem 3.2. If all the eigenvalues of matrix A lie inside the region bounded
by the curve β(t), 0 ≤ t ≤ 2π defined by (11) then the system (8) is asymp-
totically stable.

Thus the stability of synchronized fixed point xt(k) = 0 as t → ∞ ∀i
depends only on eigenvalues of connectivity matrix A. Let us consider a
particular case of coupled map lattice on one-dimensional lattice with trans-
lationally invariant coupling and periodic boundary conditions. The matrix
A such that Aii = a1, Ai,i+1 = a2 and Ai,i−1 = a0 is given by.

A =



a1 a2 0 0 · · · 0 0 a0
a0 a1 a2 0 · · · 0 0 0
0 a0 a1 a2 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · a0 a1 a2
a2 0 0 0 · · · 0 a0 a1


For the special case N = 2, we define

A =

(
a1 a0 + a2

a0 + a2 a1

)
and for N = 1

A =
(
a1 + a0 + a2

)
using periodic boundary conditions.

A is a circulant matrix with eigenvalues λl = a1 + a2ω
l + a0ω

−l where
ω = exp(ι2π

N
) is primitive Nth root of unity [23]. For symmetric case, where

a2 = a0, we get λl = a1+2a2 cos(θl), where θl = 2πl
N

for 0 ≤ l ≤ N−1. We note
that λl = λN−l in this case. For case a2 = −a0, we obtain λl = a1+ι2a2 sin(θl)
where θl = 2πl

N
. If N = 4K, λK = a1 + ι2a2 and λ3K = a1 − ι2a2. These

are limiting cases in this system. Coupled map lattice in one dimension is a
widely explored system and we will study the above cases in further detail
in this section.

First we consider the bounds on real part of the eigenvalue.
Note: The stable region of the real eigenvalue λ is 1− 2α < λ < 1.
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Figure 2: Unstable solution for N = 3, α = 0.4, a0 = 0.2, a1 = −0.5 and a2 = 0.1
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Figure 3: Stable solution for N = 3, α = 0.8, a0 = 0.2, a1 = −0.3 and a2 = 0.1

Example 3.1. Consider N = 3 and α = 0.4. The parameter values a0 =
0.2, a1 = −0.5 and a2 = 0.1 produce the eigenvalues −0.2 and −0.65 ±
0.0866025ι. Since the eigenvalues −0.65 ± 0.0866025ι are outside the stable
region, we get the unstable solutions as shown in Fig. 2. On the other hand,
if we set N = 3, α = 0.8, a0 = 0.2, a1 = −0.3 and a2 = 0.1 then all the
eigenvalues viz. 0 and −0.45± 0.0866ι lie inside the stable region and we get
the stable solutions (cf. Fig. 3).

In the following two subsections, we consider two important particular
cases and discuss the stability.
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3.1.1. Symmetric Case

In this section, we assume that the coefficient matrix A in (9) is symmetric
i.e. a0 = a2.

Theorem 3.3. The stable region of the system (9) with a0 = a2 is bounded
by the quadrilateral with vertices Q1 = (0, 1), Q2 = (−2α−2, 2α−1 + 1− 2α),
Q3 = (0, 1 − 2α) and Q4 = (2α−2, 1− 2α−1) for even values of lattice points

N and Q1 = (0, 1), Q′2 =
(
− 2α−1

1+cos(π/N)
, 2α

1+cos(π/N)
+ 1− 2α

)
, Q3 = (0, 1− 2α)

and Q′4 =
(

2α−1

1+cos(π/N)
,− 2α

1+cos(π/N)
+ 1
)

for odd N in the a2a1-plane.

Proof: The eigenvalues of A in the symmetric case are

λj = a1 + 2a2 cos

(
2πj

N

)
, j = 0, 1, · · · , N − 1. (12)

Note that cos
(
2πj
N

)
= cos

(
2π(N−j)

N

)
. Therefore, to obtain the distinct values

we take j = 0, 1, · · · , [N/2], where [r] is an integer-part of the real number
r. Since, all these eigenvalues are real, the stable region in the a2a1-plane is
an intersection of the regions

1− 2α < a1 + 2a2 cos

(
2πj

N

)
< 1, j = 0, 1, · · · , [N/2]. (13)

The boundaries of these regions are straight lines defined by following two
sets

S1j : a1 = −2 cos

(
2πj

N

)
a2 + (1− 2α), and (14)

