
Filtering Properties of Hodgkin-Huxley Neuron to
Different Time-Scale Signals
Dong Yu 

Central China Normal University
Guowei Wang 

Central China Normal University
Tianyu Li 

Central China Normal University
Qianming Ding 

Central China Normal University
Ya Jia  (  jiay@mail.ccnu.edu.cn )

Central China Normal University https://orcid.org/0000-0002-2818-9074

Research Article

Keywords: Neuronal �ltering, Frequency selection, Hodgkin-Huxley neuron, Signal coding

Posted Date: November 12th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1041382/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1041382/v1
mailto:jiay@mail.ccnu.edu.cn
https://orcid.org/0000-0002-2818-9074
https://doi.org/10.21203/rs.3.rs-1041382/v1
https://creativecommons.org/licenses/by/4.0/


1

Filtering properties of Hodgkin-Huxley neuron to different1

time-scale signals2

3

Dong Yu, Guowei Wang, Tianyu Li, Qianming Ding, Ya Jia*4

Department of Physics, Central China Normal University, Wuhan 430079, China5

6

Abstract: Neuron can be excited and inhibited by filtered signals. The filtering properties of7

neural networks have a huge impact on memory, learning, and disease. In this paper, the filtering8

properties of HodgkinHuxley neuron to different time-scale signals are investigated. It is found9

that the neuronal filtering property depends on the locking relationship between the signal's10

frequency band and the natural frequency of neuron. The natural firing frequency is a11

combination of the fundamental component and the various level harmonic components. The12

response of neuron to the filtered signal is related to the amplitude of the harmonic components.13

Neuron responds better to the lowfrequency signals than the highfrequency signals because of14

the reduction in the harmonic component amplitude. The filtering ability of neuron can be15

modulated by the excitation level, and is stronger around the excitation threshold. Our results16

might provide novel insights into the filtering properties of neural networks and guide the17

construction of artificial neural networks.18
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1. Introduction33

34

Based on neuromathematical models, previous studies have explained complex35

neurodynamic problems [1, 2], helped to understand the human brain [3, 4], explained neural36

experiments [57]. In particular, neural network models have been used extensively in37

neuroscience applications, such as in studies of neural dynamics [8, 9], neural synchronization38

[1014], information processing and transmission [1517], and brain plasticity [18, 19], etc.39

The effects of systemic parameters and external factors on the electrical activity of neural40

models have been widely investigated in previous works, such as the external current [20], time41

delay [21], synapses [22, 23], electric and magnetic fields [24, 25], patch temperature [26], ionic42

channel blockage [27, 28], various noises [29, 30], etc.. Some neurological diseases are correlated43

with pathological enhancement synchronization in neurons, such as Parkinsonism [31]. Therefore,44

suitable neuronal modeling is a critical approach to study complex neuronal electrical activity.45

Noise [32], highfrequency signals [33], chaotic signals [34] can enhance neuronal response46

to weak signals. The phenomena of information transmission and detection have been studied in47

neural networks such as chain networks[35], smallworld networks[36], feedforward networks48

[37]. Therefore, it is of great importance to study signal processing in the neural system. Neurons49

are often subject to various signals, such as signals originating from different neurons and a single50

neuron but transmitted through different dendrites [38]. For example, Purkinje neurons gather51

thousands of excitatory and inhibitory synaptic inputs from the molecular layer and provide the52

sole output of the cerebellar cortex [7]. How such different timescale signals are encoded and53

propagated in neural networks has significant implications for learning [39], memory [42, 43],54

and disease [44].55

Previous studies [45] have investigated the filtering properties of neural networks to different56

time scales signals. Synapses function as dynamic filters for presynaptic spike sequences. Less57

important spikes are filtered out, and more important spikes are transmitted [46]. Similarly,58

synaptic failure is thought to be a means of gain control, whereby postsynaptic neurons can59

respond to important information from specific synapses, while filtering out less important inputs60

that reach other synapses [49, 50]. A synapse model with stochastic vesicle dynamics suppresses61

information encoded at lower than higher frequencies [51]. Refractoriness of vesicle recovery62