S2j : a1 = −2 cos

(
2πj

N

)
a2 + 1, (15)

where j = 0, 1, · · · , [N/2].
Note that

[N/2] =

{
N/2, if N is even

(N − 1)/2, if N is odd.
(16)

The stable region of (9) will be bounded by the straight lines S1j and S2j
which are close to origin in the a2a1-plane, as shown in Figure 4. The lines
in the set S1j intersect each other at (0, 1 − 2α) whereas those in the set

8



S2j

S1j

Figure 4: Stable region of symmetric case

S2j have intersection at (0, 1) in the a2a1-plane. Further, the innermost
line a1 = −2a2 + (1 − 2α) in the set (14) with j = 0 intersects the inner-

most line a1 = −2 cos
(

2π[N/2]
N

)
a2 + 1 in the set (15) with j = [N/2] in

the a2a1-plane at the point (−2α−2, 2α−1 + 1− 2α) when N is even and at(
− 2α−1

1+cos(π/N)
, 2α

1+cos(π/N)
+ 1− 2α

)
when N is odd. Secondly, the intersection

between the innermost lines a1 = −2 cos
(

2π[N/2]
N

)
a2+(1−2α) in the set (14)

with j = [N/2] and a1 = −2a2 + 1 in the set (15) with j = 0 is the point

(2α−2, 1− 2α−1) when N is even and
(

2α−1

1+cos(π/N)
,− 2α

1+cos(π/N)
+ 1
)

when N is

odd.
Thus, the stable region which is an intersection of all the regions (13) is
bounded by the quadrilateral with vertices described in the statement of this
theorem. This proves the result.

We note that stable region does not change for even N . Two extreme
values for a1 + 2a2 cos(θl) are given by λ0 = a1 + 2a2 and λN/2 = a1 − 2a2.
For odd N , one of the limits λ0 = a1 + 2a2 is still realized. Other limit is
slightly bigger by a leading to a slightly higher stability range and the it is
approached as 1/N2 for large N . Thus, in the thermodynamic limit N →∞,
stability region for N → ∞ coincides with stability region for N = 2. Thus
the stability of extreme eigenvalues in the thermodynamic limit determine

9



-0.2 -0.1 0.1 0.2
a2

0.2

0.4

0.6

0.8

1.0

a1

Figure 5: Stable region of symmetric system (9) with N = 8 and α = 0.2

the stability region.

Example 3.2. Consider the symmetric system (9) with even number N = 8
of lattice points and α = 0.2. The stable region using Theorem 3.3 is sketched
in Figure 5. We verified that the solutions starting in a neighborhood of origin
converge to origin if we take (a2, a1) in the stable region. Figure 6 shows the
converging trajectories for the parameter values a1 = 0.1, and a2 = −0.05.
The unstable solution is sketched in Figure 7 with a1 = −0.02, and a2 = 0.1
which are outside the stable region.

Example 3.3. Let us consider the symmetric system (9) with odd number
N = 9 of lattice points. The stable region in this case with α = 0.5 is shown
in Figure 8. The stable solution for the parameter values a1 = 0.6, and
a2 = −0.1is shown in Figure 9 whereas the unstable solution for a1 = 0.2,
and a2 = 0.6 is in Figure 10.
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Figure 6: Stable solution of symmetric system (9) with N = 8, α = 0.2, a1 = 0.1, and
a2 = −0.05
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Figure 7: Unstable solution of symmetric system (9) with N = 8, α = 0.2, a1 = −0.02,
and a2 = 0.1
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Figure 8: Stable region of symmetric system (9) with N = 9 and α = 0.5
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Figure 9: Stable solution of symmetric system (9) with N = 9, α = 0.5, a1 = 0.6, and
a2 = −0.1
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Figure 10: Unstable solution of symmetric system (9) with N = 9, α = 0.5, a1 = 0.2, and
a2 = 0.6

3.1.2. Asymmetric Case

Now, we consider the asymmetric system (9) with a0 = −a2. We define
the cardioids

γj =

(
Re
[
eιt
(
1− e−ιt

)α]
+ 1,

1

2 sin(2πj/N)
Im
[
eιt
(
1− e−ιt

)α])
, j = 1, 2, · · · , [N/2]

(17)
in the a1a2-plane, provided sin(2πj/N) 6= 0.
The stability result in this case is discussed below. Note that dre is the
ceiling function of real number r.

Theorem 3.4. Consider the system (9) with a0 = −a2. We have following
stability results:

• If N = 1 or N = 2 then the stable region is 1− 2α < a1 < 1.