[52] and stochastic vesicle dynamics [51] alter the filtering properties of synapses. Shortterm63

depressing and facilitating synapses transmit information best at low and highfrequencies,64

respectively [53]. Therefore the facilitated synapses are high pass filtered and serve as burst65
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detectors [47, 54, 55]. Cortical action potentials with higher frequencies were filtered more than66

those with lower frequencies [56, 57].67

However, previous studies have reconstructed chemical synapse models to obtain synapses'68

filtering properties. Surprisingly little attention has been devoted to the filtering properties of the69

neuronal soma. Here we investigate the filtering properties of HodgkinHuxley (HH) neuron. The70

structure of this paper is as follows: in section 2, the mathematical model of HH are introduced.71

The main results are presented in section 3, and we summarize and discuss the potential72

implications of our findings in section 4.73

74

2. Model75

76

The temporal evolution of membrane potential of the HH [58] neuron model is described as77

follows:78
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where V represents the membrane potential of the neuron, and C = 1 F/cm2 is the capacity of the80

cell membrane. The reversal potentials for the potassium, sodium and leakage currents are EK =81

77 mV, ENa = 50 mV, EL = 54.4 mV, respectively. GK =36 mS/cm2, GNa = 120 mS/cm2 and GL =82

0.3 mS/cm2 denote the maximum conductance of potassium, sodium and leakage currents,83

separately. The term I0 is bias current which controls the excitability level of the neuron. The84

gating variables n, m and h, which characterize the average proportion of working channels85

opening obey the following Langevin equation:86
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where y and y are the switch rates of ionic channels which depend on voltage and described as88

follows:89






























.
]10)35([exp1

1,]20)65([exp070

,]80)65([exp4,
]10)40([exp1

)40(10

,]80)65([exp1250,
]10)55([exp1

)55(010

/V
   β/V.α

/V    β
/V

V.α

/V.     β
/V

V.α

hh

mm

nn

(3)90

In Eq. (1), Isignal = A(f)sin(2f t) is the external signal that is applied to HH neuron. f is the91

random frequency of the signal obtained from a computergenerated random number. The signal92
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can be seen as a combination of different time scale signals. As shown in Fig. 2(a), the signal's93

spectrum after the fast Fourier transform should be uniformly distributed. The amplitude in the94

external signal can be dependent on the frequency, and it is defined by [59]:95
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According to the above definition, a filtered signal with a fixed frequency band can be obtained.97

A0 is the amplitude of the filtered signal. The upper and lower threshold for frequency are defined98

by fmax and fmin, respectively. We measure the mean firing rate r of HH neuron and record each99

spike when the membrane potential exceeded 20 mV:100

,1
1

 spike 







 



N

j
j,n

NT
r (5)101

the term nspike, j represents the spikes number of each realization j in the simulation time length T =102

200 ms (i.e., 0.2 s), and M (M is set as 1000) means the times of realizations. The long time length103

is sufficient for the mean firing rate to satisfy the statistical law.104

To precisely characterize the regularity of neural pulse signals, an appropriate measure of105

consistency, the coefficient of variation (CV) [60], is introduced, which is expressed as the ratio of106

standard deviation to average value107

,
22

T
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 (6)108
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109

represents the mean squared interspike interval. When CV reaches a minimum, it means that the110

pattern of neuron discharge is the most regular. We are more interested in how CV changes when111

it is small. Therefore, in the calculation, we set the threshold as CVs = 2, and if CV > CVs, CV is112

replaced by the value of the fixed point CV = 2; otherwise, CV remains the same.113

114

3. Numerical results and discussion115

116

Neurons exhibit different kinetic properties at different excitation levels. As shown in Fig. 1a,117

the neuron remains quiescent at I0 less than 6.2. Immediately afterward, the Hopf bifurcation118

occurred, and the neuron was periodically discharged. Meanwhile, as the bias current increases,119

the neurons discharge at a greater frequency in Fig. 1b.120



5

121

122

Fig. 1 a Bifurcation diagram of the HodgkinHuxley neuron. b Mean firing rate r123

dependence on the bias current I0. The threshold bias current is I0 = 6.2.124

125

126

Fig. 2 a Spectrum of original signal after fast Fourier transform (FFT). The inserted127

subfigure is an enlarged one within the region [0, 300]. Spectrum of the filtered signal after the128

FFT in the bands b fmin = 0, fmax = 100; c fmin = 100, fmax = 200; d fmin = 200, fmax = ∞. The inserted129

subfigure is an enlarged one within the frequency region [0, 300]. The other parameters are fixed130

at I0 = 0, A0 = 40.131

132

The external signals are filtered according to the criterion shown in Eq. (4), and the spectrum133

of original signals and after frequency selection are plotted in Fig. 2. That is, the thresholds fmax,134

fmin control the frequency band in the filtered signal. Therefore, external signals with different135

frequency bands can be obtained. Fig. 3a shows the temporal evolution of the filtered signal136

selected by different threshold values fmax, fmin. Note that the amplitude of the filtered signal is137

determined by the filter frequency bandwidth and the filtered signal amplitude. So the filtered138
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signal has a greater amplitude in Fig. 3a3.139

140

Fig. 3 Temporal evolution of external signal Isignal for different frequency bands: a1 fmin = 0,141

fmax = 100; a2 fmin = 100, fmax = 200; a3 fmin = 200, fmax = ∞. The inserted subfigure is an enlarged142

one within the time region [100, 104]. Temporal evolution of neuronal membrane potentials in143

different frequency bands of input: b1 fmin = 0, fmax = 100; b2 fmin = 100, fmax = 200; b3 fmin = 200,144

fmax = ∞. The other parameters are fixed at I0 = 0, A0 = 40.145

146

Fig. 3b shows the temporal evolution of the neuron's membrane potential, which applied147

different signals. The neural electrical activity is in the spike state in Fig. 3b1. It is in the148

quiescent state in Figs. 3b2 and b3. As shown in Fig. 1, the neuron transitions to a spiking state149

when the constant bias current is greater than 6.2. However, the amplitude of lowfrequency band150

signal is close to 4 in Fig. 3b1, the neuron is spiking. The neuron is in a quiescent state when the151

amplitude of the highfrequency signal is close to 40 in Fig. 3b3. This suggests that neurons can152

filter complex signals from different time scales. Such filtering property is frequency dependent.153

Therefore the less important signals are filtered out, and more important signals are transmitted.154

155

Fig. 4 The mean firing rate in response to frequency bands f for different bias current: a I0 =156

02; b I0 = 46; c I0 = 7 d I0 = 10. The other parameters are fixed at A0 = 100.157
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158

The excitation level of a neuron has a significant influence on its kinetic properties. It can be159

increased by tuning the bias current. To further study the relationship between neuronal filtering160

properties and excitation level, the mean firing rate as a function of the frequency band for161

different bias currents I0 are shown in Fig. 4. Note that the frequency bandwidth is fixed at 10 HZ162

(f = fmax  fmin = 10HZ). The frequencies of the different data points in the curve represent the163

median of that frequency band interval. For example, the horizontal coordinate of the first point is164

5HZ, which means that a 010HZ (fmin = 0, fmax = 10) signal is applied to the neuron. It is shown165

in Figs. 4a and b that the neuronal filtering range to filtered signals increases with increasing166

excitability levels. When the excitability of a neuron approaches a critical threshold (i.e., I0 close167

to 6.2), the mean firing rate has a local maxima value in several specific frequency bands.168

However, neurons do not respond to highfrequency filtered signals. When I0 is greater than 6.2,169

the neuron is in a spontaneous spike state. As a function of the frequency band, the mean firing170

rate demonstrates high and low in Figs. 4c and d. It suggests that the neuronal filtering properties171

are robust over different excitation levels.172

173

Fig. 5 The mean firing rate (black line) response to f and the spectrum (red line) of174

spontaneously firing neurons for different bias current: a I0 = 7; b I0 = 8; c I0 =  d I0 = 10. The175

other parameters are fixed at A0 = 100.176

177

According to the Fourier transform principle, the natural firing frequency of a neuron can be178

seen as a combination of the fundamental component and the various level harmonic components.179