• If N ≥ 3 is an odd number then the stable region is bounded by the line
a1 = 1 and the cardioid γdN−1

4
e in the a1a2-plane.

• If N ≥ 4 is an even number then the stable region is bounded by the
line a1 = 1 and the cardioid γ[N4 ] in the a1a2-plane.

Proof: Suppose that a0 = −a2 in (9) . Therefore, the eigenvalues of the
coefficient matrix A are

λj = a1 + ι2a2 sin

(
2πj

N

)
, j = 0, 1, · · · , N − 1. (18)
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It is observed that for j = [N/2] + 1, [N/2] + 2, · · · , N − 1, the values λj are
complex conjugates of those for j = 0, 1, · · · , [N/2]. Therefore, the stable
region corresponding to λj is given by the cardioid γj defined in (17).
Since, λ0 = a1 ∈ R, one of the stability conditions is

1− 2α < a1 < 1. (19)

Further, if N = 1 or N = 2 then a1 is the only eigenvalue of matrix A.
Therefore, the stability condition is given by (19).
For N ≥ 3, the stable region is an intersection of the cardioids γj and the
region (19). It is observed that, this region is bounded by the “innermost”
cardioid and the line a1 = 1 in the a1a2-plane, as shown in the Figure 11.
Now, we have to find the j for which the cardioid γj is innermost.
The innermost cardioid is generated by γj for which the value sin(2πj/N)
is maximum. Further, the value sin(2πj/N) is maximum for the number
2πj/N which is closest to π/2 i.e. if the value |2πj

N
− π

2
| = π

2N
|4j − N | is

minimum.
Thus, our problem is reduced to find minimum of the set

S = {|4j −N | : j = 1, 2, · · · , [N/2]} . (20)

If N is even number, then the minimum of S occurs at j = [N/4]. On
the other hand, if N is an odd number, then the minimum of S occurs at
j = dN−1

4
e.

The result is proved.
We note that if the number of maps is multiple of 4, say N = 4K,

λK = a1 + ι2a2 and λN−K = a1 − ι2a2. Also, λ0 = a1 for any N . The
cardioid γK defined above reduces to cardioid for given value of α for j = 0
where real part is given by a1 and imaginary part is 2a2. For j = 0, γj is strip
between 1−2α ≤ a0 ≤ 1 with no condition on a2. The stability region is given
by intersection of this strip with the cardioid γK for given α for N = 4K. If
N is not an exact multiple of 4, the stability region is slightly bigger and as
expected it shrinks to stability region for N = 4 in the thermodynamic limit.

Example 3.4. We consider the system (9) with a0 = −a2, N = 6 and
α = 0.3. Here, N is even and [N/4] = 1. According to Theorem 3.4, the
stable region is bounded by the cardioid γ1 and the line a1 = 1 in the a1a2-
plane, as shown in Figure 12. The point a1 = −0.3, a2 = 0.5 is outside the
stable region and therefore we get unstable solution (cf. Figure 13). On the

14



Figure 11: Stable region of asymmetric system with a0 = −a2
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Figure 12: Stable region of system (9) with a0 = −a2, N = 6 and α = 0.3
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Figure 13: Unstable solution of (9) with a1 = −0.3, a2 = 0.5, a0 = −a2, N = 6 and
α = 0.3
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Figure 14: Stable solution of system (9) with a1 = −0.1, a2 = −0.22, a0 = −a2, N = 6
and α = 0.3

other hand, we get the stable solution (cf. Figure 14) for the parameter values
a1 = −0.1, a2 = −0.22.

We also verified the Theorem 3.4 for odd values of N but not presented the
example for brevity.

3.1.3. Thermodynamic limit

The coupled map lattice (9) in the thermodynamic limit N −→ ∞ is an
interesting system studied in the literature [24, 25, 26]. This limit may gives
rise to some important phenomena such as rescaling of the Lyapunov spec-
trum [27]. The physical interpretation of this limit [28, 29] is that a coupled
map lattice with a very large number of lattice points may be identified as a
chain of relatively small-sized independently evolving subsystems.

As N −→ ∞, cos(π/N) −→ 1. Therefore, the stable region of the sym-
metric system (9) in the a1a2-plane according to Theorem 3.3 is bounded by
the quadrilateral Q1Q2Q3Q4 in the thermodynamic limit.