The frequency of the fundamental component is equal to the natural firing frequency of the180

neuron. The mean firing rate of neurons shows interesting fluctuations in the lowfrequency band.181
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It relates to the natural firing frequency of neurons. The mean firing rate as a function of182

frequency bands f (black line) and the spectrum of neuronal membrane potentials without filtered183

signal (red line) are shown in Fig. 5. It can be seen that the peaks of r correspond to the natural184

firing frequencies of the neuron. The neuronal excitation level is increased by the filtered signal.185

So the peak of the r curve is in the slightly higher frequency band of the natural oscillation186

frequency in Fig. 5. As the frequency band increases, the neuronal response to the signal187

continues to decrease as the harmonic amplitude decreases. Eventually, r does not fluctuate with188

changes in the highfrequency band signal. The above conclusions suggest that the filtering189

properties of the neuron are related to its natural frequency, responding to both fundamental and190

harmonic components of the natural firing. The degree of response depends on the amplitude of191

the harmonics components.192

193

Fig. 6 Temporal evolution of neuronal membrane potentials in different frequency bands of194

input: a fmin = 60HZ, fmax = 70HZ; b fmin = 210HZ, fmax = 220HZ; c fmin = 390HZ, fmax = 400HZ. d195

The interspike interval (ISI) probability distribution (ISIPD) as a function of ISI. The other196

parameters are fixed at I0 = 7, A0 = 100.197

198

However, the neurons responding to the fundamental component exhibit different kinetic199

properties from those affected by the highfrequency signal, even though the mean firing rates of200

the neurons are similar. In Figs. 6ac, we have selected three specific points to study the201

spatiotemporal response of neurons to signals in different frequency bands (6070, 210220,202

390400HZ, respectively). Neuronal firing is suppressed for the frequency band between the two203

large amplitude harmonic components in Fig. 6b. Neurons responding to the fundamental204

component are in a multispike burst firing state in Fig. 6a. However, the neurons affected by205

highfrequency signals are in a regular spiking firing state in Fig. 6c. Analysis of interspike206

interval (ISI) probability distribution (ISIPD) revealed that the ISI is smaller and more divergent207
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by the effect of the lowfrequency filtered signal. So neurons are more affected by lowfrequency208

signals than highfrequency signals.209

210

Fig. 7 The mean firing rate in response to frequency bands f for different A0: a A0 = 60200211

and b A0 = 300 with I0 = 0; c A0 = 60200 and d A0 = 300 with I0 = 6;212

213

Fig. 8 The mean firing rate in response to frequency bands f for different A0: a A0 = 60200214

and b A0 = 300 with I0 = 7; c A0 = 60200 and d A0 = 300 with I0 = 10;215

216

The mean firing rate as a function of frequency bands f for different A0 are shown in Figs 7217

and 8. For excitable neurons (I0 < 6.2) with lower excitation levels (I0 =0) in Figs 7a and b, it218

exhibits a lower response ability to harmonic components. As shown in Figs 7c and d, those with219

higher excitation levels respond best to harmonic components at moderate signal amplitudes (i.e.,220

A0 = 100, 200, 300). Highfrequency signals with excessive amplitude (i.e., A0 = 400, 500)221

increase neuronal excitability above the threshold, resulting in steady spontaneous firing. For222
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spontaneously firing neurons ( I0 > 6.2) in Fig. 8, neurons can respond to the harmonic component223

of the weak signal (A0 = 60) in Figs. 8a and b, indicating a higher response ability to the harmonic224

component. Those with higher excitation levels in Figs. 8c and d can still respond to fundamental225

and harmonic components. However, fluctuations in the mean firing rate are suppressed, and the226

filtering ability is weakened. Therefore, the filtering ability of a neuron is modulated by its227

excitation level, with the best filtering ability near the excitation threshold.228

229

230

Fig. 9 Dependencies of CV on frequency bands f for different A0: a A0 = 6000 with I0 = 0;231

b A0 = 60 with I0 = 6; c A0 = 6000 with I0 = 7; d A0 = 60 with I0 = 10; CV close to 2232

indicates that the neuronal firing pattern is extremely irregular or quiescent. CV close to 0233

indicates that the neuron get the best regular firing state.234

235

236

Fig. 10 Contour plots of mean firing rate r in the fI0 plane for different A0: a A0 = 0; b A0 =237