As N −→∞, the interval [0, 2π] will contain an infinitely many values of
the form 2πj/N , j = 1, 2, · · · , N−1. Therefore, the maximum of sin(2πj/N)
will approach to 1 as N −→ ∞. Therefore, the stable region in the a1a2-
plane of the asymmetric system (9) with a0 = −a2 according to Theorem 3.4
is bounded by the line a1 = 1 and the cardioid

γ∞ =

(
Re
[
eιt
(
1− e−ιt

)α]
+ 1,

1

2
Im
[
eιt
(
1− e−ιt

)α])
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in the thermodynamic limit.
Though we have studied 1-dimensional case in detail, the formulation is

very generic and can be extended to any case where the eigenvalues of the con-
nectivity matrix can be computed analytically. Consider a 2-dimensional case
with NM maps with couplings A(i,j),(i±1,j) = a0 A(i,j),(i,j±1) = a2 A(i,j),(i,j) =
a1. This is a block-circulant matrix with circulant blocks and the eigenvalues
are given by λk1,k2 = a1 + 2a0 cos(θk1) + 2a2 cos(θk2) where θk1 = 2πk1

N
and

θk2 = 2πk2
M

. The indices k1 and k2 run from 0 to N − 1 and 0 to M − 1
respectively [30]. The bounds are given by a1 + 2a0 + 2a2 and a1− 2a0− 2a2
in the thermodynamic limit (assuming all off-diagonal couplings positive)
and the stability region is given by quadrilateral where both these bounds
are in the range [−2α + 1, 1]. Thus the formulation allows us to analytically
find the stability of a coupled map lattice with any connectivity matrix if
the eigenvalues can be determined analytically. If we couple each site to B
nearest neighbors instead of just one neighbor or to k randomly chosen sites
[31, 32] the eigenvalues of the connectivity matrix can be found analytically.
The stability conditions for synchronized fixed point can be studied even in
such cases. If the eigenvalues can be determined only numerically, we can
still use the stability conditions to explore the stability of the system by
systematically increasing the system size.

4. Fractional order coupled map lattices: Nonlinear systems

Consider the nonlinear coupled map lattice of fractional order α ∈ (0, 1]

xt+1(k) = x0(k)+
t∑

j=0

Γ(t− j + α)

Γ(α)Γ(t− j + 1)
(f0 (xj(k − 1)) + f1 (xj(k))− xj(k) + f2 (xj(k + 1))) ,

(21)
where k = 1, 2, · · · , N , xt(0) = xt(N), xt(N + 1) = xt(1) and the functions
fk : R −→ R, k = 0, 1, 2 are continuously differentiable functions.
If we define Xt as in Section 3 and F : RN −→ RN as

F (Xt) =



f0 (xj(N)) + f1 (xj(1)) + f2 (xj(2))
f0 (xj(1)) + f1 (xj(2)) + f2 (xj(3))
f0 (xj(2)) + f1 (xj(3)) + f2 (xj(4))

...
f0 (xj(N − 2)) + f1 (xj(N − 1)) + f2 (xj(N))
f0 (xj(N − 1)) + f1 (xj(N)) + f2 (xj(1))


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then the system (21) is equivalent to

Xt+1 = X0 +
t∑

j=0

Γ(t− j + α)

Γ(α)Γ(t− j + 1)
[F (Xj)−Xj] . (22)

A point X∗ = (x∗(1), x∗(2), · · · , x∗(N)) is called an equilibrium point of (22)
if it is a fixed point of function F [33]. Therefore, such a point must satisfy

f0 (x∗(j − 1)) + f1 (x∗(j)) + f2 (x∗(j + 1)) = x∗(j), j = 1, 2, · · · , N. (23)

For simplicity, we assume that the equilibrium point is homogeneous, i.e.
X∗ = (x∗, x∗, · · · , x∗) so that the conditions (23) get reduced to a single
condition

f0 (x∗) + f1 (x∗) + f2 (x∗) = x∗. (24)

If we identify a0 = f ′0 (x∗), a1 = f ′1 (x∗) and a2 = f ′2 (x∗) then the linearization
of (22) at homogeneous equilibrium point X∗ is given by the equation (9).
Furthermore, if we assume the condition (24) then all the stability results
viz. Theorems 3.1, 3.2, 3.3 and 3.4 can be used to analyze the stability of
X∗. We illustrate these results in the following examples.

Example 4.1. Consider f1(x) = µx(1−x), the logistic map [34] and f2(x) =
f0(x) = 4x3 − δx.