40; c A0 = 100; d A0 = 200; e A0 = 300; f A0 = 500.238

239

240
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By calculating the coefficient of variation, we identify the effect of the filtered signal on the241

regularity of neuronal firing patterns. The trend of the CV curve is almost opposite to the mean242

firing rate r. The excitable neuron in Fig. 9a is excited by a lowfrequency signal so that firing243

regularity is increased. The neuron is not affected by the highfrequency signal, so the neuron244

remains quiescent, and the CV rises to 2. Neurons near the excitation threshold are more sensitive245

to filtered signals in Fig. 9b. Thus large amplitude signals behave like bias current, putting neuron246

in a regular highfrequency spiking state. For spontaneously firing neurons in Figs. 9c and d, the247

regularity of neuronal firing fluctuates only in the lowfrequency band. While the highfrequency248

filtered signal has little effect on the system. This is consistent with the above findings.249

To get a global view of how bias current affects the neuronal filtering properties, the contour250

plots of mean firing rate r in the f  I0 plane are shown in Fig. 10. Note that the neuron still251

receives the same frequency bandwidth (f = fmax  fmin = 10HZ) signal as in Figs. 49. For the252

regions where I0 is less than 6.2, the red region increases with increasing amplitude, indicating253

that the neuron's filtering range increases. For the lowfrequency region where I0 is greater than254

6.2, part of the region first decreases and increases with increasing amplitude. This suggests that255

the filtering properties of spontaneously firing neurons vary nonmonotonically with increasing256

signal amplitude.257

258

Fig. 11 Contour plots of mean firing rate r in the fA0 plane for different I0: a I0 = 0; b I0 = 3;259

c I0 = 6; d I0 = 7; e I0 = 8; f I0 = 9; g I0 = 10; h I0 = 20; i I0 = 30.260

261

Further study of the contour plots of mean firing rate r in the fA0 plane found that its262
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filtering ability depends on the level of neuronal excitation. The red region increases with263

increasing bias current for excitable neurons in Figs. 11ac. This suggests that the level of264

neuronal excitation enhances the filtering properties of the neuron. However, for spontaneously265

firing neurons in Figs. 11di, the neuron does not respond to highfrequency signals. Therefore266

there is a large area of the same colour in the highfrequency region. Dark regions decrease and267

regions of the same colour increase with increasing bias current. Which indicates that the268

excessive neuronal excitation level suppresses the filtering properties of the neuron for269

spontaneously firing neurons. In summary, the best filtering properties of neurons exist around the270

excitation threshold.271

272

Fig. 12 The mean firing rate r in response to A0 for different I0: a I0 = 0 and b I0 = 710.273

fmin = 0, fmax = 10HZ.274

275

We observe in Figs. 10 and 11 that the filtering properties of the neuron vary276

nonmonotonically with increasing signal amplitude. In order to study the mechanism of the277

above phenomenon, the mean firing rate r as a function of A0 are shown in Fig. 12. For excitable278

neurons in Fig. 12a, r increases monotonically with A0. For spontaneously firing neurons in Fig.279

12b, the mean firing rate is lowest for moderate signal amplitude values, which is the280

characteristic curve similar to the inverse stochastic resonance (ISR) [61]. A large number of281

previous works have illustrated that moderate noise levels can inhibit neuronal firing, a282

phenomenon known as ISR [62]. However, noise is a stochastic signal which contains multitime283

scales. References [63] show that the inhibitory effect of colour noise on neurons is stronger than284

that of white noise. The spectrum of colour noise is nonuniformly distributed and has large285

amplitudes in specific frequency bands. This is similar to the filtered signal in the frequency286

domain. Thus, the ISR effects of colour noise on neurons may be similar to that of the inhibition287

of neurons by filtered signals. Both result from a mismatch between the frequency of the signal288

and the natural frequency of the neuron.289
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We plot the temporal evolution of neuronal membrane potentials at different excitation levels290

(i.e., I0 = 7, 9, 10) in Fig. 13. As the signal amplitude increases, the electrical activities undergo a291

successive transition, i.e., spiking state → quiescent state or lowfrequency spiking state →292

spiking state. This is consistent with the above conclusions. Our results are instrumental in293

investigating the effect of colour noise on ISR [6165].294

295

296

Fig. 13 Temporal evolution of neuronal membrane potentials. In the upper panel, I0 = 7, a1297

A0 = 0, a2 A0 = 200, a3 A0 = 600. In the middle panel, I0 = 9, b1 A0 = 0,b2 A0 = 200, b3 A0 = 600.298

In the below panel, I0 = 10, c1 A0 = 0, c2 A0 = 320, c3 A0 = 600. The frequency band is fixed at299

010 HZ.300

301

302

Fig. 14 Contour plots of mean firing rate r in the I0A0 plane for different frequency bands f:303

a 010HZ; b 490500HZ. The white dashed line separates the supra and subthreshold bias304

currents.305

306
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To further globally compare the effects of high and lowfrequency band filtered signals on307

neuronal firing patterns. The mean firing rate r in the I0A0 plane are shown in Fig. 14. As308

neurons are applied with lowfrequency signals in Fig. 14a, the ISR occurs over a large range of309

parameters. This means that moderately lowfrequency signals inhibit neuronal firing. In contrast,310

the highfrequency signal has no region of ISR. Further analysis Fig. 14b revealed that the311

highfrequency signal behaves similarly to a bias current, promoting neuronal firing and reducing312

its excitation threshold.313

314

315

Fig. 15 Contour plots of mean firing rate r in the I0A0 plane for different frequency bands f:316

a 7080HZ; b 90100HZ; c 110120HZ; d 120130HZ; e 150160HZ; f 190200HZ. The white317

dashed line separates the supra and subthreshold bias currents.318

319

The signal filtering frequency band depends on the fundamental and harmonic components320

of spontaneous firing. Therefore, it is necessary to observe the neuronal response to signals in321

different frequency bands. As shown in Fig. 15, for excitable neurons, the firing threshold322

amplitude increases with increasing signal frequency. In contrast, for spontaneously firing323

neurons, the region of the inhibited region varies nonmonotonically with increasing frequency.324

This suggests that excitable and spontaneously firing neurons obtain their filtering properties in325

two different ways.326

327

4. Conclusions328

329

Animals can detect signals with different frequency bands; for example, bats can detect330
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ultrahigh signals, while the human auditory system is sensitive to sounds within the frequency331

range of 20 to 20000 HZ [59]. In this paper, the filtering properties of HH neurons are332

investigated. Reliable wave filtering algorithms are proposed to obtain external signals with333

different frequency bands.334

We found that a neuronal response to a signal is related to its natural firing frequency. For335

spontaneously firing neurons, signals consistent with harmonic frequencies enhance neuronal336

firing, while signals between harmonic frequencies inhibit neuronal firing. Neurons are virtually337

unaffected by highfrequency signals due to the reduction in harmonic amplitude. The filtering338

ability of neurons can be modulated by the excitation level and is stronger around the excitation339

threshold. When a neuron is subjected to a specific frequency band signal, the neuron's mean340

firing rate shows a characteristic curve of ISR as the signal intensity increases. Therefore, the341

filtering properties of neural networks are reflected in the synapses and the neuronal soma.342

Further analysis revealed that the effects of low and highfrequency filtered signals play343

different roles in neuronal firing patterns. lowfrequency signals inhibit neuronal firing, while344

highfrequencies behave like bias currents and excite neuronal firing. The responses of excitable345

and spontaneously firing neurons to filtered signals are not identical. The former has a firing346

threshold that increases monotonically with the signal’s frequency band, while the latter is related347

to the locking relationship between the harmonics and the signal.348

We illustrate that the neuron is excited or inhibited by the filtered signal depending on the349

frequency locking relationship between the neuronal natural firing frequency and the signals'350

frequency band. However, we still have the unsolved problem of how to extract information about351

the filtered signal from a neuron. Thus, the mechanism of signal encoding and storage by neurons352

can be further understood. This is worthy of further study and discussion.353
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