Here, the origin X∗ = (0, 0, · · · , 0) is an equilibrium point of (22). Further,
a1 = f ′1(0) = µ and a0 = a2 = f ′2(0) = −δ. Therefore, for α = 0.6 and N = 4
the stable region in δµ-plane is sketched in Figure 15. The stable orbits for
µ = 0.05, δ = −0.1 are plotted in Figure 16.

Example 4.2. We consider f1(x) = µx(1 − x) and the circle map [35]
f2(x) = x + δ sin(x). We also set f0(x) = −f2(x) so that the system (22) is
asymmetric.

Again, we have origin as equilibrium X∗ and a1 = µ, a2 = −a0 = 1 + δ. We
take α = 0.8 and N = 7. The stable region shown in Figure 17 is bounded by
the line µ = 1 and the cardioid γ2. The parameter values µ = 0.6, δ = −0.8
in the stable region give rise to stable orbits as shown in Figure 18. If we
take µ = 1.1 and δ = −1.2 in the unstable region, then the trajectories
repelled by origin are attracted by another homogeneous equilibrium point
with x∗ = 1 − 1/µ for the sufficiently small positive initial conditions (cf.
Figure 19). Note that the trajectories will be unbounded if we take negative
initial conditions, in this case.
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Figure 15: Stable region of origin of (22) in Ex. 4.1 with N = 4 and α = 0.6
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Figure 16: Stable orbits of system (22) in Ex. 4.1 with µ = 0.05, δ = −0.1, N = 4 and
α = 0.6
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Figure 17: Stable region of origin of (22) in Ex. 4.2 with N = 7 and α = 0.8
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Figure 18: Stable orbits of system (22) in Ex. 4.2 with µ = 0.6, δ = −0.8, N = 7 and
α = 0.8
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Figure 19: Orbits of system (22) in Ex. 4.2 diverging from origin for µ = 1.1, δ = −1.2,
N = 4 and α = 0.6

Example 4.3. Consider f(x) = µx(1 − x) and define f1(x) = (1 − ε)f(x)
and f0(x) = f2(x) = ε

2
f(x).

If x∗ is a fixed point of f then f(x∗) = x∗ and hence the condition (24) is
satisfied. Therefore, for this choice of functions the system (22) will have
two homogeneous equilibrium points viz. X1∗ = (0, 0, · · · , 0) and X2∗ =
(q, q, · · · , q), where q = µ−1

µ
.

Stability of X1∗:
Here, a1 = f ′1(0) = µ(1 − ε) and a2 = f ′2(0) = εµ/2. Therefore, ε = 2a2

a1+2a2
and µ = a1 + 2a2. The stable region of X1∗ in the εµ-plane can now be
obtained using the Theorem 3.3 by substituting the values of a1 and a2 in
the expressions of ε and µ for various values of N and α.
Stability of X2∗:
In this case, a1 = f ′1(q) = (1 − ε)(2 − µ) and a2 = f ′2(q) = ε(2 − µ)/2. On
simplifying, we get ε = 2a2

a1+2a2
and µ = 2−a1−2a2. The stable region of X2∗

can now be traced in εµ-plane by utilizing Theorem 3.3.
The asymmetric case f0(x) = −f2(x) can also be done in a similar way.

5. Discussion

As mentioned above, if the eigenvalues of underlying connectivity matrix
can be found analytically, the stability of the synchronized state becomes very
simple even for coupled fractional maps with an altered stability condition.
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One possible extension is stability analysis of spatially periodic fixed point. If
an unsynchronized but spatially periodic fixed point is realized in fractional
coupled maps (which is possible only in nonlinear systems), the Jacobian can
be block diagonalized. These blocks have a dimension of periodicity in space
[30]. This simplifies the stability analysis considerably.

Transition to a frozen or absorbing state is an extensively studied tran-
sition in nonequilibrium statistical physics which includes systems such as
coupled oscillators. (Such transition is not possible in equilibrium systems
because detailed balance cannot be violated.) The above work allows us to
study such dynamical systems in presence of memory. The thermodynamic
and asymptotic limit is important because phase can be defined only for the
state of an infinite system after infinite time. The above analysis gives an
analytic estimate for critical point for such system and also gives important
information about the nature of instability. Of course, such systems can have
a very different nature. For coupled fractional maps, a power-law decay is
obtained throughout the absorbing phase and not just the critical point [36].
Thus nature of transition can be very different. In integer order maps, the
bifurcation depends on whether the eigenvalue crosses the unit circle at 1, -1,
or complex value [2]. It also depends on which eigenmodes become unstable
[37]. Similar studies can be carried out in fractional systems.
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